

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	TurboGears 2.3.1 documentation

The TurboGears documentation

	
Tutorials & Documentation

	
TurboGears CookBook

	
Modules Reference

Getting Started

TurboGears is a Python web framework based on the ObjectDispatch paradigm,
it is meant to make possible to write both small and concise applications in Minimal mode
or complex application in Full Stack mode.

Installing TurboGears

TurboGears is meant to run inside python virtualenv and provides its own private index to
avoid messing with your system packages and to provide a reliable set of packages that will
correctly work together.

$ virtualenv tg2env
$ tg2env/bin/pip install tg.devtools
$ source tg2env/bin/activate
(tg2env)$ #now you are ready to work with TurboGears

Single File Application

TurboGears minimal mode makes possible to quickly create single file applications,
this makes easy to create simple examples and web services with a minimal set
of dependencies.

from wsgiref.simple_server import make_server
from tg import expose, TGController, AppConfig

class RootController(TGController):
 @expose()
 def index(self):
 return "<h1>Hello World</h1>"

config = AppConfig(minimal=True, root_controller=RootController())

print "Serving on port 8080..."
httpd = make_server('', 8080, config.make_wsgi_app())
httpd.serve_forever()

Full Stack Projects

For more complex projects TurboGears provides the so called full stack setup,
to manage full stack projects the GearBox command is provided.

To try a full stack TurboGears application feel free to quickstart one and start
playing around:

(tg2env)$ gearbox quickstart -n -x example
(tg2env)$ cd example/
(tg2env)$ python setup.py develop
(tg2env)$ gearbox serve

Visiting http://localhost:8080/index you will see a ready made sample application
with a brief introduction to the framework itself.

Explore the Getting Started section to get started with TurboGears!

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

Tutorials & Documentation

This section covers a bunch of tutorials and documentation about getting started with TurboGears2,
the Basic Documentation section will cover documentation for people that are approaching
TurboGears for the first time, while the Advanced Documentation chapter will provide documentation for
people that want to go down into the framework or are having more complex needs.

Tutorials

	Hello TurboGears
	Setup

	Hello World

	Greetings

	Serving Templates

	Serving Statics

	Going Forward

	Full Featured TurboGears: A Wiki in 20 Minutes
	Setup

	Quickstart

	Controller And View

	Wiki Model

	Adding Controllers

	Adding Views (Templates)

	Editing pages

	Saving Our Edits

	What About WikiWords?

	Hey, Where’s The Page?

	Adding A Page List

	Further Exploration

	Rapid Prototyping: A Wiki using the TurboGears Admin
	Creating Project Structure

	Creating and Managing Wiki Pages

	Serving Wiki Pages

	Advanced Admin Customizations

	Wiki Page Generation Caching

Basic Documentation

	Writing Controllers
	Basic Dispatch

	Index and Catch-All pages

	Exposing Templates

	SubControllers And The URL Hierarchy

	Passing Parameters To The Controller

	TurboGears Validation
	Validating Arguments

	Validation Process Information

	Writing Custom Validators

	Validating Widget Based Forms

	Schema Validation

	Displaying Flash/Notice Messages
	Default Setup

	Storing Flash Messages

	Styling the Flash

	Caching with Flash Messages

	Authorization in TurboGears
	How authentication and authorization is set up by default

	Restricting access with tg.predicates

	Web Session Usage
	Why Use Sessions?

	How To Use Sessions?

	Avoid automatic session extension

	Caching
	Application-level Caching

	Template Caching

	HTTP-Level Caching

	Handling Internationalization And Localization
	Language Auto-Select

	Making your code international

	An i18n Quick Start

	Commands

	Pluggable Applications with TurboGears
	Supported Features

	Mounting a pluggable application

	Creating Pluggable Applications

	Pagination in TurboGears
	Paginate Decorator

	Advanced Pagination

	Using MongoDB
	QuickStarting with MongoDB

	Working With Ming

	Defining Your Own Collections

	Handling Relationships

	Using Synonyms

Advanced Documentation

	Installing TurboGears2
	virtualenv and You: A Perfect Match

	Installing TurboGears2

	The GearBox Toolkit
	QuickStart

	Setup-App

	Serve

	TGShell

	RESTful Web Applications with TurboGears
	Listing Resources

	Creating New Items

	Getting one Item

	Updating an Existing Item

	Deleting An Item From Our Resource

	Nesting Resources With RestControllers

	Non-RESTful Methods

	ObjectDispatch and TGController
	The Default Method

	The Lookup Method

	Subclassing Controllers

	Mount Points and Dispatch

	Database Schema Migrations
	Getting Started

	Creating migrations

	Applying migrations

	Keeping your websetup on sync

	Downgrading your schema

	TurboGears2 Configuration
	TurboGears 2 Configuration

	SQLAlchemy and Transaction Config Settings

	Template Rendering Config Settings

	Authentication in TurboGears 2 applications
	How it works in TurboGears

	Customizing authentication and authorization

	Disabling authentication and authorization

	Hooks and Wrappers
	Hooks

	Controller Wrappers

	Application Wrappers

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

Hello TurboGears

The fastest way to start using TurboGears is through the minimal mode, when using TurboGears with
minimal mode a default setup that minimizes dependencies and complexity is provided.

Note

While minimal mode is well suited for small simple web applications or web services for more complex
projects moving to a package based configuration is suggested. To start with a package based application
the 20 Minutes Wiki Tutorial tutorial is provided.

Setup

First we are going to create a virtual environment where to install the framework, if you want to
proceed without using a virtual environment simply skip to Install TurboGears.
Keep in mind that using a virtual environment is the suggested way to install TurboGears without
messing with your system packages and python modules. To do so we need to install the virtualenv package:

$ pip install virtualenv

Now the virtualenv command should be available and we can create and activate
a virtual environment for our TurboGears2 project:

$ virtualenv tgenv
$. tgenv/bin/activate

If our environment got successfully created and activated we should end up with
a prompt that looks like:

(tgenv)$

Now we are ready to install TurboGears itself:

(tgenv)$ pip install TurboGears2

Hello World

A TurboGears application consists of an AppConfig application configuration and an application RootController.
The first is used to setup and create the application itself, while the latter is used to dispatch requests
and take actions.

For our first application we are going to define a controller with an index method that just tells Hello World:

from tg import expose, TGController, AppConfig

class RootController(TGController):
 @expose()
 def index(self):
 return 'Hello World'

now to make TurboGears serve our controller we must create the actual application from an AppConfig:

config = AppConfig(minimal=True, root_controller=RootController())

application = config.make_wsgi_app()

then we must actually serve the application:

from wsgiref.simple_server import make_server

print "Serving on port 8080..."
httpd = make_server('', 8080, application)
httpd.serve_forever()

Running the Python module just created will start a server on port 8080 with the our hello world application,
opening your browser and pointing it to http://localhost:8080 should present you with an Hello World text.

Greetings

Now that we have a working application it’s time to say hello to our user instead of greeting the world,
to do so we can extend our controller with an hello method which gets as a parameter the person to greet:

class RootController(TGController):
 @expose()
 def index(self):
 return 'Hello World'

 @expose()
 def hello(self, person):
 return 'Hello %s' % person

Restarting the application and pointing the browser to http://localhost:8080/hello?person=MyName should
greet you with an Hello MyName text.

Note

How and why requests are routed to the index and hello methods is explained in
Object Dispatch documentation

Passing parameters to your controllers is as simple as adding them to the url with the same name
of the parameters in your method, TurboGears will automatically map them to function arguments
when calling an exposed method.

Serving Templates

Being able to serve text isn’t usually enough for a web application, for more advanced output
using a template is usually preferred. Before being able to serve a template we need to install
a template engine and enable it.

The template engine we are going to use for this example is Jinja2 which is a fast and
flexible template engine with python3 support. To install jinja simply run:

(tgenv)$ pip install jinja2

Now that the template engine is available we need to enable it in TurboGears, doing so is as
simple as adding it to the list of the available engines inside our AppConfig:

config = AppConfig(minimal=True, root_controller=RootController())
config.renderers = ['jinja']

application = config.make_wsgi_app()

Now our application is able to expose templates based on the Jinja template engine,
to test them we are going to create an hello.jinja file inside the same directory
where our application is available:

<!doctype html>
<title>Hello</title>
{% if person %}
 <h1>Hello {{ person }}</h1>
{% else %}
 <h1>Hello World!</h1>
{% endif %}

then the hello method will be changed to display the newly created template
instead of using a string directly:

class RootController(TGController):
 @expose()
 def index(self):
 return 'Hello World'

 @expose('hello.jinja')
 def hello(self, person=None):
 return dict(person=person)

Restarting the application and pointing the browser to http://localhost:8080/hello or
http://localhost:8080/hello?person=MyName will display an hello page greeting the person
whose name is passed as parameter or the world itself if the parameter is missing.

Serving Statics

Even for small web applications being able to apply style through CSS or serving javascript
scripts is often required, to do so we must tell TurboGears to serve our static files and
from where to serve them:

config = AppConfig(minimal=True, root_controller=RootController())
config.renderers = ['jinja']
config.serve_static = True
config.paths['static_files'] = 'public'

application = config.make_wsgi_app()

After restating the application, any file placed inside the public directory will be
served directly by TurboGears. Supposing you have a style.css file you can access
it as http://localhost:8080/style.css.

Going Forward

While it is possible to manually enable more advanced features like the SQLAlchemy and Ming
storage backends, the application helpers, app_globals, i18n and all the TurboGears
features through the AppConfig object, if you need them you probably want TurboGears
to create a full featured application through the gearbox quickstart command.

The 20 Minutes Wiki Tutorial provides an introduction to more complex applications
enabled all the TurboGears features, follow it if you want to unleash all the features that
TurboGears provides!

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

Full Featured TurboGears: A Wiki in 20 Minutes

How does TurboGears2 help you get development done quickly? We’ll show
you by developing a simple wiki application that should take you no
more than 20 minutes to complete. We’re going to do this without
explaining the steps in detail (that is what this book is for, after
all). As a result, you’ll see how easily you can make your own web
applications once you are up to speed on what TurboGears2 offers.

If you’re not familiar with the concept of a wiki you might want to
check out the Wikipedia entry [http://en.wikipedia.org/wiki/Wiki].
Basically, a wiki is an easily-editable collaborative web content
system that makes it trivial to link to pages and create new pages.
Like other wiki systems, we are going to use CamelCase words to
designate links to pages.

If you have trouble with this tutorial ask for help on the TurboGears
discussion list [http://groups.google.com/group/turbogears], or on the IRC channel #turbogears. We’re a
friendly bunch and, depending what time of day you post, you’ll get
your answer in a few minutes to a few hours. If you search the mailing
list or the web in general you’ll probably get your answer even
faster. Please don’t post your problem reports as comments on this
or any of the following pages of the tutorial. Comments are for
suggestions for improvement of the docs, not for seeking support.

If you want to see the final version you can download a copy of the
wiki code.

Setup

This tutorial takes for granted that you have a working Python environment
with Python2.6 or Python2.7, with pip [http://www.pip-installer.org/en/latest/]
installed and you have a working browser to look at the web application
you are developing.

This tutorial doesn’t cover Python at all. Check the Python
Documentation [http://www.python.org/doc] page for more coverage of Python.

Setting up our Environment

If it is your first TurboGears2 project you need to create an environment and install
the TurboGears2 web framework to make the development commands available.

Creating the Environment

First we are going to create a Virtual Environment where to install the framework,
this helps keeping our system clean by not installing the packages system-wide.
To do so we need to install the virtualenv package:

$ pip install virtualenv

Now the virtualenv command should be available and we can create and activate
a virtual environment for our TurboGears2 project:

$ virtualenv tgenv
$. tgenv/bin/activate

If our environment got successfully created and activated we should end up with
a prompt that looks like:

(tgenv)$

Installing TurboGears2

TurboGears2 can be quickly installed by installing the TurboGears2 development tools,
those will install TurboGears2 itself and a bunch of commands useful when developing
TurboGears applications:

(tgenv)$ pip install tg.devtools

Note

The -i http://tg.gy/VERSION option is used to make sure that we install
TurboGears2 latest version and its dependencies at the right version, replacing
it, for example, with 220 or 215 will install the 2.2 and 2.1.5 version respectively.
TurboGears2 package doesn’t usually enforce dependencies version to make possible
for developers to upgrade dependencies if they need a bugfix or new features.
It is suggested to always use the -i option to avoid installing incompatible packages.

Quickstart

TurboGears2 provides a suite of tools for working with projects by
adding several commands to the Python command line tool gearbox. A
few will be touched upon in this tutorial. (Check the
GearBox section for a full listing.) The first tool
you’ll need is quickstart, which initializes a TurboGears project.
Go to a command line window and run the following command:

(tgenv)$ gearbox quickstart wiki20

This will create a project called wiki20 with the default template engine and with authentication.
TurboGears2 projects usually share a common structure, which should look like:

wiki20
├── __init__.py
├── config <-- Where project setup and configuration relies
├── controllers <-- All the project controllers, the logic of our web application
├── i18n <-- Translation files for the languages supported
├── lib <-- Utility python functions and classes
├── model <-- Database models
├── public <-- Static files like CSS, javascript and images
├── templates <-- Templates exposed by our controllers.
├── tests <-- Tests
└── websetup <-- Functions to execute at application setup. Like creating tables, a standard user and so on.

Note

We recommend you use the names given here: this documentation looks
for files in directories based on these names.

You need to update the dependencies in the file Wiki-20/setup.py.
Look for a list named install_requires and append the docutils
entry at the end. TurboGears2 does not require docutils,
but the wiki we are building does.

Your install_requires should end up looking like:

install_requires=[
 "TurboGears2 >= 2.3.0",
 "Genshi",
 "zope.sqlalchemy >= 0.4",
 "sqlalchemy",
 "sqlalchemy-migrate",
 "repoze.who",
 "repoze.who-friendlyform >= 1.0.4",
 "tgext.admin >= 0.5.1",
 "repoze.who.plugins.sa",
 "tw2.forms",
 "docutils"
]

Now to be able to run the project you will need to install it and
its dependencies. This can be quickly achieved by running from
inside the wiki20 directory:

$ pip install -e .

Note

If you skip the pip install -e . command you might end up with an error that looks
like: pkg_resources.DistributionNotFound: tw2.forms: Not Found for: wiki20 (did you run python setup.py develop?)
This is because some of the dependencies your project depend on the options you choose while
quickstarting it.

You should now be able to start the newly create project with the gearbox serve command:

(tgenv)$ gearbox serve --reload
Starting subprocess with file monitor
Starting server in PID 32797.
serving on http://127.0.0.1:8080

Note

The –reload option makes the server restart whenever a file is changed, this greatly speeds
up the development process by avoiding to manually restart the server whenever we need to try
our changes.

Pointing your browser to http://127.0.0.1:8080/ should open up the TurboGears2 welcome page.
By default newly quickstarted projects provide a bunch of pages to guide the user through
some of the foundations of TurboGears2 web applications.

Controller And View

TurboGears follows the Model-View-Controller paradigm [http://en.wikipedia.org/wiki/Model-view-controller]
(a.k.a. “MVC”), as do most modern web frameworks like Rails, Django,
Struts, etc.

Taking a look at the http://127.0.0.1:8080/about page is greatly suggested
to get an overview of your newly quickstarted project and how TurboGears2
works.

If you take a look at the code that quickstart created, you’ll see
everything necessary to get up and running. Here, we’ll look at the
two files directly involved in displaying this welcome page.

Controller Code

Wiki-20/wiki20/controllers/root.py (see below) is the code that
causes the welcome page to be produced. After the imports the first
line of code creates our main controller class by inheriting from
TurboGears’ BaseController:

class RootController(BaseController):

The TurboGears 2 controller is a simple object publishing system; you
write controller methods and @expose() them to the web. In our
case, there’s a single controller method called index. As you
might guess, this name is not accidental; this becomes the default
page you’ll get if you go to this URL without specifying a particular
destination, just like you’ll end up at index.html on an ordinary
web server if you don’t give a specific file name. You’ll also go to
this page if you explicitly name it, with
http://localhost:8080/index. We’ll see other controller methods
later in the tutorial so this naming system will become clear.

The @expose() decorator tells TurboGears which template to use to
render the page. Our @expose() specifies:

@expose('wiki20.templates.index')

This gives TurboGears the template to use, including the path
information (the .html extension is implied). We’ll look at this
file shortly.

Each controller method returns a dictionary, as you can see at the end
of the index method. TG takes the key:value pairs in this
dictionary and turns them into local variables that can be used in the
template.

from tg import expose, flash, require, url, request, redirect
#Skipping some imports here...

class RootController(BaseController):
 secc = SecureController()
 admin = AdminController(model, DBSession, config_type=TGAdminConfig)

 error = ErrorController()

 def _before(self, *args, **kw):
 tmpl_context.project_name = "Wiki 20"

 @expose('wiki20.templates.index')
 def index(self):
 """Handle the front-page."""
 return dict(page='index')

 #more controller methods from here on...

Displaying The Page

Wiki-20/wiki20/templates/index.html is the template
specified by the @expose() decorator, so it formats what you view
on the welcome screen. Look at the file; you’ll see that it’s standard
XHTML with some simple namespaced attributes. This makes it very
designer-friendly, and well-behaved design tools will respect all the
Genshi [http://genshi.edgewall.org/wiki/Documentation/xml-templates.html] attributes and tags. You can even open it directly in your
browser.

Genshi directives are elements and/or attributes in the template that
are usually prefixed with py:. They can affect how the template is
rendered in a number of ways: Genshi provides directives for
conditionals and looping, among others. We’ll see some simple Genshi
directives in the sections on Editing pages and
Adding views.

The following is the content of a newly quickstarted TurboGears2 project
at 2.2 release time:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:py="http://genshi.edgewall.org/"
 xmlns:xi="http://www.w3.org/2001/XInclude">

 <xi:include href="master.html" />

<head>
 <title>Welcome to TurboGears 2.2, standing on the shoulders of giants, since 2007</title>
</head>

<body>
 <div class="row">
 <div class="span8 hidden-phone hidden-tablet">
 <div class="hero-unit">
 <h1>Welcome to TurboGears 2.2</h1>
 <p>If you see this page it means your installation was successful!</p>
 <p>TurboGears 2 is rapid web application development toolkit designed to make your life easier.</p>
 <p>

 ${h.icon('book', True)} Learn more

 </p>
 </div>
 </div>
 <div class="span4">
 ${h.icon('book')} TG2 Documents
 new
 Read the Getting Started section

 ${h.icon('book')} TG2 Book
 Work in progress TurboGears2 book

 ${h.icon('comment')} Join the Mail List
 for general TG use/topics
 </div>
 </div>

 <div class="row">
 <div class="span4">
 <h3>Code your data model</h3>
 <p> Design your data <code>model</code>, Create the database, and Add some bootstrap data.</p>
 </div>
 <div class="span4">
 <h3>Design your URL architecture</h3>
 <p> Decide your URLs, Program your <code>controller</code> methods, Design your
 <code>templates</code>, and place some static files (CSS and/or Javascript). </p>
 </div>
 <div class="span4">
 <h3>Distribute your app</h3>
 <p> Test your source, Generate project documents, Build a distribution.</p>
 </div>
 </div>

 <div class="notice"> Thank you for choosing TurboGears.</div>
</body>
</html>

Wiki Model

quickstart produced a directory for our model in
Wiki-20/wiki20/model/. This directory contains an __init__.py
file, which makes that directory name into a python module (so you can
use import model).

Since a wiki is basically a linked collection of pages, we’ll define a
Page class as the name of our model.

Create a new file called Wiki-20/wiki20/model/page.py:

from sqlalchemy import *
from sqlalchemy.orm import mapper, relation
from sqlalchemy import Table, ForeignKey, Column
from sqlalchemy.types import Integer, Text

from wiki20.model import DeclarativeBase, metadata, DBSession

class Page(DeclarativeBase):
 __tablename__ = 'page'

 id = Column(Integer, primary_key=True)
 pagename = Column(Text, unique=True)
 data = Column(Text)

Now to let TurboGears know that our model exists we must make it available inside the Wiki-20/wiki20/model/__init__.py
file just by importing it at the end:

Import your model modules here.
from wiki20.model.auth import User, Group, Permission
from wiki20.model.page import Page

Warning

It’s very important that this line is at the end because
Page requires the rest of the model to be initialized
before it can be imported:

Initializing The Tables

Now that our model is recognized by TurboGears we must create the table that it is going to use
to store its data. By default TurboGears will automatically create tables for each model it is aware of,
this is performed during the application setup phase.

The setup phase is managed by the Wiki-20/wiki20/websetup python module, we are just
going to add to``websetup/boostrap.py`` the lines required to create a FrontPage page for
our wiki, so it doesn’t start empty.

We need to update the file to create our FrontPage data just before
the DBSession.flush() command by adding:

page = model.Page(pagename="FrontPage", data="initial data")
model.DBSession.add(page)

You should end up having a try:except: block that should
look like:

def bootstrap(command, conf, vars):
 #Some comments and setup here...

 try:
 #Users and groups get created here...
 model.DBSession.add(u1)

 page = model.Page(pagename="FrontPage", data="initial data")
 model.DBSession.add(page)

 model.DBSession.flush()
 transaction.commit()
 except IntegrityError:
 #Some Error handling here...

The transaction.commit() call involves the transaction manager used
by TurboGears2 which helps us to support cross database transactions, as well as
transactions in non relational databases.

Now to actually create our table and our FrontPage we simply need to run
the gearbox setup-app command where your application configuration file is available
(usually the root of the project):

(tgenv)$ gearbox setup-app
Running setup_app() from wiki20.websetup
Creating tables

A file named Wiki-20/devdata.db should be created which contains
your sqlite database.
For other database systems refer to the sqlalchemy.url
line inside your configuration file.

Adding Controllers

Controllers are the code that figures out which page to display, what
data to grab from the model, how to process it, and finally hands off
that processed data to a template.

quickstart has already created some basic controller code for us
at Wiki-20/wiki20/controllers/root.py.

First, we must import the Page class from our model. At the end of
the import block, add this line:

from wiki20.model.page import Page

Now we will change the template used to present the data, by changing
the @expose('wiki20.templates.index') line to:

@expose('wiki20.templates.page')

This requires us to create a new template named page.html in the
wiki20/templates directory; we’ll do this in the next section.

Now we must specify which page we want to see. To do this, add a
parameter to the index() method. Change the line after the
@expose decorator to:

def index(self, pagename="FrontPage"):

This tells the index() method to accept a parameter called
pagename, with a default value of "FrontPage".

Now let’s get that page from our data model. Put this line in the
body of index:

page = DBSession.query(Page).filter_by(pagename=pagename).one()

This line asks the SQLAlchemy database session object to run a query
for records with a pagename column equal to the value of the
pagename parameter passed to our controller method. The
.one() method assures that there is only one returned result;
normally a .query call returns a list of matching objects. We only
want one page, so we use .one().

Finally, we need to return a dictionary containing the page we
just looked up. When we say:

return dict(wikipage=page)

The returned dict will create a template variable called
wikipage that will evaluate to the page object that we looked
it up.

Your index controller method should end up looking like:

from tg import expose, flash, require, url, request, redirect

#More imports here...

from wiki20.model.page import Page

class RootController(BaseController):
 secc = SecureController()
 admin = AdminController(model, DBSession, config_type=TGAdminConfig)

 error = ErrorController()

 def _before(self, *args, **kw):
 tmpl_context.project_name = "Wiki 20"

 @expose('wiki20.templates.page')
 def index(self, pagename="FrontPage"):
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 return dict(wikipage=page)

 #more controller methods from here on...

Now our index() method fetches a record from the database
(creating an instance of our mapped Page class along the way), and
returns it to the template within a dictionary.

Adding Views (Templates)

quickstart also created some templates for us in the
Wiki-20/wiki20/templates directory: master.html and index.html.
Back in our simple controller, we used @expose() to hand off a
dictionary of data to a template called 'wiki20.templates.index',
which corresponds to Wiki-20/wiki20/templates/index.html.

Take a look at the following line in index.html:

<xi:include href="master.html" />

This tells the index template to include the master
template. Using includes lets you easily maintain a cohesive look and
feel throughout your site by having each page include a common master
template.

Copy the contents of index.html into a new file called page.html.
Now modify it for our purposes:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:py="http://genshi.edgewall.org/"
 xmlns:xi="http://www.w3.org/2001/XInclude">

 <xi:include href="master.html" />

<head>
 <meta content="text/html; charset=UTF-8" http-equiv="content-type" py:replace="''"/>
 <title>${wikipage.pagename} - The TurboGears 2 Wiki</title>
</head>

<body>
 <div class="main_content">
 <div style="float:right; width: 10em;"> Viewing
 Page Name Goes Here

 You can return to the FrontPage.
 </div>

 <div py:replace="wikipage.data">Page text goes here.</div>

 <div>
 Edit this page
 </div>
 </div>
</body>
</html>

This is a basic XHTML page with three substitutions:

	In the <title> tag, we substitute the name of the page, using
the pagename value of page. (Remember, wikipage is an
instance of our mapped Page class, which was passed in a
dictionary by our controller.):

<title>${wikipage.pagename} - The TurboGears 2 Wiki</title>

	In the second <div> element, we substitute the page name again
with Genshi’s py:replace:

Page Name Goes Here

	In the third <div>, we put in the contents of our``wikipage``:

<div py:replace="wikipage.data">Page text goes here.</div>

When you refresh the output web page you should see “initial data”
displayed on the page.

Note

py.replace [http://genshi.edgewall.org/wiki/Documentation/xml-templates.html#id8] replaces the entire tag (including start and
end tags) with the value of the variable provided.

Editing pages

One of the fundamental features of a wiki is the ability to edit the
page just by clicking “Edit This Page,” so we’ll create a template for
editing. First, make a copy of page.html:

cd wiki20/templates
cp page.html edit.html

We need to replace the content with an editing form and ensure people
know this is an editing page. Here are the changes for edit.html.

	Change the title in the header to reflect that we are editing the
page:

<head>
 <meta content="text/html; charset=UTF-8" http-equiv="content-type" py:replace="''"/>
 <title>Editing: ${wikipage.pagename}</title>
</head>

	Change the div that displays the page:

<div py:replace="wikipage.data">Page text goes here.</div>

with a div that contains a standard HTML form:

<div>
 <form action="/save" method="post">
 <input type="hidden" name="pagename" value="${wikipage.pagename}"/>
 <textarea name="data" py:content="wikipage.data" rows="10" cols="60"/>
 <input type="submit" name="submit" value="Save"/>
 </form>
</div>

Now that we have our view, we need to update our controller in order
to display the form and handle the form submission. For displaying the
form, we’ll add an edit method to our controller in
Wiki-20/wiki20/controllers/root.py:

from tg import expose, flash, require, url, request, redirect

#More imports here...

from wiki20.model.page import Page

class RootController(BaseController):
 secc = SecureController()
 admin = AdminController(model, DBSession, config_type=TGAdminConfig)

 error = ErrorController()

 def _before(self, *args, **kw):
 tmpl_context.project_name = "Wiki 20"

 @expose('wiki20.templates.page')
 def index(self, pagename="FrontPage"):
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 return dict(wikipage=page)

 @expose(template="wiki20.templates.edit")
 def edit(self, pagename):
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 return dict(wikipage=page)

 #more controller methods from here on...

For now, the new method is identical to the index method; the only
difference is that the resulting dictionary is handed to the edit
template. To see it work, go to
http://localhost:8080/edit/FrontPage . However, this only works because
FrontPage already exists in our database; if you try to edit a new
page with a different name it will fail, which we’ll fix in a later
section.

Don’t click that save button yet! We still need to write that method.

Saving Our Edits

When we displayed our wiki’s edit form in the last section, the form’s
action was /save. So, we need to make a method called
save in the Root class of our controller.

However, we’re also going to make another important change. Our
index method is only called when you either go to / or
/index. If you change the index method to the special method
_default, then _default will be automatically called whenever
nothing else matches. _default will take the rest of the URL and
turn it into positional parameters. This will cause the wiki to become
the default when possible.

Here’s our new version of root.py which includes both _default
and save:

from tg import expose, flash, require, url, request, redirect

#More imports here...

from wiki20.model.page import Page

class RootController(BaseController):
 secc = SecureController()
 admin = AdminController(model, DBSession, config_type=TGAdminConfig)

 error = ErrorController()

 def _before(self, *args, **kw):
 tmpl_context.project_name = "Wiki 20"

 @expose('wiki20.templates.page')
 def _default(self, pagename="FrontPage"):
 """Handle the front-page."""
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 return dict(wikipage=page)

 @expose(template="wiki20.templates.edit")
 def edit(self, pagename):
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 return dict(wikipage=page)

 @expose()
 def save(self, pagename, data, submit):
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 page.data = data
 redirect("/" + pagename)

 #more controller methods from here on...

Unlike the previous methods we’ve made, save just uses a plain
@expose() without any template specified. That’s because we’re
only redirecting the user back to the viewing page.

Although the page.data = data statement tells SQLAlchemy that you
intend to store the page data in the database, you would usually
need to flush the SQLAlchemy Unit of Work and commit the currently
running transaction, those are operations that TurboGears2
transaction management will automatically do for us.

You don’t have to do anything to use this transaction management
system, it should just work. So, you can now make changes and save the
page we were editing, just like a real wiki.

What About WikiWords?

Our wiki doesn’t yet have a way to link pages. A typical wiki will
automatically create links for WikiWords when it finds them
(WikiWords have also been described as WordsSmashedTogether). This
sounds like a job for a regular expression.

Here’s the new version of our RootController._default method,
which will be explained afterwards:

from tg import expose, flash, require, url, request, redirect

#More imports here...

from wiki20.model.page import Page
import re
from docutils.core import publish_parts

wikiwords = re.compile(r"\b([A-Z]\w+[A-Z]+\w+)")

class RootController(BaseController):
 secc = SecureController()
 admin = AdminController(model, DBSession, config_type=TGAdminConfig)

 error = ErrorController()

 def _before(self, *args, **kw):
 tmpl_context.project_name = "Wiki 20"

 @expose('wiki20.templates.page')
 def _default(self, pagename="FrontPage"):
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 content = publish_parts(page.data, writer_name="html")["html_body"]
 root = url('/')
 content = wikiwords.sub(r'\1' % root, content)
 return dict(content=content, wikipage=page)

 @expose(template="wiki20.templates.edit")
 def edit(self, pagename):
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 return dict(wikipage=page)

 @expose()
 def save(self, pagename, data, submit):
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 page.data = data
 redirect("/" + pagename)

 #more controller methods from here on...

We need some additional imports, including re for regular
expressions and a method called publish_parts from docutils.

A WikiWord is a word that starts with an uppercase letter, has a
collection of lowercase letters and numbers followed by another
uppercase letter and more letters and numbers. The wikiwords
regular expression describes a WikiWord.

In _default, the new lines begin with the use of publish_parts,
which is a utility that takes string input and returns a dictionary of
document parts after performing conversions; in our case, the
conversion is from Restructured Text to HTML. The input
(page.data) is in Restructured Text format, and the output format
(specified by writer_name="html") is in HTML. Selecting the
fragment part produces the document without the document title,
subtitle, docinfo, header, and footer.

You can configure TurboGears so that it doesn’t live at the root of a
site, so you can combine multiple TurboGears apps on a single
server. Using tg.url() creates relative links, so that your links
will continue to work regardless of how many apps you’re running.

The next line rewrites the content by finding any WikiWords and
substituting hyperlinks for those WikiWords. That way when you click
on a WikiWord, it will take you to that page. The r'string' means
‘raw string’, one that turns off escaping, which is mostly used in
regular expression strings to prevent you from having to double escape
slashes. The substitution may look a bit weird, but is more
understandable if you recognize that the %s gets substituted with
root, then the substitution is done which replaces the \1 with
the string matching the regex.

Note that _default() is now returning a dict containing an
additional key-value pair: content=content. This will not break
wiki20.templates.page because that page is only looking for
page in the dictionary, however if we want to do something
interesting with the new key-value pair we’ll need to edit
wiki20.templates.page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:py="http://genshi.edgewall.org/"
 xmlns:xi="http://www.w3.org/2001/XInclude">

 <xi:include href="master.html" />

<head>
 <meta content="text/html; charset=UTF-8" http-equiv="content-type" py:replace="''"/>
 <title>${wikipage.pagename} - The TurboGears 2 Wiki</title>
</head>

<body>
 <div class="main_content">
 <div style="float:right; width: 10em;"> Viewing
 Page Name Goes Here

 You can return to the FrontPage.
 </div>

 <div py:replace="Markup(content)">Formatted content goes here.</div>

 <div>
 Edit this page
 </div>
 </div>
</body>
</html>

Since content comes through as XML, we can strip it off using the
Markup() function to produce plain text (try removing the function
call to see what happens).

To test the new version of the system, edit the data in your front
page to include a WikiWord. When the page is displayed, you’ll see
that it’s now a link. You probably won’t be surprised to find that
clicking that link produces an error.

Hey, Where’s The Page?

What if a Wiki page doesn’t exist? We’ll take a simple approach: if
the page doesn’t exist, you get an edit page to use to create it.

In the _default method, we’ll check to see if the page exists.

If it doesn’t, we’ll redirect to a new notfound method. We’ll add
this method after the _default method and before the edit
method.

Here are the new notfound and the updated _default
methods for our RootController class:

@expose('wiki20.templates.page')
def _default(self, pagename="FrontPage"):
 from sqlalchemy.exc import InvalidRequestError

 try:
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 except InvalidRequestError:
 raise redirect("notfound", pagename=pagename)

 content = publish_parts(page.data, writer_name="html")["html_body"]
 root = url('/')
 content = wikiwords.sub(r'\1' % root, content)
 return dict(content=content, wikipage=page)

@expose("wiki20.templates.edit")
def notfound(self, pagename):
 page = Page(pagename=pagename, data="")
 DBSession.add(page)
 return dict(wikipage=page)

In the _default code we now first try to get the page and
then deal with the exception by redirecting to a method that
will make a new page.

As for the notfound method, the first two lines of the method add
a row to the page table. From there, the path is exactly the same it
would be for our edit method.

With these changes in place, we have a fully functional wiki. Give it
a try! You should be able to create new pages now.

Adding A Page List

Most wikis have a feature that lets you view an index of the pages. To
add one, we’ll start with a new template, pagelist.html. We’ll copy
page.html so that we don’t have to write the boilerplate.

cd wiki20/templates
cp page.html pagelist.html

After editing, our pagelist.html looks like:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:py="http://genshi.edgewall.org/"
 xmlns:xi="http://www.w3.org/2001/XInclude">

 <xi:include href="master.html" />

<head>
 <meta content="text/html; charset=UTF-8" http-equiv="content-type" py:replace="''"/>
 <title>Page Listing - The TurboGears 2 Wiki</title>
</head>

<body>
 <div class="main_content">
 <h1>All Pages</h1>

 <li py:for="pagename in pages">
 <a href="${tg.url('/' + pagename)}"
 py:content="pagename">
 Page Name Here.

 Return to the FrontPage.
 </div>
</body>
</html>

The highlighted section represents the Genshi code of interest. You can
guess that the py:for is a python for loop, modified to fit
into Genshi’s XML. It iterates through each of the pages (which
we’ll send in via the controller, using a modification you’ll see
next). For each one, Page Name Here is replaced by pagename,
as is the URL. You can learn more about the Genshi templating
engine [http://genshi.edgewall.org/wiki/Documentation/templates.html] at their site.

We must also modify the RootController class to implement pagelist and to
create and pass pages to our template:

@expose("wiki20.templates.pagelist")
def pagelist(self):
 pages = [page.pagename for page in DBSession.query(Page).order_by(Page.pagename)]
 return dict(pages=pages)

Here, we select all of the Page objects from the database, and
order them by pagename.

We can also modify page.html so that the link to the page list is
available on every page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:py="http://genshi.edgewall.org/"
 xmlns:xi="http://www.w3.org/2001/XInclude">

 <xi:include href="master.html" />

<head>
 <meta content="text/html; charset=UTF-8" http-equiv="content-type" py:replace="''"/>
 <title>${wikipage.pagename} - The TurboGears 2 Wiki</title>
</head>

<body>
 <div class="main_content">
 <div style="float:right; width: 10em;"> Viewing
 Page Name Goes Here

 You can return to the FrontPage.
 </div>

 <div py:replace="Markup(content)">Formatted content goes here.</div>

 <div>
 Edit this page
 View the page list
 </div>
 </div>
</body>
</html>

You can see your pagelist by clicking the link on a page or by going
directly to http://localhost:8080/pagelist .

Further Exploration

Now that you have a working Wiki, there are a number of further places
to explore:

	You can add JSON support via jQuery

	You can learn more about the Genshi templating engine [http://genshi.edgewall.org/wiki/Documentation/templates.html].

	You can learn more about the SQLAlchemy ORM [http://www.sqlalchemy.org/].

Todo

Add link to help show how to add jQuery support

If you had any problems with this tutorial, or have ideas on how to
make it better, please let us know on the mailing list [http://groups.google.com/group/turbogears]! Suggestions
are almost always incorporated.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

Rapid Prototyping: A Wiki using the TurboGears Admin

TurboGears2 Wikier application is inspired by the TurboGears2 20 Minutes Wiki Tutorial.

While the 20 Minutes Wiki is a great way to learn writing custom TurboGears2 applications
the Wikier tutorial tries to provide more focus on rapid prototyping with the ambitious target of
making it possible to create a full featured Wiki in minimum possible time.

It will showcase some basic concepts of the TurboGears2 Web Framework and how to best use rapid prototyping tools
available in the standard extension modules.

Contents:

	Creating Project Structure
	Setting up our Environment

	Creating the Project

	Creating and Managing Wiki Pages
	WikiPage Model

	Creating Tables and setting up Application

	Customizing Management

	Serving Wiki Pages
	WebSite Index

	Serving all Wiki pages

	Advanced Admin Customizations
	Displaying the Slug

	Wiki Page Generation Caching
	Updating updated_at

	Caching Page

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

 	Rapid Prototyping: A Wiki using the TurboGears Admin

Creating Project Structure

Hint

This tutorial has been written for TurboGears 2.3 on Python2.7. While it might work with
previous or later versions, it has been tested only for version 2.3.

Setting up our Environment

If this is your first TurboGears2 project you need to create an environment and install
the TurboGears2 web framework to make the development commands available.

Creating the Environment

First we are going to create a Virtual Environment where we will install the framework.
This helps keeping our system clean by not installing the packages system-wide.
To do so we need to install the virtualenv package:

$ pip install virtualenv

Now the virtualenv command should be available and we can create and activate
a virtual environment for our TurboGears2 project:

$ virtualenv tgenv
$. tgenv/bin/activate

If our environment got successfully created and activated we should end up with
a prompt that looks like:

(tgenv)$

Installing TurboGears2

TurboGears2 can be quickly installed by installing the TurboGears2 development tools.
This will install TurboGears2 itself and a bunch of commands useful when developing
TurboGears applications:

(tgenv)$ pip install tg.devtools

Note

The -i http://tg.gy/VERSION option is used to make sure that we install
TurboGears2 version and its dependencies at the right version. TurboGears2
doesn’t usually enforce version dependencies to make it possible for developers
to upgrade them if they need a bugfix or new features.
It is suggested to always use the -i option to avoid installing incompatible packages.

Creating the Project

If the install correctly completed the gearbox quickstart command should be available
in your virtual environment:

(tgenv)$ gearbox quickstart wikir

This will create a project called wikir with the default template engine and with authentication.
TurboGears2 projects usually share a common structure, which should look like:

wikir
├── __init__.py
├── config <-- Where project setup and configuration is located
├── controllers <-- All the project controllers, the logic of our web application
├── i18n <-- Translation files for the languages supported
├── lib <-- Utility python functions and classes
├── model <-- Database models
├── public <-- Static files like CSS, javascript and images
├── templates <-- Templates exposed by our controllers
├── tests <-- Tests
└── websetup <-- Functions to execute at application setup like creating tables, a standard user and so on.

Installing Project and its Dependencies

Before we can start our project and open it into a browser we must install any dependency
that is not strictly related to TurboGears itself. This can easily be achieved running the develop
command which will install into our environment the project itself and all its dependencies:

(tgenv)$ cd wikir
(tgenv)$ pip install -e .

Project depndencies are specified inside the setup.py file in the install_requires list.
Default project dependencies should look like:

install_requires=[
 "TurboGears2 >= 2.3.0",
 "Genshi",
 "zope.sqlalchemy >= 0.4",
 "sqlalchemy",
 "sqlalchemy-migrate",
 "repoze.who",
 "tgext.admin >= 0.5.1",
 "repoze.who.plugins.sa",
 "tw2.forms",
]

Genshi dependency is the template engine our application is going to use, the zope.sqlalchemy,
sqlalchemy and sqlalchemy-migrate dependencies are there to provide support for SQLALchemy based
database layer. repoze.who and repoze.who.plugins.sa are used by the authentication
and authorization layer. tgext.admin and tw2.forms are used to generate administrative interfaces
and forms.

Serving our Project

Note

If you skipped the pip install -e . command you might end up with an error that looks
like: pkg_resources.DistributionNotFound: tw2.forms: Not Found for: wikir (did you run python setup.py develop?)
This is because some of the dependencies your project has depend on the options you choose while
quickstarting it.

You should now be able to start the newly create project with the gearbox serve command:

(tgenv)$ gearbox serve --reload
Starting subprocess with file monitor
Starting server in PID 32797.
serving on http://127.0.0.1:8080

Note

The –reload option makes the server restart whenever a file is changed, this greatly speeds
up the development process by avoiding having to manually restart the server whenever we need to try
our changes.

Pointing your browser to http://127.0.0.1:8080/ should open up the TurboGears2 welcome page.
By default newly quickstarted projects provide a bunch of pages to guide the user through
some of the foundations of TurboGears2 web applications. Taking a look at the http://127.0.0.1:8080/about
page can provide a great overview of your newly quickstarted project.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

 	Rapid Prototyping: A Wiki using the TurboGears Admin

Creating and Managing Wiki Pages

If you correctly quickstarted your project with sqlalchemy database support and authentication
you should end up having a model directory which contains database layer initialization and
User, Group and Permission models.

Those are the standard turbogears2 authentication models. You can freely customize them, but for
now we will stick to the standard ones.

To manage our pages we are going to add model that represent a Wiki Page with attributes to store
the title of the page, page data and last time the page got modified.

WikiPage Model

To define the model we are going to add a wiki.py file inside the wikir/model directory
which contains the model definition itself:

-*- coding: utf-8 -*-
from sqlalchemy import *
from sqlalchemy.orm import mapper, relation, relation, backref
from sqlalchemy import Table, ForeignKey, Column
from sqlalchemy.types import Integer, Unicode, DateTime

from wikir.model import DeclarativeBase, metadata, DBSession
from datetime import datetime

class WikiPage(DeclarativeBase):
 __tablename__ = 'wiki_page'

 uid = Column(Integer, primary_key=True)
 updated_at = Column(DateTime, default=datetime.now, nullable=False)
 title = Column(Unicode(255), nullable=False, unique=True)
 data = Column(Unicode(4096), nullable=False, default='')

Now to let TurboGears know that our model exists we must make it available inside the wikir/model/__init__.py
file just by importing it at the end:

Import your model modules here.
from wikir.model.auth import User, Group, Permission
from wikir.model.wiki import WikiPage

Creating Tables and setting up Application

Now that our model is recognized by TurboGears we must create the table that it is going to use
to store its data. By default TurboGears will automatically create tables for each model it is aware of.
This is performed during the application setup phase.

To setup your application you simply need to run the gearbox setup-app command where your application
configuration file is available (usually the root of the project):

(tg22env)$ gearbox setup-app
Running setup_app() from wikir.websetup
Creating tables

The Application setup process, apart from creating tables for the known models, will also execute the
wikir/websetup/boostrap.py module, which by default is going to create an administrator
user for our application.

Managing Pages through the Admin

Through the manager user that has been created during the setup phase it is possible to get access
to the TurboGears Admin at http://localhost:8080/admin.
The first time the page is accessed it will ask for authentication. Simply provide the username and password
of the user that the setup-app command created for us:

Username: manager
Password: managepass

You should end up being redirected to the administration page. One of the links on the page should
point to WikiPages administration page http://localhost:8080/admin/wikipages/

On this page a list of the existing pages is provided with a link to create a New WikiPage.

Note

If you don’t find the WikiPages link on the administrator page, make sure you correctly
imported the WikiPage model at the end of wikir/model/__init__.py and run the
setup-app command again.

Customizing Management

Now that we have a working adiministration page for our WikiPages, we are going to tune a bunch
of things to improve it.

First of all we are going to hide the updated_at fields.
This will get automatically updated to the current time, so we don’t really want to let users
modify it.

Then if you tried to click the New WikiPage link you probably saw that for the title of our
web page a TextArea is used, probably a TextField would be a better match to make more clear
that the user is supposed to provide a short single line title.

Last but not least we are going to provide a bit more space for the page data, to make it easier
to edit the page.

All these changes can be made from our model by specifying a special attribute called __sprox__
which will be used by the administrative interface to tune the look and feel of the tables and
forms it is going to generate:

-*- coding: utf-8 -*-
"""Wiki Page module."""

from sqlalchemy import *
from sqlalchemy.orm import mapper, relation, relation, backref
from sqlalchemy import Table, ForeignKey, Column
from sqlalchemy.types import Integer, Unicode

from wikir.model import DeclarativeBase, metadata, DBSession
from datetime import datetime

from tw2.forms import TextField
from tw2.core import IntValidator

class WikiPage(DeclarativeBase):
 __tablename__ = 'page'

 uid = Column(Integer, primary_key=True)
 updated_at = Column(DateTime, default=datetime.utcnow, nullable=False)
 title = Column(Unicode(255), nullable=False, unique=True)
 data = Column(Unicode(4096), nullable=False, default='')

 class __sprox__(object):
 hide_fields = ['updated_at']
 field_widget_types = {'title':TextField}
 field_widget_args = {'data': {'rows':15, 'cols':50}}
 field_attrs = {'data': {'style':'width:auto'}}

Note

To shorten this tutorial the style of the data textarea has been specified using
the HTML style attribute. This is something that you usually don’t want to do as
specifying style in a CSS file is usually preferred.

Going back to our administration page at http://localhost:8080/admin/wikipages/ and clicking
on the New WikiPage link you will see a form with just a single line entry field for the
title and a wide textarea for the page data.

Feel free to add as many pages as you like; we are going to see later how to display them.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

 	Rapid Prototyping: A Wiki using the TurboGears Admin

Serving Wiki Pages

We are now able to create, edit and delete Wiki Pages, but we are still unable
to serve them.

Without serving pages our wiki is actually useless, so we are going to add
a controller and template to make them available.

WebSite Index

To make our wiki navigable we are going to create a new index page with
a sidebar containing all the available wiki pages, so the user can easily move around.

Pages Slug and Content

To create links to the pages and display their content we are going to add url
and html_content properties to the page model. The first property will create
the slug for the model and provide the url where the page is available, while
the second will give back the page content parsed accordingly to the
Markdown [http://en.wikipedia.org/wiki/Markdown] language.

To generate the slugs we are going to use tgext.datahelpers, so
the first thing we are going to do is add it to our project setup.py
file inside the install_requires list:

install_requires=[
 "TurboGears2 >= 2.2.0",
 "Genshi",
 "zope.sqlalchemy >= 0.4",
 "sqlalchemy",
 "sqlalchemy-migrate",
 "repoze.who",
 "repoze.who-friendlyform >= 1.0.4",
 "tgext.admin >= 0.5.1",
 "repoze.who.plugins.sa",
 "tw2.forms",
 "webhelpers",
 "tgext.datahelpers",
]

Then we need to run again pip install -e . to install our new
project dependency:

(tg22env)$ pip install -e .
Successfully installed tgext.datahelpers wikir PIL
Cleaning up...

Note

As tgext.datahelpers also provides support for attachments and
thumbnails generation it is going to bring in the Python Imaging Library (PIL).
For now we are just going to ignore it as we don’t need it, but it’s good
to know that it’s available.

Now that we installed the datahelpers we can add the url and html_content
properties to our WikiPage model. Our model should end up looking like:

#all the other sqlalchemy imports here...
import tg
from tgext.datahelpers.utils import slugify
from webhelpers.html.converters import markdown

class WikiPage(DeclarativeBase):
 __tablename__ = 'page'

 uid = Column(Integer, primary_key=True)
 updated_at = Column(DateTime, default=datetime.now, nullable=False)
 title = Column(Unicode(255), nullable=False, unique=True)
 data = Column(Unicode(4096), nullable=False, default='')

 @property
 def url(self):
 return tg.url('/'+slugify(self, self.title))

 @property
 def html_content(self):
 return markdown(self.data)

 class __sprox__(object):
 hide_fields = ['updated_at']
 field_widget_types = {'title':TextField}
 field_widget_args = {'data': {'rows':15, 'cols':50}}
 field_attrs = {'data': {'style':'width:auto'}}

Index Controller

Now that we are able to retrieve the url for each wiki page,
we need to retrieve the list of the wiki pages with their urls
so that our index page can display the sidebar.

Our index page is a wiki page itself, so we are also going to load up
it’s content from the page titled “index”.

To do so we must edit the RootController class inside the wikir/controllers/root.py
file and look for the index method. When you found it change it to look like:

@expose('wikir.templates.index')
def index(self):
 wikipages = [(w.url, w.title) for w in DBSession.query(model.WikiPage).filter(model.WikiPage.title!='index')]

 indexpage = DBSession.query(model.WikiPage).filter_by(title='index').first()
 if not indexpage:
 content = 'Index page not available, please create a page titled index'
 else:
 content = indexpage.html_content

 return dict(page='index', wikipages=wikipages, content=content)

TurboGears2 controllers are just plain python methods with an @expose decorator.
The @expose decorator tells to TurboGears2 which template the controller is going to display
and make so that all the data that our controller returns will be available inside
the template itself.

If you are still asking yourself why connecting to http://localhost:8080/ you ended
up being served by the RootController.index method you probably want to take a look
at TurboGears2 documentation about how controllers work [http://www.turbogears.org/2.2/docs/main/Controllers.html]
and try to understand how Object Dispatch routing works.

Index Template

Now, if you reloaded to your index page you probably already noticed that nothing
changed. This is because our controller retrieved the wiki pages, but we didn’t
expose them in the index template in any place.

The index template is available as wikir/templates/index.html which is exactly
the same path written inside the @expose decorator but with / replaced by dots and
without the template extension.

We are going to provide a really simple template, so what is currently
available inside the file is going to just be removed and replaced with:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:py="http://genshi.edgewall.org/"
 xmlns:xi="http://www.w3.org/2001/XInclude">

 <xi:include href="master.html" />

<head>
 <title>TurboGears2 Wikier Index</title>
</head>

<body>
 <div class="row">
 <div class="span3">

 <li py:for="url, title in wikipages">
 ${title}

 </div>
 <div class="span9">
 <div>
 ${Markup(content)}
 </div>
 </div>
 </div>
</body>
</html>

Serving all Wiki pages

If you tried clicking on any link in our sidebar your probably noticed that
they all lead to a 404 page. This is because we still haven’t implemented any
controller method that is able to serve them.

Page Template

First we are going to create a template for our wiki pages and save it as
wikir/templates/page.html. The content of our template will look like:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:py="http://genshi.edgewall.org/"
 xmlns:xi="http://www.w3.org/2001/XInclude">

 <xi:include href="master.html" />

<head>
 <title>${title}</title>
</head>

<body>
 <div class="row">
 <div class="span12">
 <h2>${title}</h2>
 ${Markup(content)}
 <a py:if="request.identity and 'managers' in request.identity['groups']"
 href="${tg.url('/admin/wikipages/%s/edit' % page_id)}">
 edit

 </div>
 </div>
</body>
</html>

Page Controller

Now that we have our template we just need to bind it a controller
which is going to render the page. To do this we are going to use
the special _default controller method. This is a method that
turbogears will call if it’s unable to find the exact method request
by the url.

As our wiki pages have a all different names they will all end up
in _default and we will be able to serve them from there. Just
edit wikir/controller/root.py and add the _default method
to the RootController:

from tg import validate
from tgext.datahelpers.validators import SQLAEntityConverter
from tgext.datahelpers.utils import fail_with

@expose('wikir.templates.page')
@validate({'page':SQLAEntityConverter(model.WikiPage, slugified=True)},
 error_handler=fail_with(404))
def _default(self, page, *args, **kw):
 return dict(page_id=page.uid, title=page.title, content=page.html_content)

The @validate decorator makes possible to apply validators
to the incoming parameters and if validation fails the specified
error_handler is called. In this case we are checking if there
is a web page with the given slug. If it fails to find one
it will just return a 404 page.

If the page is available the page instance is returned, so
our controller ends just returning the data of the page to
the template.

If you now point your browser to the index and click any of the
links in the sidebar you will see that they now lead to the
linked page instead of failing with a 404 like before.

Note

If you don’t have any links in the left bar, just go to the
admin page and create as many pages as you like.

Our wiki is actually finished, but in the upcoming sections
we are going to see how we can improve it by introducing caching.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

 	Rapid Prototyping: A Wiki using the TurboGears Admin

Advanced Admin Customizations

TurboGears admin configurations work through the TGAdminConfig class, which
makes it possible to change the behavior for each model. We are going to use the
EasyCrudRestController to perform quick tuning of our administrative interface.

Displaying the Slug

Right now our admin shows us the page id and title, but doesn’t provide a link
to the page itself, so it’s hard to see how a page looks after we edit it.

To solve this issue we are going to replace the page id with a link to the page
itself inside the administration table.

Custom Admin Config

The first step is provide a custom admin config which removes the page id field.
We are going to add this in wikir/controllers/root.py:

from tgext.crud import EasyCrudRestController
from tgext.admin.config import CrudRestControllerConfig

class WikiPageAdminController(EasyCrudRestController):
 __table_options__ = {'__omit_fields__':['uid']}

class CustomAdminConfig(TGAdminConfig):
 class wikipage(CrudRestControllerConfig):
 defaultCrudRestController = WikiPageAdminController

Once you declared your custom admin config, inside your RootController
there should be a line which looks like:

admin = AdminController(model, DBSession, config_type=TGAdminConfig)

Replace that one with:

admin = AdminController(model, DBSession, config_type=CustomAdminConfig)

When you reload the wiki pages administration table you should see that the
page uid is not there anymore.

The Slug Column

We are now going to replace the previous uid field with a url column
which contains a link to the page.

To do so we have to tell our table that there an html type column (so its
content doesn’t get escaped) and how to generate the content for that column.
This can be done inside the WikiPageAdminController that we just declared:

class WikiPageAdminController(EasyCrudRestController):
 __table_options__ = {
 '__omit_fields__':['uid'],
 '__field_order__':['url'],
 '__xml_fields__':['url'],

 'url': lambda filler, row: '%(url)s' % dict(url=row.url)
 }

Note

The __field_order__ option is necessary to let the admin know that we
have a url field that we want to show. Otherwise it will just know
how to show it thanks to the __xml_fields__ and slug properties
but won’t know where it has to be displayed.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

 	Rapid Prototyping: A Wiki using the TurboGears Admin

Wiki Page Generation Caching

This section of the tutorial will show how to use the updated_at field of our models
for different kinds of caching that can greatly speed up our website.

Updating updated_at

Right now the updated_at field of our models will only contain the time they get created,
because we are never updating it. We could add a SQLAlchemy event that updates it
each time the WikiPage object is updated, and that would probably be the suggested way
to handle this.

As that solution would be out of scope for this tutorial, we are
going to perform the same by customizing the TurboGears Admin.

To do so we have to customize the WikiPageAdminController.put method:

from tgext.admin.config import CrudRestControllerConfig
from datetime import datetime

class WikiPageAdminController(EasyCrudRestController):
 __table_options__ = {'__omit_fields__':['uid'],
 '__field_order__':['url'],
 '__xml_fields__':['url'],

 'url': lambda filler, row: '%(url)s' % dict(url=row.url)
 }

 @expose(inherit=True)
 def put(self, *args, **kw):
 kw['updated_at'] = datetime.utcnow()
 return super(WikiPageAdminController, self).put(*args, **kw)

This way each time a wiki page is modified its updated_at field will be updated
accordingly.

Caching Page

Now that we know when the page got updated we can use it speed up our wiki
by caching wiki page generation.

The first thing we need to do is move the html content generation inside our template
instead of using it directly from the controller. This can easily be done by
updating our RootController._default method accordingly:

@expose('wikir.templates.page')
@validate({'page':SQLAEntityConverter(model.WikiPage, slugified=True)},
 error_handler=fail_with(404))
def _default(self, page, *args, **kw):
 return dict(wikipage=page)

Our controller now just retrieves the page and passes it to our template,
so we have to do some minor tuning to the wikir/templates/page.html template
too:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:py="http://genshi.edgewall.org/"
 xmlns:xi="http://www.w3.org/2001/XInclude">

 <xi:include href="master.html" />

<head>
 <title>${wikipage.title}</title>
</head>

<body>
 <div class="row">
 <div class="span12">
 <h2>${wikipage.title}</h2>
 ${Markup(wikipage.html_content)}
 <a py:if="request.identity and 'managers' in request.identity['groups']"
 href="${tg.url('/admin/wikipages/%s/edit' % wikipage.uid)}">
 edit

 </div>
 </div>
</body>
</html>

Now that the work of converting the page markdown content to HTML is done
by our template we can simply cache the template rendering process.

This way we will both skip the template generation phase and the page content
conversion phase at once. TurboGears2 provides a great tool for template caching.
You just need to generate a cache key and provide it inside the tg_cache dictionary
returned by your controller:

@expose('wikir.templates.page')
@validate({'page':SQLAEntityConverter(model.WikiPage, slugified=True)},
 error_handler=fail_with(404))
def _default(self, page, *args, **kw):
 cache_key = '%s-%s' % (page.uid, page.updated_at.strftime('%Y%m%d%H%M%S'))
 return dict(wikipage=page, tg_cache={'key':cache_key, 'expire':24*3600, 'type':'memory'})

This will keep our template cached in memory up to a day and will still regenerate
the page whenever our wikipage changes as we are using the updated_at field
to generate our cache key.

Page Caching Performances Gain

By just the minor change of caching the template the throughput of the applications
on my computer greatly increased. A quick benchmark can give the idea of the
impact of such a change:

$ /usr/sbin/ab -c 1 -n 500 http://127.0.0.1:8080/this-is-my-first-page-1
Requests per second: 97.55 [#/sec] (mean)

$ /usr/sbin/ab -c 1 -n 500 http://127.0.0.1:8080/this-is-my-first-page-1
Requests per second: 267.18 [#/sec] (mean)

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

Writing Controllers

The nerve center of your TurboGears application is the
controller. It ultimately handles all user actions, because every
HTTP request arrives here first. The controller acts on the request
and can call upon other TurboGears components (the template engines,
database layers, etc.) as its logic directs.

Basic Dispatch

When the TurboGears server receives an HTTP request, the requested URL
is mapped as a call to your controller code located in the
controllers package. Page names map to other controllers or
methods within the controller class.

For example:

	URL
	Maps to

	http://localhost:8080/index
	RootController.index()

	http://localhost:8080/mypage
	RootController.mypage()

Index and Catch-All pages

Suppose using gearbox quickstart you generate a TurboGears project
named “HelloWorld”. Your default controller code would be created in
the file HelloWorld/helloworld/controllers/root.py.

Modify the default root.py to read as follows:

"""Main Controller"""
from helloworld.lib.base import BaseController
from tg import expose, flash
#from tg import redirect, validate
#from helloworld.model import DBSession

class RootController(BaseController):
 @expose()
 def index(self):
 return "<h1>Hello World</h1>"

 @expose()
 def _default(self, *args, **kw):
 return "This page is not ready"

When you load the root URL http://localhost:8080/index in your web
browser, you’ll see a page with the message “Hello World” on it. In
addition, any of these URLs will return the same result.

Implementing A Catch-All Url Via The _default() Method

URLs not explicitly mapped to other methods of the controller will
generally be directed to the method named _default(). With the
above example, requesting any URL besides /index, for example
http://localhost:8080/hello, will return the message “This page is
not ready”.

Adding More Pages

When you are ready to add another page to your site, for example at
the URL

http://localhost:8080/anotherpage

add another method to class RootController as follows:

@expose()
def anotherpage(self):
 return "<h1>There are more pages in my website</h1>"

Now, the URL /anotherpage will return:

There are more pages in my website

Line By Line Explanation

"""Main Controller"""
from helloworld.lib.base import BaseController
from tg import expose, flash
from tg.i18n import ugettext as _
#from tg import redirect, validate
#from helloworld.model import DBSession

First you need to import the required modules.

There’s a lot going on here, including some stuff for internationalization.
But we’re going to gloss over some of that for now. The key thing to notice is
that you are importing a BaseController, which your RootController must inherit
from. If you’re particularly astute, you’ll have noticed that you import this
BaseController from the lib module of your own project, and not from TurboGears.

TurboGears provides ObjectDispatch system through
the TGController class which is imported in the lib
folder of the current project (HelloWorld/helloworld/lib) so that you
can modify it to suit the needs of your application. For example, you
can define actions which will happen on every request, add parameters
to every template call, and otherwise do what you need to the request
on the way in, and on the way out.

The next thing to notice is that we are importing expose from tg.

BaseController classes and the expose decorator are the basis of TurboGears
controllers. The @expose decorator declares that your method should be
exposed to the web, and provides you with the ability to say how the results
of the controller should be rendered.

The other imports are there in case you do internationalization,
use the HTTP redirect function, validate inputs/outputs, or use the models.

class RootController(BaseController):

RootController is the required standard name for the
RootController class of a TurboGears application and it should inherit
from the BaseController class. It is thereby specified as the
request handler class for the website’s root.

In TurboGears 2 the web site is represented by a tree of controller
objects and their methods, and a TurboGears website always grows out
from the RootController class.

def index(self):
 return "<h1>Hello World</h1>"

We’ll look at the methods of the RootController class next.

The index method is the start point of any TurboGears controller
class. Each of the URLs

	http://localhost:8080

	http://localhost:8080/

	http://localhost:8080/index

is mapped to the RootController.index() method.

If a URL is requested and does not map to a specific method, the
_default() method of the controller class is called:

def _default(self):
 return "This page is not ready"

In this example, all pages except the these urls listed above will
map to the _default method.

As you can see from the examples, the response to a given URL is
determined by the method it maps to.

@expose()

The @expose() seen before each controller method directs
TurboGears controllers to make the method accessible through the web
server. Methods in the controller class that are not “exposed” can
not be called directly by requesting a URL from the server.

There is much more to @expose(). It will be our access to TurboGears
sophisticated rendering features that we will explore shortly.

Exposing Templates

As shown above, controller methods return the data of your website. So far, we
have returned this data as literal strings. You could produce a whole site by
returning only strings containing raw HTML from your controller methods, but it
would be difficult to maintain, since Python code and HTML code would not be
cleanly separated.

Expose + Template == Good

To enable a cleaner solution, data from your TurboGears controller can be
returned as strings, or as a dictionary.

With @expose(), a dictionary can be passed from the controller to a template
which fills in its placeholder keys with the dictionary values and then returns
the filled template output to the browser.

Template Example

A simple template file called sample could be made like
this:

<html>
 <head>
<title>TurboGears Templating Example</title>
 </head>
 <body>
 <h2>I just want to say that ${person} should be the next
 ${office} of the United States.</h2>
 </body>
</html>

The ${param} syntax in the template indicates some undetermined
values to be filled.

We provide them by adding a method to the controller like this ...

@expose(template="helloworld.templates.sample")
def example(self):
 mydata = {'person':'Tony Blair','office':'President'}
 return mydata

... then the following is made possible:

	The web user goes to http://localhost:8080/example.

	The example method is called.

	The method example returns a Python dict.

	@expose processes the dict through the template file named
sample.html.

	The dict values are substituted into the final web response.

	The web user sees a marked up page saying:

I just want to say that Tony Blair should be the next President of the United States.

Template files can thus house all markup information, maintaining clean
separation from controller code.

SubControllers And The URL Hierarchy

Sometimes your web-app needs a URL structure that’s more than one
level deep.

TurboGears provides for this by traversing the object hierarchy, to
find a method that can handle your request.

To make a sub-controller, all you need to do is make your
sub-controller inherit from the object class. However there’s a
SubController class Controller in your project’s lib.base
(HelloWorld/helloworld/lib/base.py) for you to use if you want a
central place to add helper methods or other functionality to your
SubControllers:

from lib.base import BaseController
from tg import redirect

class MovieController(BaseController):
 @expose()
 def index(self):
 redirect('list/')

 @expose()
 def list(self):
 return 'hello'

class RootController(BaseController):
 movie = MovieController()

With these in place, you can follow the link:

	http://localhost:8080/movie/

	http://localhost:8080/movie/index

and you will be redirected to:

	http://localhost:8080/movie/list/

Unlike turbogears 1, going to http://localhost:8080/movie will not
redirect you to http://localhost:8080/movie/list. This is due to some
interesting bit about the way WSGI works. But it’s also the right
thing to do from the perspective of URL joins. Because you didn’t
have a trailing slash, there’s no way to know you meant to be in the
movie directory, so redirection to relative URLs will be based on the
last / in the URL. In this case the root of the site.

It’s easy enough to get around this, all you have to do is write your
redirect like this:

redirect('/movie/list/')

Which provides the redirect method with an absolute path, and takes
you exactly where you wanted to go, no matter where you came from.

Passing Parameters To The Controller

Now that you have the basic routing dispatch understood, you may be
wondering how parameters are passed into the controller methods.
After all, a framework would not be of much use unless it could accept
data streams from the user.

TurboGears uses introspection to assign values to the arguments in
your controller methods. This happens using the same duck-typing you
may be familiar with if you are a frequent python programmer. Here is
the basic approach:

	
	The dispatcher gobbles up as much of the URL as it can to find the

	correct controller method associated with your request.

	The remaining url items are then mapped to the parameters in the method.

	If there are still remaining parameters they are mapped to *args in the method signature.

	
	If there are named parameters, (as in a form request, or a GET request with parameters), they are mapped to the

	args which match their names, and if there are leftovers, they are placed in **kw.

Here is an example controller and a chart outlining the way urls are mapped to it’s methods:

class WikiController(TGController):

 def index(self):
 """returns a list of wiki pages"""
 ...

 def _default(self, *args):
 """returns one wikipage"""
 ...

 def create(self, title, text, author='anonymous', **kw):
 wikipage = Page(title=tile, text=text, author=author, tags=str(kw))
 DBSession.add(wikipage)

 def update(self, title, **kw):
 wikipage = DBSession.query(Page).get(title)
 for key, value in kw:
 setattr(wikipage, key, value)

 def delete(self, title):
 wikipage = DBSession.query(Page).get(title)
 DBSession.delete(wikipage)

	URL
	Method
	Argument Assignments

	/
	index
	

	/NewPage
	_default
	args : [‘NewPage’]

	/create/NewPage?text=More Information
	create
	text: ‘More Information’

	title: ‘NewPage’

	/update/NewPage?author=Lenny
	update
	kw: {‘author’:’Lenny’}

	title: ‘NewPage’

	/delete/NewPage
	delete
	title :’NewPage’

The parameters that are turned into arguments arrive in string format.
It is a good idea to use Python’s type casting capabilities to change
the arguments into the types the rest of your program expects. For
instance, if you pass an integer ‘id’ into your function you might use
id = int(id) to cast it into an int before usage. Another way to
accomplish this feat is to use the @validate decorator, which is
explained in TurboGears Validation

Ignore Unused Parameters

By default TurboGears2 will complain about parameters that the controller
method was not expecting. If this is causing any issue as you need to share
between all the urls a parameter that it is used by your javascript framework
or for any other reason, you can use ignore_parameters option to have
TurboGears2 ignore them. Just add the list of parameters to ignore in
config/app_cfg.py:

base_config.ignore_parameters = ['timestamp', 'param_name']

You will still be able to access them from the tg.request object if you
need them for any reason.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

TurboGears Validation

When using TurboGears, your controller methods get their arguments
built from the various GET, POST, and URL mechanisms provided by
TurboGears. The only downside is that all the arguments will be
strings and you’d like them converted to their normal Python datatype:
numbers to int, dates to datetime, etc.

This conversion functionality is provided by the FormEncode [http://formencode.org/] package
and is applied to your methods using the @validate()
decorator. FormEncode provides both validation and conversion as a
single step, reasoning that you frequently need to validate something
before you can convert it or that you’ll need to convert something
before you can really validate it.

The @validate() decorator can evaluate both widget-based forms and
the standard form arguments so they are not dependent on widgets at
all.

Furthermore, the @validate() decorator is not really required at
all. It just provides a convenience so that you can assume that you
have the right kind of data inside your controller methods. This helps
separate validation logic from application logic about what to do with
valid data.

If you don’t put a @validate() decorator on your method, you’ll
simply have to do the string conversion in your controller.

Validating Arguments

When not using forms, the story gets a bit more complex. Basically,
you need to specify which validator goes with which argument using the
validators keyword argument. Here’s a simple example:

from formencode import validators

@expose('json')
@validate(validators={"a":validators.Int(), "b":validators.Email})
def two_validators(self, a=None, b=None, *args):
 validation_status = tg.request.validation
 errors = [{key, value} in validation_status['errors'].iteritems()]
 values = validation_status['values']
 return dict(a=a, b=b, errors=str(errors), values=str(values))

The dictionary passed to validators maps the incoming field names to
the appropriate FormEncode validators, Int in this example.

If there’s a validation error, TurboGears calls the error_handler if
it exists, but it always adds errors and values to
request.validation, so they will be available there for the rest of the
request. In this case if there are validation errors, we grab both
the error messages and the original unvalidated values and return
them in the error message.

FormEncode provides a number of useful pre-made validators for you to
use: they are available in the formencode.validators module.

For most validators, you can pass keyword arguments for more specific
constraints.

Validation Process Information

TurboGears provides some information on the currently running validation
process while it is handling the validation error.

Whenever an error handling is in process some properties are available in
the tg.request.validation to provide overview of the validation error:

	tg.request.validation['values'] The submitted values before validation

	tg.request.validation['errors'] The errors that triggered the error handling

	tg.request.validation['exception'] The validation exception that triggered the error handling

	tg.request.validation['error_handler'] The error handler that is being executed

FormEncode Validators

	Attribute

	Bool

	CIDR

	ConfirmType

	Constant

	CreditCardExpires

	CreditCardSecurityCode

	CreditCardValidator

	DateConverter

	DateTime

	DateValidator

	DictConverter

	Email

	Empty

	False

	FancyValidator

	FieldStorageUploadConverter

	FieldsMatch

	FileUploadKeeper

	FormValidator

	IDeclarative

	IPhoneNumberValidator

	ISchema

	IValidator

	Identity

	IndexListConverter

	Int

	Interface

	Invalid

	MACAddress

	MaxLength

	MinLength

	NoDefault

	NotEmpty

	Number

	OneOf

	PhoneNumber

	PlainText

	PostalCode

	Regex

	RequireIfMissing

	RequireIfPresent

	Set

	SignedString

	StateProvince

	String

	StringBool

	StringBoolean

	StripField

	TimeConverter

	True

	URL

	UnicodeString

	Validator

	Wrapper

For the absolute most up-to date list of available validators, check
the FormEncode validators [https://formencode.readthedocs.org/en/latest/modules/validators.html] module. You can also create your own
validators or build on existing validators by inheriting from one of
the defaults.

See the FormEncode documentation for how this is done.

You can also compose compound validators with logical operations,
the FormEncode compound module provides All (all must pass),
Any (any one must pass) and Pipe (all must pass with the results of
each validator passed to the next item in the Pipe). You can use these
like so:

from formencode.compound import All
...
the_validator=All(
 validators.NotEmpty(),
 validators.UnicodeString(),
)

Writing Custom Validators

If you can’t or don’t want to rely on the FormEncode library you can write
your own validators.

Validators are simply objects that provide a to_python method
which returns the converted value or raise tg.validation.TGValidationError

For example a validator that converts a paramter to an integer would look like:

from tg.validation import TGValidationError

class IntValidator(object):
 def to_python(self, value, state=None):
 try:
 return int(value)
 except:
 raise TGValidationError('Integer expected')

Then it is possible to pass an instance of IntValidator to the TurboGears @validate
decorator.

Validating Widget Based Forms

The simplest way to use @validate() is to pass in a reference to a
widgets-based form:

@validate(projectname.forms.a_form)

The widgets system will take care of building a schema to handle the
data conversions and you’ll wind up with the int or datetime
objects you specified when building the form. When paired with the
validate decorator, you can handle the common case of building a
form, validating it, redisplaying the form if there are errors, and
converting a valid form into the proper arguments in only a few lines
of Python.

You can also pass the form using a keyword argument:

@validate(form=projectname.forms.a_form)

You might also want to tell TurboGears to pass off handling of invalid
data to a different controller. To do that you just pass the method
you want called to @validate via the error_handler param:

@validate(forms.myform, error_handler=process_form_errors)

The method in question will be called, with the unvalidated data as
its parameters. And error validation messages will be stored in
tg.request.validation.

Here’s a quick example of how this all works:

@expose('json')
@validate(form=myform)
def process_form_errors(self, **kwargs):
 #add error messages to the kwargs dictionary and return it
 kwargs['errors'] = tg.request.validation['errors']
 return dict(kwargs)

@expose('json')
@validate(form=myform, error_handler=process_form_errors)
def send_to_error_handler(self, **kwargs):
 return dict(kwargs)

If there’s a validation error in myform, the send_to_error_handler
method will never get called. Instead process_form_errors will get
called, and the validation error messages can be picked up from the
errors value of the request validation context.

Schema Validation

Sometimes you need more power and flexibility than you can get from
validating individual form fields. Fortunately FormEncode provides
just the thing for us – Schema validators.

If you want to do multiple-field validation, reuse validators or just
clean up your code, validation Schema``s are the way to go. You
create a validation schema by inheriting from
``formencode.schema.Schema and pass the newly created Schema
as the validators argument instead of passing a dictionary.

Create a schema:

class PwdSchema(schema.Schema):
 pwd1 = validators.String(not_empty=True)
 pwd2 = validators.String(not_empty=True)
 chained_validators = [validators.FieldsMatch('pwd1', 'pwd2')]

Then you can use that schema in @validate rather than a dictionary of
validators:

@expose()
@validate(validators=PwdSchema())
def password(self, pwd1, pwd2):
 if tg.request.validation['errors']:
 return "There was an error"
 else:
 return "Password ok!"

Besides noticing our brilliant security strategy, please notice the
chained_validators part of the schema that guarantees a pair of
matching fields.

Again, for information about Invalid exception objects, creating
your own validators, schema and FormEncode in general, refer to the
FormEncode Validator [http://www.formencode.org/en/latest/Validator.html] documentation and don’t be afraid to check the
Formencode.validators source. It’s often clearer than the
documentation.

Note that Schema validation is rigorous by default, in particular, you
must declare every field you are going to pass into your controller
or you will get validation errors. To avoid this, add:

class MySchema(schema.Schema):
 allow_extra_fields=True

to your schema declaration.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

Displaying Flash/Notice Messages

TurboGears provides a way to display short messages inside the current
or next page. This works by using the WebFlash module which stores
short text messages inside a cookie so that it can be retrieved
when needed.

Default Setup

By Default the master.html of a quickstarted project provides a div
where flash messages will be displayed, this is achieved with the
following lines of code:

<py:with vars="flash=tg.flash_obj.render('flash', use_js=False)">
 <div py:if="flash" py:replace="Markup(flash)" />
</py:with>

The tg.flash_obj is the WebFlash object which is available inside
any rendered template. This object permits to retrieve the current
flash message and display it.

Storing Flash Messages

Flash messages can be stored using the tg.flash command
this allows to store a message with a status option to configure
the flash style.

tg.flash('Message', 'status')

If the method that called flash performs a redirect the flash
will be visible inside the redirected page.
If the method directly exposes a template the flash will be
visible inside the template itself.

Styling the Flash

By default warning, error, info, ok statuses
provide a style. Any number of statuses can be configured
using plain css:

#flash .ok {
 background:#d8ecd8 url(../images/ok.png) no-repeat scroll 10px center;
}

#flash .warning {
 background:#fff483 url(../images/warning.png) no-repeat scroll 10px center;
}

#flash .error {
 background:#f9c5c1 url(../images/error.png) no-repeat scroll 10px center;
}

#flash .info {
 background:#EEEEFF url(../images/info.png) no-repeat scroll 10px center;
}

Caching with Flash Messages

When using tg_cache variable in rendered templates (Prerendered Templates Caches)
the flash will get into the cached template causing unwanted messages to be displayed.

To solve this issue the tg.flash_obj.render method provides the use_js option.
By default this option is set at False inside the template, changing it to True
will make the flash message to be rendered using javascript. This makes so that the same
template is always rendered with a javascript to fetch the flash message and display it
due to the fact that the template won’t change anymore it will now be possible to
correctly cache it.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

Authorization in TurboGears

This document describes how authentication is integrated into TurboGears
and how you may get started with it.

How authentication and authorization is set up by default

If you enabled authentication and authorization in your project when it was
generated by TurboGears, then it’s been set up to store your users, groups and
permissions in SQLAlchemy-managed tables or Ming collections.

Your users’ table is used by repoze.who to authenticate them.
When the authentication has success TurboGears uses the TGAuthMetadata
instance declared in config.base_config.sa_auth.authmetadata to
retrieve the informations about your user which are required for authorization.

You are free to change the authmetadata object as you wish, usually if your
authentication model changes, your authmetadata object will change accordingly.

You can even get rid of authorization based on groups and permissions and use
other authorization patterns (e.g., roles, based on network components) or
simply use a mix of patterns. To do this you can set authmetadata to None
and register your own metadata providers for repoze.who.

Restricting access with tg.predicates

tg.predicates allows you to define access rules based on so-called
“predicate checkers”. It is a customized version of the repoze.what
module which has been merged into TurboGears itself to make easier
to support different authentication backends.

A predicate is the condition that must be met for the user to be able to
access the requested source. Such a predicate, or condition, may be made
up of more predicates – those are called compound predicates. Action
controllers, or controllers, may have only one predicate, be it single or
compound.

A predicate checker is a class that checks whether a predicate or
condition is met.

If a user is not logged in, or does not have the proper permissions, the
predicate checker throws a 401 (HTTP Unauthorized) which is caught by the
repoze.who middleware to display the login page allowing
the user to login, and redirecting the user back to the proper page when they
are done.

For example, if you have a predicate which is “grant access to any authenticated
user”, then you can use the following built-in predicate checker:

from tg.predicates import not_anonymous

p = not_anonymous(msg='Only logged in users can read this post')

Or if you have a predicate which is “allow access to root or anyone with the
‘manage’ permission”, then you may use the following built-in predicate
checker:

from tg.predicates import Any, is_user, has_permission

p = Any(is_user('root'), has_permission('manage'),
 msg='Only administrators can remove blog posts')

As you may have noticed, predicates receive the msg keyword argument to
use its value as the error message if the predicate is not met. It’s optional
and if you don’t define it, the built-in predicates will use the default
English message; you may take advantage of this functionality to make such
messages translatable.

Note

Good predicate messages don’t explain what went wrong; instead, they
describe the predicate in the current context (regardless of whether
the condition is met or not!). This is because such messages may be used in
places other than in a user-visible message (e.g., in the log file).

	Really bad: “Please login to access this area”.

	Bad: “You cannot delete an user account because you are not an
administrator”.

	OK: “You have to be an administrator to delete user accounts”.

	Perfect: “Only administrators can delete user accounts”.

Below are described the convenient utilities TurboGears provides to deal with
predicates in your applications.

Action-level authorization

You can control access on a per action basis by using the
tg.decorators.require() decorator on the actions in question. All you have
to do is pass the predicate to that decorator. For example:

...
from tg import require
from tg.predicates import Any, is_user, has_permission
...
class MyCoolController(BaseController):
 # ...
 @expose('yourproject.templates.start_vacations')
 @require(Any(is_user('root'), has_permission('manage'),
 msg='Only administrators can remove blog posts'))
 def only_for_admins():
 flash('Hello admin!')
 dict()
 # ...

Controller-level authorization

If you want that all the actions from a given controller meet a common
authorization criteria, then you may define the allow_only attribute of
your controller class:

from yourproject.lib.base import BaseController

class Admin(BaseController):
 allow_only = predicates.has_permission('manage')

 @expose('yourproject.templates.index')
 def index(self):
 flash(_("Secure controller here"))
 return dict(page='index')

 @expose('yourproject.templates.index')
 def some_where(self):
 """This is protected too.

 Only those with "manage" permissions may access.

 """
 return dict()

Warning

Do not use this feature if the login URL would be mapped to that controller,
as that would result in a cyclic redirect.

Built-in predicate checkers

These are the predicate checkers that are included with tg.predicates,
although the list below may not always be up-to-date:

Single predicate checkers

	
class tg.predicates.not_anonymous

	Check that the current user has been authenticated.

	
class tg.predicates.is_user(user_name)

	Check that the authenticated user’s user name is the specified one.

	Parameters:	user_name (str [http://docs.python.org/library/functions.html#str]) – The required user name.

	
class tg.predicates.in_group(group_name)

	Check that the user belongs to the specified group.

	Parameters:	group_name (str [http://docs.python.org/library/functions.html#str]) – The name of the group to which the user must belong.

	
class tg.predicates.in_all_groups(group1_name, group2_name[, group3_name ...])

	Check that the user belongs to all of the specified groups.

	Parameters:	
	group1_name – The name of the first group the user must belong to.

	group2_name – The name of the second group the user must belong to.

	... (group3_name) – The name of the other groups the user must belong to.

	
class tg.predicates.in_any_group(group1_name[, group2_name ...])

	Check that the user belongs to at least one of the specified groups.

	Parameters:	
	group1_name – The name of the one of the groups the user may belong to.

	... (group2_name) – The name of other groups the user may belong to.

	
class tg.predicates.has_permission(permission_name)

	Check that the current user has the specified permission.

	Parameters:	permission_name – The name of the permission that must be granted to
the user.

	
class tg.predicates.has_all_permissions(permission1_name, permission2_name[, permission3_name...])

	Check that the current user has been granted all of the specified
permissions.

	Parameters:	
	permission1_name – The name of the first permission that must be
granted to the user.

	permission2_name – The name of the second permission that must be
granted to the user.

	... (permission3_name) – The name of the other permissions that must be
granted to the user.

	
class tg.predicates.has_any_permission(permission1_name[, permission2_name ...])

	Check that the user has at least one of the specified permissions.

	Parameters:	
	permission1_name – The name of one of the permissions that may be
granted to the user.

	... (permission2_name) – The name of the other permissions that may be
granted to the user.

	
class tg.predicates.Not(predicate)

	Negate the specified predicate.

	Parameters:	predicate – The predicate to be negated.

Custom single predicate checkers

You may create your own predicate checkers if the built-in ones are not enough
to achieve a given task.

To do so, you should extend the tg.predicates.Predicate
class. For example, if your predicate is “Check that the current month is the
specified one”, your predicate checker may look like this:

from datetime import date
from tg.predicates import Predicate

class is_month(Predicate):
 message = 'The current month must be %(right_month)s'

 def __init__(self, right_month, **kwargs):
 self.right_month = right_month
 super(is_month, self).__init__(**kwargs)

 def evaluate(self, environ, credentials):
 if date.today().month != self.right_month:
 self.unmet()

Warning

When you create a predicate, don’t try to guess/assume the context in
which the predicate is evaluated when you write the predicate message
because such a predicate may be used in a different context.

	Bad: “The software can be released if it’s %(right_month)s”.

	Good: “The current month must be %(right_month)s”.

If you defined that class in, say, {yourproject}.lib.auth, you may use it
as in this example:

...
from spain_travels.lib.auth import is_month
...
class SummerVacations(BaseController):
 # ...
 @expose('spain_travels.templates.start_vacations')
 @require(is_month(7))
 def start_vacations():
 flash('Have fun!')
 dict()
 # ...

Built-in compound predicate checkers

You may create a compound predicate by aggregating single (or even compound)
predicate checkers with the functions below:

	
class tg.predicates.All(predicate1, predicate2[, predicate3 ...])

	Check that all of the specified predicates are met.

	Parameters:	
	predicate1 – The first predicate that must be met.

	predicate2 – The second predicate that must be met.

	... (predicate3) – The other predicates that must be met.

	
class tg.predicates.Any(predicate1[, predicate2 ...])

	Check that at least one of the specified predicates is met.

	Parameters:	
	predicate1 – One of the predicates that may be met.

	... (predicate2) – Other predicates that may be met.

But you can also nest compound predicates:

...
from yourproject.lib.auth import is_month
...
@authorize.require(authorize.All(
 Any(is_month(4), is_month(10)),
 predicates.has_permission('release')
))
def release_ubuntu(self, **kwargs):
 return dict()
...

Which translates as “Anyone granted the ‘release’ permission may release a
version of Ubuntu, if and only if it’s April or October”.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

Web Session Usage

	Status:	Work in progress

Why Use Sessions?

Sessions are a common way to keep simple browsing data attached to a
user’s browser. This is generally used to store simple data that does
not need to be persisted in a database.

Sessions in TurboGears can be backed by the filesystem, memcache, the
database, or by hashed cookie values. By default, cookies are used
for storing the session data, which is only good for storing very
little amounts of data in the session since all data will be sent
back and forth within the cookie. If you are storing lots of data in
the session, Memcache is recommended.

Warning

Using cookies for storing the whole session’s content exposes
your application to possible exploits if the attacker gets to
know the secret key which is used for the encryption of the
cookies. Considering this, it is probably better to use the
filesystem storage if you don’t want to set up memcache.

Note

When using the filesystem backed storage, you must be aware of
the fact, that beaker does not clean up the session files
at all. You have to make sure to clean up the data directory on
a regular basis yourself.
Refer to the Beaker documentation [http://beaker.readthedocs.org/en/latest/sessions.html#removing-expired-old-sessions] for more details.

How To Use Sessions?

If you just quickstarted a TurboGears 2 application, the session
system is pre-configured and ready to be used.

By default we are using the Beaker session system. This system is
configured to use hashed cookies for session storage.

Each time a client connects, the session middleware (Beaker) will
inspect the cookie using the cookie name we have defined in the
configuration file.

If the cookie is not found it will be set in the browser. On all
subsequent visits, the middleware will find the cookie and make use of
it.

When using the cookie based backend, all data that you put into the
session will be pickled, hashed and encrypted by the middleware
when sending the response to the browser and vice-versa when
reading the request.

In the other backends, the cookie only contains a large random key
that was set at the first visit and has been associated behind the
scenes to a file in the file system cache. This key is then used to
lookup and retrieve the session data from the proper datastore.

OK, enough with theory! Let’s get to some real life (sort of)
examples. Open up your root controller and add the following import
at the top the file:

from tg import session

What you get is a Session instance that is always request-local, in
other words, it’s the session for this particular user. The session
can be manipulated in much the same way as a standard python
dictionary.

Here is how you search for a key in the session:

if session.get('mysuperkey', None):
 # do something intelligent
 pass

and here is how to set a key in the session:

session['mysuperkey'] = 'some python data I need to store'
session.save()

You should note that you need to explicitly save the session in order for your
keys to be stored in the session.

You can delete all user session with the delete() method of the
session object:

session.delete()

Even though it’s not customary to delete all user sessions on a production
environment, you will typically do it for cleaning up after
usability or functional tests.

Avoid automatic session extension

TurboGears by default automatically extends session life time
at every request if a session is already available. You can
avoid this behavior by changing your application configuration

beaker.session.tg_avoid_touch = true

This will also prevent TurboGears from causing an automatic
session save at every request.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

Caching

Caching is a common techneque to achieve performance goals,
when a web application has to perform some operation that
could take a long time. There are two major types of caching
used in Web Applications:

	Whole-page caching –
works at the HTTP protocol level to avoid entire requests to the
server by having either the user’s browser, or an intermediate
proxy server (such as Squid) intercept the request and return
a cached copy of the file.

	Application-level caching – works within the application server
to cache computed values, often the results of complex database
queries, so that future requests can avoid needing to re-caculate
the values.

Most web applications can only make very selective use of HTTP-level caching,
such as for caching generated RSS feeds, but that use of HTTP-level
caching can dramatically reduce load on your server, particularly
when using an external proxy such as Squid and encountering a
high-traffic event (such as the Slashdot Effect).

For web applications, application-level caching provides a flexible way to
cache the results of complex queries so that the total load of a given
controller method can be reduced to a few user-specific or case-specific
queries and the rendering overhead of a template. Even within templates,
application-level caching can be used to cache rendered HTML for those
fragments of the interface which are comparatively static, such as
database-configured menus, reducing potentially recursive database queries
to simple memory-based cache lookups.

Application-level Caching

TurboGears comes with application-level caching
middleware enabled by default in QuickStarted projects. The
middleware, Beaker [http://beaker.groovie.org] is the same
package which provides Session storage for QuickStarted
projects. Beaker is the cache framework used by TurboGears 2.3.1.

Beaker supports a variety of backends which can be used for
cache or session storage:

	memory – per-process storage, extremely fast

	filesystem – per-server storage, very fast, multi-process

	“DBM” database – per-server storage, fairly fast, multi-process

	SQLAlchemy database – per-database-server storage, integrated into
your main DB infrastructure, so potentially shared, replicated, etc.,
but generally slower than memory, filesystem or DBM approaches

	Memcached – (potentially) multi-server memory-based cache,
extremely fast, but with some system setup requirements

Each of these backends can be configured from your
application’s configuration file, and the resulting caches can be
used with the same API within your application.

Using the Cache

The configured Beaker is more properly thought of as a CacheManager,
as it provides access to multiple independent cache namespaces.

To access the cache from within a controller module:

from tg import cache
@expose()
def some_action(self, day):
 # hypothetical action that uses a 'day' variable as its key

 def expensive_function():
 # do something that takes a lot of cpu/resources
 return expensive_call()

 # Get a cache for a specific namespace, you can name it whatever
 # you want, in this case its 'my_function'
 mycache = cache.get_cache('my_function')

 # Get the value, this will create the cache copy the first time
 # and any time it expires (in seconds, so 3600 = one hour)
 cachedvalue = mycache.get_value(
 key=day,
 createfunc=expensive_function,
 expiretime=3600
)
 return dict(myvalue=cachedvalue)

The Beaker cache is a two-level namespace, with the keys at each level
being string values. The call to cache.get_cache() retrieves a cache
namespace which will map a set of string keys to stored values. Each value
that is stored in the cache must be pickle-able [http://docs.python.org/lib/module-pickle.html].

Pay attention to the keys you are using to store your cached values. You
need to be sure that your keys encode all of the information that the
results being cached depend upon in a unique manner. In the example above,
we use day as the key for our cached value, on the assumption that this
is the only value which affects the calculation of expensive_function,
if there were multiple parameters involved, we would need to encode each of
them into the key.

Note

The Beaker API exposed here requires that your functions for
calculating complex values be callables taking 0 arguments.
Often you will use a nested function to provide this interface
as simply as possible. This function will only be called if there
is a cache miss, that is, if the cache does not currently have
the given key recorded (or the recorded key has expired).

Other Cache Operations

The cache also supports the removal values from the cache, using the key(s) to
identify the value(s) to be removed and it also supports clearing the cache
completely, should it need to be reset.

Clear the cache
mycache.clear()

Remove a specific key
mycache.remove_value('some_key')

Configuring Beaker

Beaker is configured in your QuickStarted application’s main configuration
file in the app:main section.

To use memory-based caching:

[app:main]
beaker.cache.type = memory

To use file-based caching:

[app:main]
beaker.cache.type = file
beaker.cache.data_dir = /tmp/cache/beaker
beaker.cache.lock_dir = /tmp/lock/beaker

To use DBM-file-based caching:

[app:main]
beaker.cache.type = dbm
beaker.cache.data_dir = /tmp/cache/beaker
beaker.cache.lock_dir = /tmp/lock/beaker

To use SQLAlchemy-based caching you must provide the url parameter
for the Beaker configuration. This can be any valid SQLAlchemy
URL, the Beaker storage table will be created by Beaker if
necessary:

[app:main]
beaker.cache.type = ext:database
beaker.cache.url = sqlite:///tmp/cache/beaker.sqlite

Memcached

Memcached allows for creating a pool of colaborating servers which
manage a single distributed cache which can be shared by large numbers of
front-end servers (i.e. TurboGears instances). Memcached can be extremely
fast and scales up very well, but it involves an external daemon process
which (normally) must be maintained (and secured) by your sysadmin.

Memcached is a system-level daemon which is intended
for use solely on “trusted” networks, there is little or no security provided
by the daemon (it trusts anyone who can connect to it), so you should never
run the daemon on a network which can be accessed by the public! To repeat,
do not run memcached without a firewall or other network partitioning
mechanism! Further, be careful about storing any sensitive or
authentication/authorization data in memcache, as any attacker who can
gain access to the network can access this information.

Ubuntu/Debian servers will generally have memcached configured by default
to only run on the localhost interface, and will have a small amount of
memory (say 64MB) configured. The /etc/memcached.conf file can be
edited to change those parameters. The memcached daemon will also normally
be deactivated by default on installation. A basic memcached installation
might look like this on an Ubuntu host:

sudo apt-get install memcached
sudo vim /etc/default/memcached
ENABLE_MEMCACHED=yes
sudo vim /etc/memcached.conf
Set your desired parameters...
sudo /etc/init.d/memcached restart
now install the Python-side client library...
note that there are other implementations as well...
easy_install python-memcached

You then need to configure TurboGears/Pylon’s beaker support to use the
memcached daemon in your .ini files:

[app:main]
beaker.cache.type = ext:memcached
beaker.cache.url = 127.0.0.1:11211
you can also store sessions in memcached, should you wish
beaker.session.type = ext:memcached
beaker.session.url = 127.0.0.1:11211

You can have multiple memcached servers specified using ; separators.
Usage, as you might imagine is the same as with any other Beaker cache
configuration (that is, to some extent, the point of the
Beaker Cache abstraction, after all):

References

	Beaker Caching [http://beaker.groovie.org/caching.html] – discussion of use of Beaker’s caching services

	Beaker Configuration [http://beaker.groovie.org/configuration.html] – the various parameters which can be used to configure Beaker in your config files

	Memcached [http://www.danga.com/memcached/] – the memcached project

	Python Memcached [http://www.tummy.com/Community/software/python-memcached/] – Python client-side binding for memcached

	Caching for Performance [http://web.archive.org/web/20060424171425/http://www.webperformance.org/caching/caching_for_performance.pdf]
– Stephen Pierzchala’s general introduction to the concept of
caching in order to improve web-site performance

Template Caching

Genshi Loader Cache

genshi will retrieve the templates from a cache if they have not changed.
This cache has a default size of 25, when there are more than 25,
the least recently used templates will be removed from this cache.

You can change this behavior by setting the genshi.max_cache_size option
into the development.ini:

[app:main]
genshi.max_cache_size=100

Another speed boost can be achieved by disabling template automatic reloading.

[app:main]
auto_reload_templates = false

Prerendered Templates Caches

In templates, the cache namespace will automatically be set to the name of
the template being rendered. To cache a template you just have to return
the tg_cache option from the controller that renders the cached template.

tg_cache is a dictionary that accepts the following keys:

	key: The cache key. Default: None

	expire: how long the cache must stay alive. Default: never expires

	type: memory, dbm, memcached. Default: dbm

if any of the keys is available the others will default, if all three
are missing caching will be disabled.
For example to enable caching for 1 hour for the profile of an user:

@expose('myproj.templates.profile')
def profile(self, username):
 user = DBSession.query(User).filter_by(user_name=user_name).first()
 return dict(user=user, tg_cache=dict(key=user_name, expire=3600))

HTTP-Level Caching

HTTP supports caching of whole responses (web-pages,
images, script-files and the like). This kind of caching
can dramatically speed up web-sites where the bulk of the
content being served is largely static, or changes predictably,
or where some commonly viewed page (such as a home-page) requires
complex operations to generate.

HTTP-level caching is handled by external services, such as
a Squid [http://www.squid-cache.org/] proxy or the user’s
browser cache. The web application’s role in HTTP-level caching
is simply to signal to the external service what level of caching
is appropriate for a given piece of content.

Note

If any part of you page has to be dynamically generated,
even the simplest fragment, such as a user-name, for each
request HTTP caching likely will not work for you. Once the
page is HTTP-cached, the application server will not recieve any
further requests until the cache expires, so it will not
generally be able to do even minor customizations.

Browser-side Caching with ETag

HTTP/1.1 supports the ETag caching system that
allows the browser to use its own cache instead of requiring regeneration of
the entire page. ETag-based caching avoids repeated generation of content but
if the browser has never seen the page before, the page will still be
generated. Therefore using ETag caching in conjunction with one of the other
types of caching listed here will achieve optimal throughput and avoid
unnecessary calls on resource-intensive operations.

Caching via ETag involves sending the browser an ETag header so that it knows
to save and possibly use a cached copy of the page from its own cache, instead
of requesting the application to send a fresh copy.

The etag_cache() function will set the proper HTTP headers if the browser
doesn’t yet have a copy of the page. Otherwise, a 304 HTTP Exception will be
thrown that is then caught by Paste middleware and turned into a proper 304
response to the browser. This will cause the browser to use its own
locally-cached copy.

ETag-based caching requires a single key which is sent in the ETag HTTP header
back to the browser. The RFC specification for HTTP headers [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html] indicates that an
ETag header merely needs to be a string. This value of this string does not
need to be unique for every URL as the browser itself determines whether to use
its own copy, this decision is based on the URL and the ETag key.

from tg.controllers.util import etag_cache
def my_action(self):
 etag_cache('somekey')
 return render('/show.myt', cache_expire=3600)

Or to change other aspects of the response:

from tg.controllers.util import etag_cache
from tg import response
def my_action(self):
 etag_cache('somekey')
 response.headers['content-type'] = 'text/plain'
 return render('/show.myt', cache_expire=3600)

Note

In this example that we are using template caching in addition to ETag
caching. If a new visitor comes to the site, we avoid re-rendering the
template if a cached copy exists and repeat hits to the page by that user
will then trigger the ETag cache. This example also will never change the
ETag key, so the browsers cache will always be used if it has one.

The frequency with which an ETag cache key is changed will depend on the web
application and the developer’s assessment of how often the browser should be
prompted to fetch a fresh copy of the page.

	ETag

	From Wikipedia [http://en.wikipedia.org/wiki/HTTP_ETag] An ETag
(entity tag) is an HTTP response header returned by an HTTP/1.1
compliant web server used to determine change in content at a given
URL.

Todo

Add links to Beaker region (task-specific caching mechanisms) support.

Todo

Document what the default Beaker cache setup is for TG 2.3.1 quickstarted projects (file-based, likely).

Todo

Provide code-sample for use of cache within templates

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

Handling Internationalization And Localization

	Status:	Work in progress

Table of Contents

	Handling Internationalization And Localization
	Language Auto-Select

	Making your code international

	An i18n Quick Start

	Commands

Turbogears2 relies on Babel for i18n and l10n support. So
if this document is not enough you will want to check their respective
documentation:

	Babel’s UserGuide [http://babel.edgewall.org/wiki/Documentation/index.html]

A quickstarted project comes fully i18n enabled so you should get
started quickly.

If you’re lucky enough you’ll even see “Your application is now
running” message in your language.

Language Auto-Select

Turbogears2 contains the logic (hardwired in the TurboGearsController
class at the moment) to setup request’s language based on browser’s
preferences(*).

[*] - Every modern browser sends a special header along with every web
request which tells the server which language it would prefer to see
in a response.

Making your code international

Whenever you write a message that has to displayed you must let
TurboGears know that it has to be translated.

Even though TurboGears is able to automatically detect content
inside tags and mark them for translation all the strings inside
controllers must be explicitly marked as translated.

This can be achieved with the tg.i18n.ugettext and tg.i18n.lazy_ugettext
calls which are usually imported with _ and l_ names:

from tg.i18n import ugettext as _

class RootController(BaseController):
 @expose('myproj.templates.index')
 def index(self):
 return dict(msg=_('Hello World'))

In the previous example the ‘Hello World’ string will be detect by
TurboGears when collecting translatable text and will display in the
browser language if a translation for that language is available.

While ugettext works perfectly to translate strings inside a request
it does not allow translating strings outside a request. This is
due to the fact that TurboGears won’t know the browser language when
there isn’t a running request. To translate global variables, parameters
default values or any other string which is created outside a controller
method the lazy_ugettext method must be used:

from tg.i18n import lazy_ugettext as l_

class RootController(BaseController):
 @expose('myproj.templates.index')
 def index(self, msg=l_('Hello World')):
 return dict(msg=msg)

In this case the msg parameter is translated using lazy_ugettext
as it is constructed at controller import time when no request is available.
This will create an object that will translate the given string only when
the string itself is displayed or evaluated.

Keep in mind that as the lazy string object built by lazy_ugetted is
translated whenever the string is evaluated joining strings or editing it
will force the translation. So the resulting object must still be evaluated
only inside a request or it will always be translated to the default project
language only.

An i18n Quick Start

After quickstarting your project, you will notice that the setup.py
file contains the following section:

message_extractors = {'yourapp': [
 ('**.py', 'python', None),
 ('templates/**.mako', 'mako', None),
 ('templates/**.html', 'genshi', None),
 ('public/**', 'ignore', None)]},

This is an extraction method mapping that indicates to distutils which
files should be searched for strings to be translated. TurboGears2
uses Babel to extract messages to a .pot file in your project’s i18n
directory. Don’t forget to add it to your revision control system if
you use one.

1. Extract all the translatable strings from your project’s files by
using the following command:

python setup.py extract_messages

This command will generate a “pot” file in the i18n folder of your
application. This pot file is the reference file that serves for all
the different translations.

2. Create a translation catalog for your language, let’s take ‘zh_tw’
for example:

python setup.py init_catalog -l zh_tw

3. Edit your language in i18n/[country
code]/LC_MESSAGES/[project-name].po

If you’re not an expert in i18n or if you would like to give the files
to someone else so that he helps you we recommend that you use the
really nice poedit program. This program works nicely on GNU/Linux and
Windows and provides a nice user-interface to edit po files.

[image: ../_images/poedit.png]

	Compile your lang:

python setup.py compile_catalog

	Config development.ini:

[app:main]
use = egg: my-project
full_stack = true
lang = zh_tw

	Start server:

gearbox serve --reload

And see the local message show on the screen.

Commands

To fresh start a translation, you could use the following command to
handle your locales:

init_catalog

You can extract all messages from the project with the following
command:

python setup.py init_catalog -l [country code]

The country code could be es(Spanish), fr(France), zh_tw(Taiwan),
jp(JAPAN), ru(Russian), or any other country code.

Compile Catalog

You can extract all messages from the project with the following command:

python setup.py compile_catalog

Update Catalog

You can update the catalog with the following command:

python setup.py update_catalog

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

Pluggable Applications with TurboGears

TurboGears 2.1.4 introduced support for pluggable applications using tgext.pluggable.
tgext.pluggable is now the official supported way in TurboGears to create pluggable
reusable applications.
Currently only SQLAlchemy based applications are supported as pluggable applications.

Official documentation for tgext.pluggable can be found at: http://pypi.python.org/pypi/tgext.pluggable

Supported Features

Pluggable applications can define their own:

	controllers, which will be automatically mounted when the application is purged.

	models, which will be available inside and outside of the plugged application.

	helpers, which can be automatically exposed in h object in application template.

	bootstrap, which will be executed when setup-app is called.

	statics, which will be available at their own private path.

Mounting a pluggable application

In your application config/app_cfg.py import plug from tgext.pluggable and
call it for each pluggable application you want to enable.

The plugged package must be installed in your environment.

from tgext.pluggable import plug
plug(base_config, 'package_name')

Creating Pluggable Applications

tgext.pluggable provides a quickstart-pluggable command
to create a new pluggable applications:

$ gearbox quickstart-pluggable plugtest
...

The quickstarted application will provide an example on how to use
models, helpers, bootstrap, controllers and statics.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

Pagination in TurboGears

Paginate Decorator

TurboGears provides a convenient paginate() decorator that you can
combine with expose(). To use it, you simply have to pass it the
name of a collection to paginate. In controller/root.py:

from tg.decorators import paginate

@expose("paginatesample.templates.movie_list_deco")
@paginate("movies", items_per_page=5)
def decolist(self):
 """
 List and paginate all movies in the database using the
 paginate() decorator.
 """

 movies = DBSession.query(Movie)
 return dict(movies=movies, page='paginatesample Movie list')

In your template, you can now use the collection direction since it
will be trimed to only contain the current page. You will also have
have a basic page navigation with ${tmpl_context.paginators.movies.pager()}:

 <li py:for="movie in movies" py:content="movie">Movie title and year

<p class="pagelist">
 ${tmpl_context.paginators.movies.pager()}
</p>

Advanced Pagination

More Formatting

The pager method of the paginator supports various customization options to tune
the look and feel of the paginator, make sure you take a look at
tg.support.paginate.Page for more details:

${tmpl_context.paginators.movies.pager(format='~3~', page_param='page', show_if_single_page=True)}

Adding Parameters to Links

You can pass any number of arguments to the pager function and they will be used to create
the links to the other pages.

For example with the following code:

${tmpl_context.paginators.movies.pager(param1='hi', param2='man')}

the resulting links will be:

	/list?page=1¶m1=hi¶m2=man

	/list?page=2¶m1=hi¶m2=man

and so on...

By default the url used to generate links will be the same of the page
where the paginated data will be visible, this can be changed by passing
the link argument to the pager function:

${tmpl_context.paginators.movies.pager(link='/otherlink', param1='hi', param2='man')}

and the resulting link will be generated by using the provided url:

	/otherlink?page=1¶m1=hi¶m2=man

Adding Previous And Next Links

Apart from providing the pager method the paginator Page object we receive
inside our template context provides the previous_page and next_page properties
which can be used to create previous/next links:

<p class="pagelist">
 <<<
 ${tmpl_context.paginators.movies.pager(format='~3~', page_param='page', show_if_single_page=True)}
 >>>
</p>

Adding Some Arrow Images

Once you added your own previous/next page entities you can style them as you prefer,
one common need is to display an image instead of the text:

a.prevPage {
 background: url("/images/icons/png/32x32/arrow-left.png") no-repeat;
 padding-left: 18px;
 padding-right: 18px;
 padding-top: 12px;
 padding-bottom: 15px;
 text-decoration: none;
 }

a.nextPage {
 background: url("/images/icons/png/32x32/arrow-right.png") no-repeat;
 padding-left: 18px;
 padding-right: 18px;
 padding-top: 12px;
 padding-bottom: 15px;
 text-decoration: none;
 }

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

Using MongoDB

TurboGears supports MongoDB [http://www.mongodb.org] out of the box by using the Ming [http://merciless.sourceforge.net/tour.html] ORM.
Ming [http://merciless.sourceforge.net/tour.html] was made to look like SQLAlchemy, so if you are proficient with
SQLAlchemy and MongoDB it should be easy for you to get used to the Ming [http://merciless.sourceforge.net/tour.html]
query language. This also makes easy to port a TurboGears SQLAlchemy based
application to MongoDB.

QuickStarting with MongoDB

To create a project using MongoDB [http://www.mongodb.org] you just need to pass the --ming
option to the gearbox quickstart command.

$ gearbox quickstart --ming

The quickstarted project will provide an authentication and authorization
layer like the one that is provided for the SQLAlchemy version. This
means that you will have the same users and groups you had on the standard
quickstarted project and also that all the predicates to check for authorization
should work like before.

The main difference is that you won’t be able to use the application
without having a running MongoDB [http://www.mongodb.org] database on the local machine.

By default the application will try to connect to a server on port
27017 on local machine using a database that has the same name
of your package.

This can be changed by editing the development.ini file:

ming.url = mongodb://localhost:27017/
ming.db = myproject

Now that everything is in place to start using MongoDB [http://www.mongodb.org] as your
database server you just need to proceed the usual way by filling
your database.

$ gearbox setup-app

The quickstart command from above will create the authentication
collections and setup a default user/password for you:

user: manager
password: managepass

Working With Ming

If you don’t know how Ming [http://merciless.sourceforge.net/tour.html] works at all, please take a few
minutes to read over these tutorials:

	ORM Tutorial [http://merciless.sourceforge.net/orm.html] – which covers the ORM parts

	Intro to Ming [http://merciless.sourceforge.net/tour.html] – which covers a more general intro

Your quickstarted project will have a subpackage called model, made
up of the following files:

	__init__.py: This is where the database access is set up. Your
collections should be imported into this module, and you’re highly
encouraged to define them in a separate module - entities, for
example.

	session.py: This file defines the session of your database
connection. By default TurboGears will use a Session object
with multithreading support. You will usually need to import
this each time you have to declare a MappedClass to
specify the session that has to be used to perform queries.

	auth.py: This file will be created if you enabled authentication
and authorization in the quickstart. It defines two collections
repoze.what.quickstart relies on: User (for the registered
members in your website and the groups they belong to) and Permission
(a permission granted to one or more groups).

Defining Your Own Collections

By default TurboGears configures Ming [http://merciless.sourceforge.net/tour.html] in Declarative mode.
This is similar to the SQLAlchemy declarative support and needs
each model to inherit from the MappedClass class.

The tables defined by the quickstart in model/auth.py are based on
the declarative method, so you may want to check it out to see how
columns are defined for these tables.
For more information, you may read the ORM Tutorial [http://merciless.sourceforge.net/orm.html].

Once you have defined your collections in a separate module in the model
package, they should be imported from model/__init__.py. So the end
of this file would look like this:

Import your model modules here.
from auth import User, Permission
Say you defined these three classes in the 'movies'
module of your 'model' package.
from movies import Movie, Actor, Director

Indexing Support

TurboGears supports also automatic indexing of MongoDB [http://www.mongodb.org] fields.
If you want to guarantee that a field is unique or indexed you
just have to specify the unique_indexes or indexes variables
for the __mongometa__ attribute of the mapped class.

class Permission(MappedClass):
 class __mongometa__:
 session = DBSession
 name = 'tg_permission'
 unique_indexes = [('permission_name',),]

TurboGears will ensure indexes for your each time the application
is started, this is performed inside the init_model function.

Handling Relationships

Ming comes with support to one-to-many and many-to-one Relations [http://merciless.sourceforge.net/orm.html#relating-classes]
they provide an easy to use access to related objects. The fact
that this relation is read only isn’t a real issue as the related
objects will have a ForeignIdProperty which can be changed
to add or remove objects to the relation.

As MongoDB provides too many ways to express a many-to-many
relationship, those kind of relations are instead left on their own.
TurboGears anyway provides a tool to make easier to access and
modify those relationships.

tgming.ProgrammaticRelationProperty provides easy access to
those relationships exposing them as a list while leaving to the
developer the flexibility to implement the relationship as it
best suites the model.

A good example of how the ProgrammaticRelationProperty works
is the User to Group relationship:

from tgming import ProgrammaticRelationProperty

class Group(MappedClass):
 class __mongometa__:
 session = DBSession
 name = 'tg_group'

 group_name = FieldProperty(s.String)

class User(MappedClass):
 class __mongometa__:
 session = DBSession
 name = 'tg_user'

 _groups = FieldProperty(s.Array(str))

 def _get_groups(self):
 return Group.query.find(dict(group_name={'$in':self._groups})).all()
 def _set_groups(self, groups):
 self._groups = [group.group_name for group in groups]
 groups = ProgrammaticRelationProperty(Group, _get_groups, _set_groups)

In this case each user will have one or more groups stored with their group_name
inside the User._groups array. Accessing User.groups will provide a list
of the groups the user is part of. This list is retrieved using User._get_groups
and can be set with User._set_groups.

Using Synonyms

There are cases when you will want to adapt a value from the database
before loading and storing it. A simple example of this case is the
password field, this will probably be encrypted with some kind of
algorithm which has to be applied before saving the field itself.

To handle those cases TurboGears provides the tgming.SynonymProperty
accessor. This provides a way to hook two functions which have to be
called before storing and retrieving the value to adapt it.

from tgming import SynonymProperty

class User(MappedClass):
 class __mongometa__:
 session = DBSession
 name = 'tg_user'

 _password = FieldProperty(s.String)

 def _set_password(self, password):
 self._password = self._hash_password(password)
 def _get_password(self):
 return self._password
 password = SynonymProperty(_get_password, _set_password)

In the previous example the password property is stored encrypted inside the
User._password field but it is accessed using the User.password property
which encrypts it automatically before setting it.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

Installing TurboGears2

This charpter provides more complete informations about the install process.
In case you had issues installing TurboGears, this is the place to take a look at.

virtualenv and You: A Perfect Match

virtualenv [http://pypi.python.org/pypi/virtualenv] is an extremely handy tool while doing development of any
sort, or even just testing out a new application. Using it allows you
to have a sandbox in which to work, separate from your system’s
Python. This way, you can try out experimental code without worrying
about breaking another application on your system. It also provides
easy ways for you to work on developing the next version of your
application without worrying about a conflicting version already
installed on your system.

It’s a tool that you would do well to learn and use. You could even
check out the virtualenvwrapper [http://www.doughellmann.com/projects/virtualenvwrapper/] tools by Doug Hellman (though this is
not required, and we will not assume you have them installed
throughout this book, they are still quite nice to have and use).

Installation on Windows

Open a command prompt, and run:

C:\> easy_install virtualenv

This will install a binary distribution for you, precompiled for
Windows.

Installation on UNIX/Linux/Mac OSX

For these platforms, there exists a large amount of variation in the
exact process to install virtualenv.

	Attempt to install via your platform’s package manager (for
example: apt-get install python-virtualenv or yum install
virtualenv).

	From the command line, attempt a plain easy_install via
easy_install virtualenv

	Your platform may need to have the Python header files
installed. You will need to work with whatever tools come with your
platform to make this happen (for instance, OSX requires the XCode
tools to install virtualenv, or on Ubuntu, you can use apt-get
install python-dev). After doing this, easy_install
virtualenv should work.

If none of these methods work, please feel free to ask on the mailing
list [http://groups.google.com/group/turbogears] for help, and we’ll work through it with you.

virtualenv Notes

When you use virtualenv, you have many options available to you (use
virtualenv --help from the command line to see the full list). We
are only going to cover basic use here.

The first thing you need to know is that virtualenv is going to make a
directory which amounts to a private installation of Python. This
means it will have bin, include, and lib directories. Most commonly,
you will be using the files in the bin directory: specifically,
the new command activate will become your best friend.

The second thing you need to know is that you will rarely want to
use the system site-packages directory, and we never recommend it
with TurboGears2. As a result, we always recommend turning it off when
using virtualenv. It makes debugging much easier when you know what is
there all the time.

The last thing to note is that you have the option of choosing a
different default Python interpreter for your virtualenv. This will
allow you to test on different Python versions, such as 2.4, 2.5, 2.6,
2.7, or even PyPy [http://www.pypy.org/]. Normally, this won’t matter, but it is helpful to
know that you can switch easily.

Usage of virtualenv

To use virtualenv, you run it like so:

$ virtualenv --no-site-packages -p /usr/bin/python2.7 ${HOME}/tg2env

When done, with these options, you will now have a Python 2.7
virtualenv located at ${HOME]/tg2 that has nothing but what comes with
Python. By changing /usr/bin/python2.7 to point to a different
Python interpreter, you will be able to choose a different version of
Python. By changing ${HOME}/tg2env to point to a different
directory, you can choose a different location for your new
virtualenv.

For the duration of this book, we will assume that the virtualenv you
are using is located at ${HOME}/tg2env. Please change the commands
we give to you to match your system’s directory structure if you
choose to use a different directory for your virtualenv.

Once you have a virtualenv, you must activate it. On a UNIX/Linux/Mac
OSX machine, from the command line, you do the following:

$ source ${HOME}/tg2env/bin/activate

On Windows systems, from the command line, you do the following:

C:\> \path\to\virtualenv\Script\activate.bat

That’s it. From this point onward, any pip commands will
automatically use your virtualenv, as will your setup.py scripts that
will be developed in later chapters.

When you are done with this virtualenv, use the command
deactivate. This will return your environment to what it was, and
allow you to work with the system wide Python installation.

Installing TurboGears2

TurboGears2 is actually distributed in two separate packages:
TurboGears2 and tg.devtools.

	TurboGears2

	This is the actual framework. If you are writing an application
which utilizes TurboGears2, then this is the package you need to
add as a dependency in your setup.py file.

	tg.devtools

	This package contains tools and dependencies to help you during
your development process. It includes the Paste HTTP server,
quickstart templates, and other tools. You will generally not
list this as a dependency in your setup.py file, though you may
have reason to do so. The application we will be developing for
this book does not rely on it, and will not list it.

After activating your virtualenv, you only need to run one command:

$ pip install tg.devtools

That’s it. Once it completes, you now have the TurboGears2 framework
and development tools installed.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

The GearBox Toolkit

The GearBox toolkit is a set of commands available since TurboGears 2.3 that replaced the paster
command previously provided by pylons.

GearBox provides commands to create new full stack projects, serve PasteDeploy based applications,
initialize them and their database, run migrations and start an interactive shell to work with them.

By default launching gearbox without any subcommand will start the interactive mode.
This provides an interactive prompt where gearbox commands, system shell commands and python statements
can be executed. If you have any doubt about what you can do simply run the help command to get
a list of the commands available (running help somecommand will provide help for the given sub command).

To have a list of all the available commands simply run gearbox --help

QuickStart

The gearbox quickstart command creates a new full stack TurboGears application,
just provide the name of your project to the command to create a new one:

$ gearbox quickstart myproject

The quickstart command provides a bunch of options to choose which template engine to use, which
database engine to use various other options:

optional arguments:
 -a, --auth add authentication and authorization support
 -n, --noauth No authorization support
 -m, --mako default templates mako
 -j, --jinja default templates jinja
 -k, --kajiki default templates kajiki
 -g, --geo add GIS support
 -p PACKAGE, --package PACKAGE
 package name for the code
 -s, --sqlalchemy use SQLAlchemy as ORM
 -i, --ming use Ming as ORM
 -x, --nosa No SQLAlchemy
 --disable-migrations disable sqlalchemy-migrate model migrations
 --enable-tw1 use toscawidgets 1.x in place of 2.x version
 --skip-tw Disables ToscaWidgets
 --noinput no input (don't ask any questions)

Setup-App

The gearbox setup-app command runs the websetup.setup_app function of your project
to initialize the database schema and data.

By default the setup-app command is run on the development.ini file, to change this
provide a different one to the --config option:

$ gearbox setup-app -c production.ini

Serve

The gearbox serve command starts a PasteDeploy web application defined by the provided
configuration file. By default the development.ini file is used, to change this provide
a different one to the --config option:

$ gearbox serve -c production.ini --reload

The serve command provides a bunch of options to start the serve in daemon mode,
automatically restart the application whenever the code changes and many more:

optional arguments:
 -c CONFIG_FILE, --config CONFIG_FILE
 application config file to read (default:
 development.ini)
 -n NAME, --app-name NAME
 Load the named application (default main)
 -s SERVER_TYPE, --server SERVER_TYPE
 Use the named server.
 --server-name SECTION_NAME
 Use the named server as defined in the configuration
 file (default: main)
 --daemon Run in daemon (background) mode
 --pid-file FILENAME Save PID to file (default to gearbox.pid if running in
 daemon mode)
 --reload Use auto-restart file monitor
 --reload-interval RELOAD_INTERVAL
 Seconds between checking files (low number can cause
 significant CPU usage)
 --monitor-restart Auto-restart server if it dies
 --status Show the status of the (presumably daemonized) server
 --user USERNAME Set the user (usually only possible when run as root)
 --group GROUP Set the group (usually only possible when run as root)
 --stop-daemon Stop a daemonized server (given a PID file, or default
 gearbox.pid file)

Changing HTTP Server

gearbox serve will look for the [server:main] configuration section
to choose which server to run and one which port and address to listen.

Any PasteDeploy compatible server can be used, by default the egg:gearbox#wsgiref
one is used, which is single threaded and based on python wsgiref implementation.

This server is idea for debugging as being single threaded removes concurrency issues
and keeps around request local data, but should never be used on production.

On production system you might want to use egg:gearbox#cherrypy or egg:gearbox#gevent
servers which run the application on CherryPy and Gevent, it is also possible to use
other servers like Waitress (egg:waitress#main) if available.

TGShell

The gearbox tgshell command will load a TurboGears application and start
an interactive shell inside the application.

The application to load is defined by the configuration file, by default
development.ini is used, to load a different application or under a
different configuration provide a configuration file using the --config
option:

$ gearbox tgshell -c production.ini

The tgshell command provides an already active fake request which makes
possible to call functions that depend on tg.request, it is also
provided an app object through which is possible to make requests:

$ gearbox tgshell
TurboGears2 Interactive Shell
Python 2.7.3 (default, Aug 1 2012, 05:14:39)
[GCC 4.6.3]

 All objects from myapp.lib.base are available
 Additional Objects:
 wsgiapp - This project's WSGI App instance
 app - WebTest.TestApp wrapped around wsgiapp

>>> tg.request
<Request at 0x3c963d0 GET http://localhost/_test_vars>
>>> app.get('/data.json').body
'{"params": {}, "page": "data"}'
>>> model.DBSession.query(model.User).first()
<User: name=manager, email=manager@somedomain.com, display=Example manager>

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

RESTful Web Applications with TurboGears

If you are developing an application where you want to expose your
database using a stateless API, tg.RestController
might be for you. If you want to serve resources with multiple
formats, and handle embedded resource lookup, you might find
RestController useful. If you want to provide simple URLs which are
consistent across all of the data shared and manipulated in your
application, RestController is probably worth a look.

Unlike TGController, RestController provides a mechanism to access the
request’s method, not just the URL. If you are not familiar with how
HTTP requests work, think for a minute about the difference between
sending a form with GET and POST. Primarily, developers use POST to
send data to modify the database. They use GET to retrieve data.
These are HTTP methods.

Standard HTTP verbiage includes: GET, POST, PUT, and DELETE.
RestController supports these, and also adds a few shortcuts for URL
dispatch that makes displaying the data as forms and lists a little
easier for the user. The API docs describe each of the supported
controller functions in brief, so use that if you already understand
REST and need a quick way to start using it, this document will be
your guide. It is intended to provide a step-by-step example of how to
implement REST using RestController.

To explain how RESTful works with TurboGears we are going to define
a simple webservice that exposes a list of movies. WebServices are
usually an ideal candidate for RESTful dispatch and so provide
a simple and clean showcase of the feature.

Here is the Model used to develop this chapter:

from sqlalchemy import Column, Integer, String, Date, Text, ForeignKey, Table
from sqlalchemy.orm import relation

from moviedemo.model import DeclarativeBase, metadata

movie_directors_table = Table('movie_directors', metadata,
 Column('movie_id', Integer, ForeignKey('movies.movie_id'), primary_key = True),
 Column('director_id', Integer, ForeignKey('directors.director_id'), primary_key = True))

class Genre(DeclarativeBase):
 __tablename__ = "genres"

 genre_id = Column(Integer, primary_key=True)
 name = Column(String(100))

class Movie(DeclarativeBase):
 __tablename__ = "movies"

 movie_id = Column(Integer, primary_key=True)
 title = Column(String(100), nullable=False)
 description = Column(Text, nullable=True)
 genre_id = Column(Integer, ForeignKey('genres.genre_id'))
 genre = relation('Genre', backref='movies')
 release_date = Column(Date, nullable=True)

class Director(DeclarativeBase):
 __tablename__ = "directors"

 director_id = Column(Integer, primary_key=True)
 title = Column(String(100), nullable=False)
 movies = relation(Movie, secondary=movie_directors_table, backref="directors")

I am isolating Movies, Genres, and Directors for the purpose of
understanding how objects might relate to one another in a RESTful
context. For purposes of this demonstration, Movies can only have one
Genre, but may be related to one or more Directors. Directors may be
related to one or more Movies.

Listing Resources

Lets provide a simple listing of the movies in our database.

Our controller class is going to look like this:

from tg import RestController
from tg.decorators import with_trailing_slash

class MovieController(RestController):

 @expose('json')
 def get_all(self):
 movies = DBSession.query(Movie).all()
 return dict(movies=movies)

Supposing our MovieController is mounted with the name movies inside
our RootController going to http://localhost:8080/movies will provide
the list of our movies encoded in json format.

If you ware looking for a way to fill some sample movies, just jump to
http://localhost:8080/admin and create any data you need to make sure
your controller is working as expected.

Creating New Items

We use the post method to define how we go about saving our movie to
the database. This method gets called whenever the http://localhost:8080/movies
url is accessed using a POST request:

from datetime import datetime

class MovieRestController(RestController):

 @expose('json')
 def post(self, title, description, directors=None, genre_id=None, release_date=None):
 if genre_id is not None:
 genre_id = int(genre_id)

 if directors is not None:
 if not isinstance(directors, list):
 directors = [directors]
 directors = [DBSession.query(Director).get(director) for director in directors]
 else:
 directors = []

 if release_date is not None:
 release_date = datetime.strptime(release_date, "%m/%d/%y")

 movie = Movie(title=title, description=description, release_date=release_date,
 directors=directors, genre_id=genre_id)
 DBSession.add(movie)
 DBSession.flush()

 return dict(movie=movie)

If the insertion is successful we are going to receive back the newly created
movie with its movie_id. The DBSession.flush() call is explicitly there
to make SQLAlchemy get a movie_id for the newly inserted movie.

This will not be the case if the user enters some weird date
format for “release_date” or doesn’t provide a title or description.

One way to counteract this problem is by writing a validator when the parameters
don’t respect the expected format.

If you don’t know how to test this controller, check for browser extension
to make POST requests. Most browser have one, for Google Chrome you can try
PostMan [https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en]
which does a good job.

Validating The User’s Input

Before we add our record to the database, it is probably a good idea
to validate the data so we can prompt the user if there are mistakes.
RestController uses the same machinery that TGControllers use for
validation. We use FormEncode’s validators to test that our fields are
not empty, and that the release_date has correct formatting:

from tg import request, validate
from formencode.validators import NotEmpty, Int, DateConverter

@validate({'title':NotEmpty,
 'description':NotEmpty,
 'genre_id':Int(not_empty=True),
 'release_date':DateConverter(not_empty=True)})
@expose('json')
def post(self, **kw):
 if request.validation['errors']:
 return dict(errors=dict([(field, str(e)) for field, e in request.validation['errors'].items()]))

 #...proceed like before...

Note that the validation errors are stored in request.validation.
This is done by the TG dispatch on a failed validation.

Getting one Item

Using the get_one() method, we can display one item from the database
to the user.:

@expose('json')
def get_one(self, movie_id):
 movie = DBSession.query(Movie).get(movie_id)
 return dict(movie=movie)

Updating an Existing Item

PUT is the method used for updating an existing record using REST. We
can validate in the same manner as before:

@validate({'title':NotEmpty,
 'description':NotEmpty,
 'genre_id':Int(not_empty=True),
 'release_date':DateConverter(not_empty=True)})
@expose('json')
def put(self, movie_id, title, description, directors, genre_id, release_date, **kw):
 if request.validation['errors']:
 return dict(errors=dict([(field, str(e)) for field, e in request.validation['errors'].items()]))

 movie = DBSession.query(Movie).get(movie_id)
 if not movie:
 return dict(errors={'movie':'Movie not found'})

 genre_id = int(genre_id)
 if not isinstance(directors, list):
 directors = [directors]
 directors = [DBSession.query(Director).get(director) for director in directors]

 movie.genre_id = genre_id
 movie.title=title
 movie.description = description
 movie.directors = directors
 movie.release_date = release_date

 return dict(movie=movie)

Deleting An Item From Our Resource

The work-horse of delete is attached to the post_delete method. Here
we actually remove the record from the database, and then redirect
back to the listing page:

@expose('json')
def post_delete(self, movie_id, **kw):
 movie = DBSession.query(Movie).get(movie_id)
 if not movie:
 return dict(errors={'movie':'Movie not found'})

 DBSession.delete(movie)
 return dict(movie=movie.movie_id)

Nesting Resources With RestControllers

RestControllers expect nesting as any TG controller would, but it uses
a different method of dispatch than regular TG Controllers. This is
necessary when you need resources that are related to other resources.
This can be a matter of perspective, or a hard-link which filters the
results of the sub controller. For our example, we will use a nested
controller to display all of the directors associated with a Movie.

The challenge for design of your RESTful interface is determining how
to associate parts of the URL to the resource definition, and defining
which parts of the URL are part of the dispatch.

To do this, RestController introspects the get_one method to determine
how many bits of the URL to nip off and makes them available inside the
request.controller_state.routing_args dictionary.

This is because you may have one or more identifiers to determine an object;
for instance you might use lat/lon to define a location.
Since our MovieController defines a get_one which takes a movie_id as
a parameter, we have no work to do there.

All we have to do now is define our MovieDirectorController, and
provide linkage into the MovieController to provide this
functionality:

from tg import request

class MovieDirectorController(RestController):
 @expose('json')
 def get_all(self):
 movie_id = request.controller_state.routing_args.get('movie_id')
 movie = DBSession.query(Movie).get(movie_id)
 return dict(movie=movie, directors=movie.directors)

class MovieRestController(RestController):
 directors = MovieDirectorController()

 @expose('json')
 def get_one(self, movie_id):
 movie = DBSession.query(Movie).get(movie_id)
 return dict(movie=movie)

This example only defines the get_all function, I leave the other
RESTful verbiage as an exercise for you to do.

One trick that I will explain, is how to use _before to get
the related Movie object within all of your MovieDirectorController
methods with a single define.

Here is what the Controller looks like with _before added in:

from tg import tmpl_context, request

class MovieDirectorController(RestController):

 def _before(self, *args, **kw):
 movie_id = request.controller_state.routing_args.get('movie_id')
 tmpl_context.movie = DBSession.query(Movie).get(movie_id)

 @with_trailing_slash
 @expose('json')
 def get_all(self):
 return dict(movie=tmpl_context.movie, directors=tmpl_context.movie.directors)

Non-RESTful Methods

Let’s face it, REST is cool, but sometimes it doesn’t meet our needs
or time constraints. A good example of this is a case where you want
an autocomplete dropdown in your “edit” form, but the resource that
would provide the Json for this dropdown has not been fleshed out yet.
as a hack, you might add a field_dropdown() method in your controller
which sends back the json required to feed your form. RestController
allows methods named outside of the boundaries of the default methods
supported. In other words, it’s just fine to include a method in your
RestController that does not fit the REST HTML verbiage specification.

Supporting TGController’s Inside RestController

Just as RestController supports obscure names for methods, it can
handle nested TGController classes as well. When dispatch encounters
a URL which maps to a non-RestController, it switches back to the
normal TG dispatch. Simply said, you may include regular classes for
dispatch within your RestController definition.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

ObjectDispatch and TGController

The TGController is the basic controller class that provides an easy
method for nesting of controller classes to map URL hierarchies.
There are however a few methods which provide a slightly different
method for dispatch. They are described below.

The Default Method

The developer may decide to provied a _default method within their
controller which is called when the dispatch mechanism cannot find
an appropriate method in your controllers to call. This
_default method might look something like this:

class WikiController(BaseController):

 @expose('mytgapp.wiki.new)
 def _default(self, *args):
 """
 Return a page to prompt the user to create a new wiki page."""
 """
 return dict(new_page_slug=args)s

The Lookup Method

_lookup and _default are called in identical situations: when
“normal” object traversal is not able to find an exposed method, it
begins popping the stack of “not found” handlers. If the handler is a
“_default” method, it is called with the rest of the path as positional
parameters passed into the default method.

The not found handler stack can also contain “lookup” methods, which
are different, as they are not actual controllers.

A lookup method takes as its argument the remaining path elements and
returns an object (representing the next step in the traversal) and a
(possibly modified) list of remaining path elements. So a blog might
have controllers that look something like this:

class BlogController(BaseController):

 @expose()
 def _lookup(self, year, month, day, id, *remainder):
 dt = date(int(year), int(month), int(day))
 blog_entry = BlogEntryController(dt, int(id))
 return blog_entry, remainder

class BlogEntryController(object):

 def __init__(self, dt, id):
 self.entry = model.BlogEntry.get_by(date=dt, id=id)

 @expose(...)
 def index(self):
 ...
 @expose(...)
 def edit(self):
 ...

 @expose()
 def update(self):

So a URL request to .../2007/6/28/0/edit would map first to the
BlogController’s _lookup method, which would lookup the date,
instantiate a new BlogEntryController object (blog_entry), and pass
that blog_entry object back to the object dispatcher, which uses the
remainder do continue dispatch, finding the edit method. And of course
the edit method would have access to self.entry, which was looked up
and saved in the object along the way.

In other situations, you might have a several-layers-deep “_lookup”
chain, e.g. for editing hierarchical data
(/client/1/project/2/task/3/edit).

The benefit over “_default” handlers is that you return an object
that acts as a sub-controller and continue traversing rather than
being a controller and stopping traversal altogether. This allows
you to use actual objects with data in your controllers.

Plus, it makes RESTful URLs much easier than they were in TurboGears 1.

Subclassing Controllers

When overriding a parent controller method you will usually have to expose it
again and place any validation or event hook it previously had.

While this is possible, it is not the best way to add additional behavior to
existing controllers. If they are implemented in an external
library or application, you will have to look at the code of the library,
see any template it exposed, any hook it registered and place them again.

If the library will change in any future release your code will probably
stop working.

To avoid this behavior and the issues it raises since TurboGears 2.2
it is possible to subclass controllers inheriting the configuration
the parent methods had.

The inherit parameter of the tg.decorators.expose decorator
enables this behavior:

class OriginalController(TGController):
 @expose('mylib.templates.index')
 def index(self):
 return dict()

 @expose('mylib.templates.about')
 def about(self):
 return dict()

 @expose('json')
 def data(self):
 return {'v':5}

class MyCustomizedController(OriginalController):
 @expose(inherit=True)
 def index(self, *args, **kw):
 dosomething()
 return super(MyCustomizedController, self).index(*args, **kw)

 @expose('myapp.templates.newabout', inherit=True)
 def about(self):
 return super(MyCustomizedController, self).about(*args, **kw)

 def _before_render_data(remainder, params, output):
 output['child_value'] = 'CHILDVALUE'

 @expose(inherit=True)
 @before_render(_before_render_data)
 def data(self, *args, **kw):
 return super(MyCustomizedController, self).data(*args, **kw)

Mount Points and Dispatch

Since TurboGears 2.1.4 it is possible to ask for various informations
about the request dispatchment and controllers mount points.

Those informations can be useful when writing controllers that
you plan to reuse in multiple applications or mount points,
making possible for example to generate all the urls knowing
where they are mounted.

For statically mounted controllers the exposed informations are:

	The mount_point property of a controller. If statically mounted
it will return where the controller is mounted. This is the
url to call when you want to access that controller.

	The mount_steps property of a controller. If statically mounted
it will return the complete list of parents of that controller.

In the case you are dispatching the request yourself, for example
through a _lookup method, the mount_point and mount_steps
informations won’t be available. In this case you can rely
on some other functions exposed by TG:

	The tg.request.controller_state object keeps track of all
the steps provided to dispatch the request.

	The tg.dispatched_controller() method when called inside
a request will return the last statically mounted controller.
This can be useful to detect which controller finished the
request dispatch using the _lookup method.

The application RootController can usually be retrieved from
tg.config['application_root_module'].RootController

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

Database Schema Migrations

Since version 2.1.1 TurboGears has integrated migrations support
for each new quickstarted project.

TurboGears 2.3 and newer rely on the alembic [http://alembic.readthedocs.org/en/latest/] project to
automate database schema migration.

Getting Started

TurboGears provides a gearbox migrate command to manage schema migration.
You can run gearbox migrate db_version to see the current version
of your schema:

$ gearbox migrate -c development.ini db_version
Context impl SQLiteImpl.
Will assume transactional DDL.
Current revision for sqlite:////tmp/migr/devdata.db: None

By default the database version is None until a migration is applied.
The first time a migration is applied the migrate_version table is
created. This table will keep the current version
of your schema to track when applying migrations is required.

If you examine your database, you should be able to see schema version tracking
table and check what it is the current version of your schema:

sqlite> .headers on
sqlite> select * from migrate_version;
version_num
4681af2393c8

This is exactly like running the gearbox migrate db_version command, both
should tell you the same database version.
In this case the reported version is 4681af2393c8.

Integrating Migrations in the Development Process

With the database under version control and a repository for schema
change scripts, you are ready to begin regular development. We will
now walk through the process of creating, testing, and applying a
change script for your current database schema. Repeat these steps as
your data model evolves to keep your databases in sync with your
model.

Creating migrations

The gearbox migrate script command will create an empty change script for you,
automatically naming it and placing it in your repository:

$ gearbox migrate create 'Initial Schema'

The command will return by just printing the migrations repository where it is
going to create the new script:

$ gearbox migrate create 'Initial Schema'
 Generating /tmp/migr/migration/versions/2a3f515bad0_initial_schema.py... done

$ ls migration/versions
2a3f515bad0_this_is_an_example.py

Edit the Script

Each change script provides an upgrade and downgrade method, and
we implement those methods by creating and dropping the account table
respectively:

revision = '2a3f515bad0'
down_revision = '4681af2393c8'

from alembic import op
import sqlalchemy as sa

def upgrade():
 op.create_table(
 'account',
 sa.Column('id', sa.Integer, primary_key=True),
 sa.Column('name', sa.String(50), nullable=False),
 sa.Column('description', sa.Unicode(200)),
)

def downgrade():
 op.drop_table('account')

Test the Script

Anyone who has experienced a failed schema upgrade on a production
database knows how uniquely uncomfortable that situation can be.
Although testing a new change script is optional, it is clearly a good
idea. After you execute the following test command, you will ideally be
successful:

$ gearbox migrate test
Context impl SQLiteImpl.
Will assume transactional DDL.
Running upgrade 4681af2393c8 -> 2a3f515bad0
Context impl SQLiteImpl.
Will assume transactional DDL.
Running downgrade 2a3f515bad0 -> 4681af2393c8

If you receive an error while testing your script, one of two issues
is probably the cause:

	There is a bug in the script

	You are testing a script that conflicts with the schema as it currently exists.

If there is a bug in your change script, you can fix the bug and rerun
the test.

Applying migrations

The script is now ready to be deployed:

$ gearbox migrate upgrade

If your database is already at the most recent revision, the command
will produce no output. If migrations are applied, you will see
output similar to the following:

Context impl SQLiteImpl.
Will assume transactional DDL.
Running upgrade 4681af2393c8 -> 2a3f515bad0

Keeping your websetup on sync

Each time you create a new migration you should consider keeping your
websetup in sync with it. For example if you create a new table inside
a migration when you will run gearbox setup-app on a new database
it will already have the new table as you probably declared it in your
model too but the migrations version will be None. So trying to run any
migration will probably crash due to the existing tables.

To prevent this your websetup script should always initialize the
database in the same state where it would be after applying all the
available migrations. To ensure this you will have to add at the end
of the websetup/schema.py script a pool of commands to set the
schema version to the last one:

import alembic.config, alembic.command
alembic_cfg = alembic.config.Config()
alembic_cfg.set_main_option("script_location", "migration")
alembic_cfg.set_main_option("sqlalchemy.url", config['sqlalchemy.url'])
alembic.command.stamp(alembic_cfg, "head")

Downgrading your schema

There are some cases in which downgrading your schema might be required.
In those cases you can perform the gearbox migrade downgrade command:

$ gearbox migrate downgrade
Context impl SQLiteImpl.
Will assume transactional DDL.
Running downgrade 2a3f515bad0 -> 4681af2393c8

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

TurboGears2 Configuration

	TurboGears 2 Configuration
	Overview

	Configuration in the INI files

	Configuration Milestones

	The config module

	Configuring your application

	Advanced Configuration

	SQLAlchemy and Transaction Config Settings
	AppConfig Method Overrides

	Template Rendering Config Settings
	Configuration Attributes

	Making a module available to all Genshi templates

	Overriding AppConfig Rendering Methods

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

 	TurboGears2 Configuration

TurboGears 2 Configuration

TurboGears 2 provides a configuration system that attempts to be both
extremely flexible for power users and very simple to use for standard
projects.

Overview

The application configuration is separated from the
deployment specific information. In TurboGears 2.3.1 there is a
config module, containing several configuration specific python files –
these are done in python (not as INI files), because they actually setup
the TurboGears 2.3.1 application and its associated WSGI middleware.
Python provides an incredibly flexible config system with all kinds of
tools to keep you from having to repeat yourself. But it comes with
some significant drawbacks, python is more complex than INI, and is less
declarative so can be less obvious.

But we believe these drawbacks are more than overcome by the power and
flexibility of python based configuration for the app because these
files are intended to be edited only by application developers, not by
those deploying the application. We’ve also worked hard to create an
environment that is generally declarative.

At the same time the deployment level configuration is done in simple
.ini files, in order to make it totally declarative, and easy for
deployers who may not be python programmers.

Configuration in the INI files

A TurboGears quickstarted project will contain a couple of .ini files
which are used to define what WSGI app ought to be run, and to store
end-user created configuration values, which is just another way of
saying that the .ini files should contain deployment specific
options.

By default TurboGears provides a development.ini, test.ini,
and production.ini files. These are standard ini file formats.

These files are standard INI files, as used by PasteDeploy. The
individual sections are marked off with []‘s.

See also

Configuration file format and options are described in
great detail in the Paste Deploy documentation [http://pythonpaste.org/deploy/].

If want to add some configuration option (let’s say an administrator’s
email) here is how you would do so. First you would edit your
development.ini file and go to the end of the [app:main]
section.

You can then choose a sensible name for your configuration key and add
it to the section:

mail.from.administrator = someemail@somedomain.com

This would make sure this variable is now part of the configuration
and can be accessed from anywhere in your code. For example let’s
imagine that you wanted to get this config option from a controller’s
code:

import tg
admin_emailfrom = tg.config.get('mail.from.administrator', 'notconfigured@nodomain.com')

If the person who deployed your application forgot to add the variable
to his config file he would get the default value provided as the
second argument of the get() call.

Warning

If you set a value like enable_subsystem = false, it will be
loaded into python as the string ‘false’ which if used in a
conditional will give you a very wrong result

The correct way of loading boolean values for your use is

from paste.deploy.converters import asbool
if asbool(config['enable_subsystem']):
 ... sub systems is enabled...

Configuration Milestones

Since TurboGears 2.3 the configuration process git divided in various
milestones, each of those milestones is bound to an advancement in the
framework setup process.

Whenever a milestone is reached all the registered callbacks are fired
and the configuration process can continue. If the milestone is already
passed when a callback is registered, the callback gets instantly fired.

Note

The tg.config object is available at import time but until the
configuration file is parsed, it only contains the system
defaults. If you need to perform startup time setup based on
supplied configuration, you should do so in a milestone.

Milestones are available through the tg.configuration.milestones
module, the currently provided milestones are:

	
	milestones.config_ready - Configuration file has been loaded and is

	available in tg.config

	
	milestones.renderers_ready - Renderers have been registered and all

	of them are available

	
	milestones.environment_loaded - Full environment have been loaded

	but application has not been created yet.

Registering an action to be executed whenever a milestone is reach
can be done using tg.configuration.milestones._ConfigMilestoneTracker.register()
method of each milestone. The registered action takes no parameters.

Milestones are much like Hooks but they are
only related to the configuration process. The major difference is that
while an hook can fire multiple times a milestone can be reached only once.

Milestones and Hooks order of execution

The order of execution of the milestones and hooks provided during the
application startup process is:

	milestones.config_ready

	startup Hook

	milestones.renderers_ready

	milestones.environment_loaded

	before_config Hook

	after_config Hook

The config module

Tip

A good indicator of whether an option should be set in the
config directory code vs. the configuration file is whether or
not the option is necessary for the functioning of the
application. If the application won’t function without the
setting, it belongs in the appropriate config/ directory
file. If the option should be changed depending on deployment, it
belongs in the ini files.

Our hope is that 90% of applications don’t need to edit any of the
config module files, but for those who do, the most common file to
change is app_config.py:

from tg.configuration import AppConfig
import wiki20
from wiki20 import model
from wiki20.lib import app_globals, helpers

base_config = AppConfig()
base_config.renderers = []

base_config.package = wiki20

#Set the default renderer
base_config.default_renderer = 'genshi'
base_config.renderers.append('genshi')

#Configure the base SQLALchemy Setup
base_config.use_sqlalchemy = True
base_config.model = wiki20.model
base_config.DBSession = wiki20.model.DBSession

app_cfg.py exists primarily so that middleware.py and environment.py
can import and use the base_config object.

The base_config object is an AppConfig() instance which allows
you to access its attributes like a normal object, or like a standard
python dictionary.

One of the reasons for this is that AppConfig() provides some
defaults in its __init__. But equally important it provides us
with several methods that work on the config values to produce the two
functions that set up your TurboGears app.

We’ve taken care to make sure that the entire setup of the
TurboGears 2.3.1 framework is done in code which you as the
application developer control. You can easily customize it to your needs.
If the standard config options we provide don’t do what you need, you
can subclass and override AppConfig to get exactly the setup you want.

The base_config object that is created in app_cfg.py should be
used to set whatever configuration values that belong to the
application itself and are required for all instances of this app, as
distinct from the configuration values that you set in the
development.ini or production.ini files that are intended to
be editable by those who deploy the app.

As part of the app loading process the base_config object will be
merged in with the config values from the .ini file you’re using to
launch your app, and placed in tg.config.

As we mentioned previously, in addition to the attributes on the
base_config object there are a number of methods which are used to
setup the environment for your application, and to create the actual
TurboGears WSGI application, and all the middleware you need.

You can override base_config‘s methods to further customize your
application’s WSGI stack, for various advanced use cases, like adding
custom middleware at arbitrary points in the WSGI pipeline, or doing
some unanticipated (by us) application environment manipulation.

And we’ll look at the details of how that all works in the advanced
configuration section of this document.

Configuring your application

Here’s are some of the more general purpose configuration attributes:

Configuration Attributes

The configuration object has a number of attributes that automate
the majority of what you need to do with the config object. These
shortcuts eliminate the need to provide your own setup methods
for configuring your TurboGears application.

Mimetypes

By default, only json/application and text/html are defined mimetypes.
If you would like to use additional mime-types you must register
them with your application’s config. You can accomplish this by
adding the following code your your app_cfg.py file:

base_config.mimetype_lookup = {'.ext':'my-mimetype'}

Static Files

base_config.serve_static – automatically set to True for you.
Set to False if you have set up apache, or nginx (or some other
server) to handles static files.

Request Extensions

base_config.disable_request_extensions – by default this is false.
This means that TG will take the request, and strip anything off the end
of the last element in the URL that follows ”.”. It will then take this
information, and assign an appropriate mime-type and store the data in the
tg.request.response_type and tg.request.response_ext variables. By enabling
this flag, you disable this behavior, rendering TG unable to determine the
mime-type that the user is requesting automatically.

Stand Alone

base_config.stand_alone – set this to False if you don’t want
error handling, HTTP status code error pages, etc. This is intended
for the case where you’re embedding the TG app in some other WSGI app
which handles these things for you.

Cookie Secret

The beaker.session.secret key of the base_config object
contains the secret used to store user sessions. TurboGears automatically
generates a random secret for you when you create a project. If an
attacker gets his hands on this key, he will be able to forge a valid
session an use your application at though he was logged in. In the
event of a security breach, you can change this key to invalidate all
user sessions.

Authentication Character Set

Set base_config.sa_auth.charset to define the character encoding for your
user’s login. This is especially important if you expect your users to have
non-ascii usernames and passwords. To set it to utf-8, your add this to your
app_config.py file.:

base_config.sa_auth.charset = 'utf-8'

Advanced Configuration

Sometimes you need to go beyond the basics of setting configuration
options. We’ve created a number of methods that you can use to override the way
that particular pieces of the TurboGears 2.3.1 stack are configured.
The basic way you override the configuration within app.cfg looks something
like this:

from tg.configuration import AppConfig
from tw2.core.middleware import TwMiddleware

class MyAppConfig(AppConfig):

 def add_tosca2_middleware(self, app):

 app = TwMiddleware(app,
 default_engine=self.default_renderer,
 translator=ugettext,
 auto_reload_templates = False
)

 return app
base_config = MyAppConfig()

modify base_config parameters below

The above example shows how one would go about overridding the toscawidgets2
middleware. See the AppConfig for more ideas on how you
could modify your own custom config

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

 	TurboGears2 Configuration

SQLAlchemy and Transaction Config Settings

Table of Contents

	SQLAlchemy and Transaction Config Settings
	AppConfig Method Overrides

Though the majority of folks will use TurboGears with SQLAlchemy, there
are those who have interest in running the full stack of TG with a non-relational
database like MongoDB [http://www.mongodb.org/] or CouchDB [http://couchdb.apache.org/]. There are a few settings that allow this,
the most pertinent is: use_sqlalchemy:

base_config.use_sqlalchemy – Set to False to turn off sqlalchemy support

TurboGears takes advantage of repoze’s transaction manager software. Basically,
the transaction manager wraps each of your controller methods, and should a method
fail, the transaction will roll back. if you utilize the transaction manager, then
the result of a successful method call results in a commit to the database. If
the contoller method does not utilize the database, there is no database interaction
performed. What this means is that you never have to worry about committing, or
rolling back when controller code fails, TG handles this for you automatically.

base_config.use_transaction_manager – Set to False to turn off the
Transaction Manager and handle transactions yourself.

AppConfig Method Overrides

	
AppConfig.setup_sqlalchemy()

	Setup SQLAlchemy database engine.

The most common reason for modifying this method is to add
multiple database support. To do this you might modify your
app_cfg.py file in the following manner:

from tg.configuration import AppConfig, config
from myapp.model import init_model

add this before base_config =
class MultiDBAppConfig(AppConfig):
 def setup_sqlalchemy(self):
 '''Setup SQLAlchemy database engine(s)'''
 from sqlalchemy import engine_from_config
 engine1 = engine_from_config(config, 'sqlalchemy.first.')
 engine2 = engine_from_config(config, 'sqlalchemy.second.')
 # engine1 should be assigned to sa_engine as well as your first engine's name
 config['tg.app_globals'].sa_engine = engine1
 config['tg.app_globals'].sa_engine_first = engine1
 config['tg.app_globals'].sa_engine_second = engine2
 # Pass the engines to init_model, to be able to introspect tables
 init_model(engine1, engine2)

#base_config = AppConfig()
base_config = MultiDBAppConfig()

This will pull the config settings from your .ini files to create the necessary
engines for use within your application. Make sure you have a look at Using Multiple Databases In TurboGears
for more information.

	
AppConfig.add_tm_middleware(app)

	Set up the transaction management middleware.

To abort a transaction inside a TG2 app:

import transaction
transaction.doom()

By default http error responses also roll back transactions, but this
behavior can be overridden by overriding base_config.commit_veto.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

 	TurboGears2 Configuration

Template Rendering Config Settings

	Status:	Official

Table of Contents

	Template Rendering Config Settings
	Configuration Attributes

	Making a module available to all Genshi templates

	Overriding AppConfig Rendering Methods

The most common configuration change you’ll likely want to make here
is to add a second template engine or change the template engine used
by your project.

By default TurboGears sets up the Genshi engine, but we also provide
out of the box support for Mako and Jinja. To tell TG to prepare these
templating engines for you all you need to do is install the package
and append ‘mako’ or ‘jinja’ to the renderer’s list here in
app_config.

To change the default renderer to something other than Genshi, just
set the default_renderer to the name of the rendering engine. So, to
add Mako to the list of renderers to prepare, and set it to be the
default, this is all you’d have to do:

base_config.default_renderer = 'mako'
base_config.renderers.append('mako')

Configuration Attributes

base_config.default_renderer – set to the name of the default
render function you want to use.

base_config.renderers – This is a list of render functions that
ought to be prepared for use in the app. This is a shortcut for the
four renderers that TurboGears 2.3.1 provides out of the box.
TG provides renderers for: ‘genshi’, ‘mako’, ‘jinja’, and ‘json’.

In 2.1, If you would like to add additional renderers, you can
add it to the renderers list, and then provide a setup_mytl_renderer
method in your custom AppConfig, where mytl is the name of your
template language.

base_config.use_legacy_renderer – If True old style buffet
renderers will be used. Don’t set this unless you need buffet
renderers for some specific reason, buffet renderers are deprecated
and will probably be removed in 2.1.

base_config.use_dotted_templatenames – Generally you will not
want to change this. But if you want to use the standard
genshi/mako/jinja file system based template search paths, set this to
False. The main advantage of dotted template names is that it’s
very easy to store template files in zipped eggs, but if you’re not
using packaged TurboGears 2.3.1 app components there are some
advantages to the search path syntax.

base_config.renderers – a dictionary with the render function
name as the key, and the actual configured render function as the
value. For the four standard renderers it’s enough to just add the
name to base_config.renderers but for custom renderers you want to
set the renderer up, and set it in this dictionary directly.

Making a module available to all Genshi templates

Sometimes you want to expose an entire module to all of the templates
in your templates directory. Perhaps you have a form library you
like to use, or a png-txt renderer that you want to wrap with <pre>.
This is possible in TG.

First, we must modify our app_cfg.py so that you can share your
link across all templates:

base_config.variable_provider = helpers.add_global_tmpl_vars

Next, you want to modify the lib/helpers.py module of your application
to include the newly added add_global_tmpl_vars method:

import mymodule

def add_global_tmpl_vars():
 return dict(mymodule=mymodule)

That’s pretty much it, you should have access to mymodule in every
template now.

Overriding AppConfig Rendering Methods

Look for the setup_*_renderer methods inside the AppConfig
class to override renderers behavior or add more.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

Authentication in TurboGears 2 applications

This document describes how repoze.who is integrated into TurboGears
and how you make get started with it. For more information, you may want
to check repoze.who‘s website.

repoze.who is a powerful and extensible authentication package for
arbitrary WSGI applications. By default TurboGears2 configures it to log using
a form and retrieving the user informations through the user_name field of the
User class. This is made possible by the authenticator plugin that TurboGears2
uses by default which is repoze.who.plugins.sa.SQLAlchemyAuthenticatorPlugin.

How it works in TurboGears

The authentication layer it’s a WSGI middleware which is able to authenticate
the user through the method you want (e.g., LDAP or HTTP authentication),
“remember” the user in future requests and log the user out.

You can customize the interaction with the user through four kinds of
plugins, sorted by the order in which they are run on each request:

	An identifier plugin, with no action required on the user’s side, is able
to tell whether it’s possible to authenticate the user (e.g., if it finds
HTTP Authentication headers in the HTTP request). If so, it will extract the
data required for the authentication (e.g., username and password, or a
session cookie). There may be many identifiers and repoze.who will run
each of them until one finds the required data to authenticate the user.

	If at least one of the identifiers could find data necessary to authenticate
the current user, then an authenticator plugin will try to use the
extracted data to authenticate the user. There may be many authenticators
and repoze.who will run each of them until one authenticates the user.

	When the user tries to access a protected area or the login page, a
challenger plugin will come up to request an action from the user (e.g.,
enter a user name and password and then submit the form). The user’s response
will start another request on the application, which should be caught by
an identifier to extract the login data and then such data will be used
by the authenticator.

	For authenticated users, repoze.who provides the ability to load
related data (e.g., real name, email) in the WSGI environment so that it can
be easily used in the application. Such a functionality is provided by
so-called metadata provider plugins. There may be many metadata providers
and repoze.who will run them all.

When repoze.who needs to store data about the authenticated user in the
WSGI environment, it uses its repoze.who.identity key, which can be
accessed using the code below:

from tg import request

The authenticated user's data kept by repoze.who:
identity = request.environ.get('repoze.who.identity')

Such a value is a dictionary and is often called “the identity dict”. It will
only be defined if the current user has been authenticated.

There is a short-cut to the code above in the WSGI request, which will
be defined in {yourproject}.lib.base.BaseController if you enabled
authentication and authorization when you created the project.

For example, to check whether the user has been authenticated you may
use:

 # ...
 from tg import request
 # ...
 if request.identity:
 flash('You are authenticated!')

``request.identity`` will equal to ``None`` if the user has not been
authenticated.

Likewise, this short-cut is also set in the template context as
``tg.identity``.

The username will be available in identity['repoze.who.userid']
(or request.identity['repoze.who.userid'], depending on the method you
select).

The FastFormPlugin

By default, TurboGears 2.3.1 configures repoze.who to use
tg.configuration.auth.fastform.FastFormPlugin as the first
identifier and challenger – using /login as the relative URL that will
display the login form, /login_handler as the relative URL where the
form will be sent and /logout_handler as the relative URL where the
user will be logged out. The so-called rememberer of such identifier will
be an instance of repoze.who.plugins.cookie.AuthTktCookiePlugin.

All these settings can be customized through the config.app_cfg.base_config.sa_auth
options in your project. Identifiers, Authenticators and Challengers can be overridden
providing a different list for each of them as:

base_config.sa_auth['identifiers'] = [('myidentifier', myidentifier)]

You don’t have to use repoze.who directly either, unless you decide not
to use it the way TurboGears configures it.

Customizing authentication and authorization

It’s very easy for you to customize authentication and identification settings
in repoze.who from {yourproject}.config.app_cfg.base_config.sa_auth.

Customizing how user informations, groups and permissions are retrieved

TurboGears provides an easy shortcut to customize how your authorization
data is retrieved without having to face the complexity of the underlying
authentication layer. This is performed by the TGAuthMetadata object
which is configured in your project config.app_cfg.base_config.

This object provides three methods which have to return respectively the
user, its groups and its permissions. You can freely change them as you wish
as they are part of your own application behavior.

Adavanced Customizations

For more advanced customizations or to use repoze plugins to implement
different forms of authentication you can freely customize the whole
authentication layer using through the {yourproject}.config.app_cfg.base_config.sa_auth
options.

The available directives are all optional:

	
	form_plugin: This is a replacement for the FriendlyForm plugin and will be

	always used as a challenger. If form_identifies option is True it will
also be appended to the list of identifiers.

	
	ìdentifiers: A custom list of repoze.who identifiers.

	By default it contains the form_plugin and the AuthTktCookiePlugin.

	
	challengers: A custom list of repoze.who challengers.

	The form_plugin is always appended to this list, so if you have
only one challenger you will want to change the form_plugin instead
of overridding this list.

	
	authmetadata: This is the object that TG will use to fetch authorization metadata.

	Changing the authmetadata object you will be able to change how TurboGears
fetches your user data, groups and permissions. Using authmetada a new
repoze.who metadata provider is created.

	
	mdproviders: This is a list of repoze.who metadata providers.

	If authmetadata is not None a metadata provider based on it will always
be appended to the mdproviders.

Customizing the model structure assumed by the quickstart

Your auth-related model doesn’t have to be like the default one, where the
class for your users, groups and permissions are, respectively, User,
Group and Permission, and your users’ user name is available in
User.user_name. What if you prefer Member and Team instead of
User and Group, respectively?

First of all we need to inform the authentication layer that our user is stored
in a different class. This makes repoze.who know where to look for the user
to check its password:

what is the class you want to use to search for users in the database
base_config.sa_auth.user_class = model.Member

Then we have to tell out authmetadata how to retrieve the user, its groups
and permissions:

from tg.configuration.auth import TGAuthMetadata

#This tells to TurboGears how to retrieve the data for your user
class ApplicationAuthMetadata(TGAuthMetadata):
 def __init__(self, sa_auth):
 self.sa_auth = sa_auth

 def authenticate(self, environ, identity):
 user = self.sa_auth.dbsession.query(self.sa_auth.user_class).filter_by(user_name=identity['login']).first()
 if user and user.validate_password(identity['password']):
 return identity['login']

 def get_user(self, identity, userid):
 return self.sa_auth.user_class.query.get(user_name=userid)

 def get_groups(self, identity, userid):
 return [team.team_name for team in identity['user'].teams]

 def get_permissions(self, identity, userid):
 return [p.permission_name for p in identity['user'].permissions]

base_config.sa_auth.authmetadata = ApplicationAuthMetadata(base_config.sa_auth)

Now our application is able to fetch the user from the Member table and
its groups from the Team table. Using TGAuthMetadata makes also possible
to introduce a caching layer to avoid performing too many queries to fetch
the authentication data for each request.

Disabling authentication and authorization

If you need more flexibility than that provided by the quickstart, or you are
not going to use repoze.who, you should prevent TurboGears from dealing
with authentication/authorization by removing (or commenting) the following
line from {yourproject}.config.app_cfg:

base_config.auth_backend = '{whatever you find here}'

Then you may also want to delete those settings like base_config.sa_auth.*
– they’ll be ignored.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	Tutorials & Documentation

Hooks and Wrappers

TurboGears defines three ways to plug behaviors inside existing
applications and plugins: Hooks, Controller Wrappers and Application Wrappers.

Hooks work in an event registration and notification manner,
they permit to emit events and notify registered listeners which
are able to perform actions depending on the event itself.

Controller Wrappers sits between TurboGears and the controller body code,
they permit to extend controllers code much like a decorator, but can be
attached to third party controllers or application wide to any controller.

Application Wrappers are much like WSGI middlewares but behave and
work in the TurboGears context, so they receive the TurboGears context
and Request instead of the WSGI environ and are expected to return
a webob.Response object back.

Hooks

TurboGears allows you to attach callables to a wide set of events.
Most of those are available as both controller events and system
wide events.

To register a system wide even you can use the register method
of the tg.hooks object. As some hooks require being registered
before the application is running, it’s common practice to
register them in your app_cfg.py file:

def on_startup():
 print 'hello, startup world'

def on_shutdown():
 print 'hello, shutdown world'

def before_render(remainder, params, output):
 print 'system wide before render'

... (base_config init code)
tg.hooks.register('startup', on_startup)
tg.hooks.register('shutdown', on_shutdown)
tg.hooks.register('before_render', before_render)

To register controller based hooks you can use the event decorators:

from tg.decorators import before_render

def before_render_cb(remainder, params, output):
 print 'Going to render', output

class MyController(TGController):
 @expose()
 @before_render(before_render_cb)
 def index(self, *args, **kw):
 return dict(page='index')

Or register them explicitly (useful when registering hooks
on third party controllers):

tg.hooks.register('before_render', before_render_cb, controller=MyController.index)

See tg.configuration.hooks._TGHooks.register() for more details on registering
hooks.

Apart from Hooks TurboGears also provide some
Configuration Milestones you might want to have a look at
to check whenever it is more proper to register an action for a configuration milestone
or for an hook.

Available Hooks

	startup() - application wide only, called when the application starts

	shutdown() - application wide only, called when the application exits

	
	before_config(app) -> app - application wide only, called after constructing the application,

	but before setting up most of the options and middleware.
Must return the application itself.
Can be used to wrap the application into middlewares that have to be executed having the full TG stack available.

	
	after_config(app) -> app - application wide only, called after finishing setting everything up.

	Must return the application iself.
Can be used to wrap the application into middleware that have to be executed before the TG ones.
Can also be used to modify the Application by mounting additional subcontrollers inside the RootController.

	before_validate(remainder, params) - Called before performing validation

	before_call(remainder, params) - Called after valdation, before calling the actual controller method

	before_render(remainder, params, output) - Called before rendering a controller template, output is the controller return value

	after_render(response) - Called after finishing rendering a controller template

Notifying Custom Hooks

Custom hooks can be notified using tg.hooks.notify, listeners can register
for any hook name, so it as simple as notifying your own hook and documenting
them in your library documentation to make possible for other developers to listen
for them:

tg.hooks.notify('custom_global_hook')

See tg.configuration.hooks._TGHooks.notify() for more details.

Controller Wrappers

Controller wrappers behave much like decorators, they sit between the controller
code and TurboGears. Whenever turbogears has to call that controller it will process
all the registered controller wrappers which are able to forward the request to the
next in chain or just directly return an alternative value from the controller.

Registering a controller wrapper can be done using tg.hooks.wrap_controller.
It is possible to register a controller wrapper for a specific controller or
for the whole application, when registered to the whole application they will be
applied to every controller of the application or third party libraries:

def controller_wrapper(app_config, caller):
 def call(*args, **kw):
 try:
 print 'Before handler!'
 return caller(*args, **kw)
 finally:
 print 'After Handler!'
 return call

tg.hooks.wrap_controller(controller_wrapper)

Due to the registration performance cost, controller wrappers
can only be registered before the application started.

See tg.configuration.hooks._TGHooks.wrap_controller() for more details.

Application Wrappers

Application wrappers are like WSGI middlewares but
are executed in the context of TurboGears and work
with abstractions like Request and Respone objects.

Application wrappers are callables built by passing
the next handler in chain and the current TurboGears
configuration.

Every wrapper, when called, is expected to accept
the WSGI environment and a TurboGears context as parameters
and are expected to return a tg.request_local.Response
instance:

class AppWrapper(object):
 def __init__(self, handler, config):
 self.handler = handler

 def __call__(self, environ, context):
 print 'Going to run %s' % context.request.path
 return self.handler(environ, context)

Application wrappers can be registered from you application
configuration object in app_cfg.py:

base_config.register_wrapper(AppWrapper)

When registering a wrapper, it is also possible to specify after
which other wrapper it has to run if available:

base_config.register_wrapper(AppWrapper, after=OtherWrapper)

Wrappers registered with after=False will run before any
other available wrapper (in order of registration):

base_config.register_wrapper(AppWrapper, after=False)

See tg.configuration.AppConfig.register_wrapper() for more details.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

TurboGears2 CookBook

The CookBook is a collection of documentation and patterns common to TurboGears2

Basic Recipes

	Creating and Validating Forms
	Displaying Forms

	Validating Fields

	Relocatable Widget Actions

	DataGrid Tutorial
	Preparing Application

	Basic DataGrid

	Paginating DataGrid

	Sorting Columns

	Edit Column Button

	TurboGears Automatic CRUD Generation
	Overview

	EasyCrudRestController

	Custom CrudRestController

	Customizing Crud Operations

	Menu Items

	Customizing The Admin

	SQLAlchemy Master Slave Load Balancing
	Enabling Master Slave Balancing

	Configuring Balanced Nodes

	Driving the balancer

	Debugging Balancing

	Deploying TurboGears
	Running a TurboGears under Apache with mod_wsgi

	Running a TurboGears under Circus and Chaussette

	Running a TurboGears under Heroku

	Upgrading Your TurboGears Project
	From 2.3 to 2.3.1

	From 2.2 to 2.3

	From 2.1 to 2.2

Advanced Recipes

	Streaming Response
	Making your application streaming compliant

	Streaming with Generators

	Accessing TurboGears objects

	Scheduling Tasks
	Installation

	Setup

	Scheduling Tasks

	Using Multiple Databases In TurboGears
	Define your database urls in the [app:main] section of your .ini file(s)

	Change The Way Your App Loads The Database Engines

	Update Your Model’s __init__ To Handle Multiple Sessions And Metadata

	Tell Your Models Which Engine To Use

	Optional: Create And Populate Each Database In Websetup.py

	Autogenerated Forms with Sprox
	Establishing the Model Definition

	The Basic Sprox Form

	Omitting Fields

	Limiting fields

	Field Ordering

	Overriding Field Attributes

	Overriding a Form Field

	Field Widget Args

	Custom Dropdown Field Names

	Creating Custom Dropdown Data

	Adding a New Field

	Validation

	Overriding a Validator

	Overriding both Field and Validator

	Required Fields

	Form Validation

	Conclusion

Contributing to TurboGears

	Preparing Your Development Environment
	Installing and Using Git

	Create A virtualenv

	Installing TurboGears2

	Testing Your Changes

	Preparing a Release of TurboGears
	Prerequisites

	Summary of Steps

	Ticket System Triage

	Repository Branching

	Closing Remaining Tickets

	Upgrading all local packages as high as possible

	Testing Jenkins With The Upgraded Packages And Code

	Finalizing Changes On ‘next’ Branch

	Preparing Changelog And Release Announcement

	Preparing Packages And The Documentation

	Uploading The Documentation

	Making The Source Distribution For The New Eggbasket

	Making The New Eggbasket The Current On Turbogears.org

	Pushing to PyPI

	Publishing Release Annoucement And Closing Milestones

	Final Cleanup

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	TurboGears2 CookBook

Creating and Validating Forms

TurboGears relies on ToscaWidgets for Forms building and validations.
Since version 2.2 TurboGears uses ToscaWidgets2, this is an introduction
on using ToscaWidgets2 for building and validating forms, a more complete
documentation is available on the
ToscaWidgets2 Documentation [http://tw2core.readthedocs.org/en/latest/index.html#] itself.

Displaying Forms

To create a form you will have to declare it specifying:

	the form action (where to submit the form data)

	the form layout (how the form will be displayed)

	the form fields

The action can be specified as an attribute of the form itself, while the layout
must be a class named child which has to inherit from tw2.forms.BaseLayout.
Any of tw2.forms.TableLayout or tw2.forms.ListLayout will usually do, but you
can easily write your own custom layouts. The form fields can then be specified
inside the child class.

import tw2.core as twc
import tw2.forms as twf

class MovieForm(twf.Form):
 class child(twf.TableLayout):
 title = twf.TextField()
 director = twf.TextField(value='Default Director')
 genres = twf.CheckBoxList(options=['Action', 'Comedy', 'Romance', 'Sci-fi'])

 action = '/save_movie'

To display the form we can return it from the controller where it must be rendered:

@expose('tw2test.templates.index')
def index(self, *args, **kw):
 return dict(page='index', form=MovieForm)

and display it inside the template itself.
Any field of the form can be filled using the value argument passed to the
display function. The values provided inside this argument will override the
field default ones.

<div id="getting_started">
 ${form.display(value=dict(title='default title'))}
</div>

When submitting the form the save_movie controller declared in the action
attribute of the form will receive the submitted values as any other provided
GET or POST parameter.

@expose()
def save_movie(self, **kw):
 return str(kw)

Validating Fields

ToscaWidgets2 is able to use any FormEncode validator for validation of
both fields and forms. More validators are also provided inside the
tw2.core.validators module.

To start using validation we have to declare the validator for each form field.
For example to block submission of our previous form when no title or director
is provided we can use the tw2.core.Required validator:

class MovieForm(twf.Form):
 class child(twf.TableLayout):
 title = twf.TextField(validator=twc.Required)
 director = twf.TextField(value="Default Director", validator=twc.Required)
 genres = twf.CheckBoxList(options=['Action', 'Comedy', 'Romance', 'Sci-fi'])

 action = '/save_movie'

Now the forms knows how to validate the title and director fields,
but those are not validated in any way.
To enable validation in TurboGears we must use the tg.validate decorator
and place it at our form action:

@expose()
@validate(MovieForm, error_handler=index)
def save_movie(self, *args, **kw):
 return str(kw)

Now every submission to /save_movie url will be validated against
the MovieForm and if it doesn’t pass validation will be redirected
to the index method where the form will display an error for each field
not passing validation.

More about TurboGears support for validation is available inside the
TurboGears Validation page.

Validating Compound Fields

Suppose that you are afraid that people might enter a wrong director name
for your movies. The most simple solution would be to require them to
enter the name two times to be sure that it is actually the correct one.

How can we enforce people to enter two times the same name inside our form?
Apart from fields, ToscaWidgets permits to set validators to forms.
Those can be used to validate form fields together instead of one by one.
To check that our two directors equals we will use the
formencode.validators.FieldsMatch validator:

import tw2.core as twc
import tw2.forms as twf
from formencode.validators import FieldsMatch

class MovieForm(twf.Form):
 class child(twf.TableLayout):
 title = twf.TextField(validator=twc.Required)
 director = twf.TextField(value="Default Director", validator=twc.Required)
 director_verify = twf.TextField()
 genres = twf.CheckBoxList(options=['Action', 'Comedy', 'Romance', 'Sci-fi'])

 action = '/save_movie'
 validator = FieldsMatch('director', 'director_verify')

Nothing else of our code needs to be changed, our /save_movie controller
already has validation for the MovieForm and when the form is submitted
after checking that there is a title and director will also check that
both director and director_verify fields equals.

Relocatable Widget Actions

Whenever you run your application on a mount point which is not the root of
the domain name your actions will have to poin to the right path inside the
mount point.

In TurboGears2 this is usually achieved using the tg.url function which
checks the SCRIPT_NAME inside the request environment to see where
the application is mounted. The issue with widget actions is that widgets
actions are globally declared and tg.url cannot be called outside of
a request.

Calling tg.url while declaring a form and its action will cause a crash
to avoid this TurboGears provides a lazy version of the url method which
is evaluated only when the widget is displayed (tg.lurl):

from tg import lurl

class MovieForm(twf.Form):
 class child(twf.TableLayout):
 title = twf.TextField(validator=twc.Required)
 director = twf.TextField(value="Default Director", validator=twc.Required)
 genres = twf.CheckBoxList(options=['Action', 'Comedy', 'Romance', 'Sci-fi'])

 action = lurl('/save_movie')

Using tg.lurl the form action will be correctly written depending on
where the application is mounted.

Please pay attention that usually when registering resources on ToscaWidgets (both
tw1 and tw2) it won’t be necessary to call neither tg.url or tg.lurl as
all the Link subclasses like JSLink, CSSLink and so on will already
serve the resource using the application mount point.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	TurboGears2 CookBook

DataGrid Tutorial

DataGrid is a quick way to present data in tabular form.

The columns to put inside the table are specified with the fields constructor argument in a list.
Each entry of the list can be an accessor (attribute name or function), a tuple (title, accessor) or a tw2.forms.datagrid.Column instance.

Preparing Application

This tutorial will show an addressbook with a set of people each with a name, surname and phone number.
Model used will be:

from sqlalchemy import Table, ForeignKey, Column
from sqlalchemy.types import Unicode, Integer, DateTime

class Person(DeclarativeBase):
 __tablename__ = 'person'

 uid = Column(Integer, autoincrement=True, primary_key=True)
 name = Column(Unicode(255))
 surname = Column(Unicode(255))
 phone = Column(Unicode(64))

and we will populate with this data:

for i in [['John', 'Doe', '3413122314'],
 ['Lucas', 'Darkstone', '378321322'],
 ['Dorian', 'Gray', '31337433'],
 ['Whatever', 'Person', '3294432321'],
 ['Aaliyah', 'Byron', '676763432'],
 ['Caesar', 'Ezra', '9943243243'],
 ['Fahd', 'Gwyneth', '322313232'],
 ['Last', 'Guy', '23132321']]:
 DBSession.add(Person(name=i[0], surname=i[1], phone=i[2]))

Basic DataGrid

With a model and some data set up, we can now start declaring our DataGrid and the fields it has to show:

from tw2.forms import DataGrid

addressbook_grid = DataGrid(fields=[
 ('Name', 'name'),
 ('Surname', 'surname'),
 ('Phone', 'phone')
])

After declaring the grid itself we will need to fetch the data to show inside the grid from our controller.
For this example we will do it inside the RootController.index method:

@expose('dgridt.templates.index')
def index(self):
 data = DBSession.query(Person)
 return dict(page='index', grid=addressbook_grid, data=data)

Now the grid can be displayed in the template like this:

Template code necessary to show the grid in templates/index.html:

<div>${grid(value=data)}</div>

Paginating DataGrid

Now that the grid can be displayed next probable improvement would be to paginate it.
Displaying 10 results is fine, but when results start to grow it might cause performance problems and make results harder to view.

The same things explained in the Pagination in TurboGears tutorial apply here.
First of all it is needed to adapt the controller method to support pagination:

from tg.decorators import paginate

@expose('dgridt.templates.index')
@paginate("data", items_per_page=3)
def index(self):
 data = DBSession.query(Person)
 return dict(page='index', grid=addressbook_grid, data=data)

If you run the application now you will see only 3 results as they get paginated three by three and we are still missing a way to change page.
What is needed now is a way to switch pages and this can be easilly done as the paginate decorator adds to the template context a paginators variable
where all the paginators currently available are gathered. Rendering the “data” paginator somewhere inside the template is simply enough to have
a working pagination for our datagrid.

Template in templates/index.html would become:

<div>${grid(value=data)}</div>
<div>${tmpl_context.paginators.data.pager()}</div>

Now the page should render with both the datagrid and the pages under the grid itself, making possible to switch between the pages.

Sorting Columns

DataGrid itself does not provide a way to implement columns sorting, but it can be easilly achieved by inheriting
from tw2.forms.datagrid.Column to add a link that can provide sorting.

First of all we need to declare or SortableColumn class that will return the link with the sorting request as the title for our DataGrid:

from sqlalchemy import asc, desc
from tw2.forms.datagrid import Column
import genshi

class SortableColumn(Column):
 def __init__(self, title, name):
 super(SortableColumn, self).__init__(name)
 self._title_ = title

 def set_title(self, title):
 self._title_ = title

 def get_title(self):
 current_ordering = request.GET.get('ordercol')
 if current_ordering and current_ordering[1:] == self.name:
 current_ordering = '-' if current_ordering[0] == '+' else '+'
 else:
 current_ordering = '+'
 current_ordering += self.name

 new_params = dict(request.GET)
 new_params['ordercol'] = current_ordering

 new_url = url(request.path_url, params=new_params)
 return genshi.Markup('%(title)s' % dict(page_url=new_url, title=self._title_))

 title = property(get_title, set_title)

It is also needed to tell to the DataGrid that it has to use the SortableColumn for its fields:

addressbook_grid = DataGrid(fields=[
 SortableColumn('Name', 'name'),
 SortableColumn('Surname', 'surname'),
 SortableColumn('Phone', 'phone')
])

Now if we reload the page we should see the clickable links inside the headers of the table, but if we click one the application
will crash because of an unexpected argument. We are now passing the ordercol argument to our constructor to tell it
for which column we want the data to be ordered and with which ordering.

To handle the new parameter the controller must be modified to accept it and perform the ordering:

@expose('dgridt.templates.index')
@paginate("data", items_per_page=3)
def index(self, *args, **kw):
 data = DBSession.query(Person)
 ordering = kw.get('ordercol')
 if ordering and ordering[0] == '+':
 data = data.order_by(asc(ordering[1:]))
 elif ordering and ordering[0] == '-':
 data = data.order_by(desc(ordering[1:]))
 return dict(page='index', grid=addressbook_grid, data=data)

Now the ordering should work and clicking two times on a column should invert the ordering.

Edit Column Button

DataGrid also permits to pass functions in the fields parameter to build the row content. This makes possible for example to add
and Actions column where to put an edit button to edit the entry on the row.

To perform this it is just required to add another field with the name and the function that will return the edit link.
In this example addressbook_grid would become:

addressbook_grid = DataGrid(fields=[
 SortableColumn('Name', 'name'),
 SortableColumn('Surname', 'surname'),
 SortableColumn('Phone', 'phone'),
 ('Action', lambda obj:genshi.Markup('Edit' % url('/edit', params=dict(item_id=obj.uid))))
])

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	TurboGears2 CookBook

TurboGears Automatic CRUD Generation

Overview

This is a simple extension that provides a basic controller class that
can be extended to meet the needs of the developer. The intention is
to provide a fast path to data management by allowing the user to
define forms and override the data interaction with custom
manipulations once the view logic is in place. The name of this
extensible class is CrudRestController.

What is CRUD?

CRUD is a set of functions to manipulate the data in a database:
create, read, update, delete.

Um, REST?

REST is a methodology for mapping resource manipulation to meaningful
URL. For instance if we wanted to edit a user with the ID 3, the URL
might look like: /users/3/edit. For a brief discussion on REST, take
a look at the microformats entry [http://microformats.org/wiki/rest/urls].

Before We Get Started

Here is the model definition we will be using for this tutorial:

from sqlalchemy import Column, Integer, String, Date, Text, ForeignKey
from sqlalchemy.orm import relation

from moviedemo.model import DeclarativeBase

class Genre(DeclarativeBase):
 __tablename__ = "genres"
 genre_id = Column(Integer, primary_key=True)
 name = Column(String(100))

class Movie(DeclarativeBase):
 __tablename__ = "movies"
 movie_id = Column(Integer, primary_key=True)
 title = Column(String(100), nullable=False)
 description = Column(Text, nullable=True)
 genre_id = Column(Integer, ForeignKey('genres.genre_id'))
 genre = relation('Genre', backref='movies')
 release_date = Column(Date, nullable=True)

EasyCrudRestController

The first thing we want to do is instantiate a EasyCrudRestController.
We import the controller from the extension, and then provide it with a
model class that it will use for its data manipulation. For this
example we will utilize the Movie class.:

from tgext.crud import EasyCrudRestController
from moviedemo.model import DBSession, Movie

class MovieController(EasyCrudRestController):
 model = Movie

class RootController(BaseController):
 movies = MovieController(DBSession)

That will provide a simple and working CRUD controller already configured
with some simple views to list, create, edit and delete objects of
type Movie.

Customizing EasyCrudRestController

The EasyCrudRestController provides some quick customization tools.
Having been thought to quickly prototype parts of your web applications
the EasyCrudRestController permits both to tune forms options and to
add utility methods on the fly:

class MovieController(EasyCrudRestController):
 model = Movie

 title = "My admin title"

 __form_options__ = {
 '__hide_fields__':['movie_id'],
 '__field_order__':['title', 'description'],
 '__field_widget_types__':{'description':TextArea}
 }

 __table_options__ = { # see Sprox TableBase and Sprox TableFiller
 '__limit_fields__': ['title', 'desc'],
 '__add_fields__': {'computed': None},
 'computed': lambda filler, row: row.some_field * 2
 }

 __setters__ = {
 'release':('release_date', datetime.datetime.utcnow)
 }

The title option provides a way to customize the title displayed in the titlebar
of your browser.

The __form_options__ dictionary will permit to tune the forms configuration.
The specified options will be applied to both the form used to create new entities
and to edit the existing ones.
To have a look at the available options refer to
Sprox FormBase [http://sprox.org/modules/sprox.formbase.html#module-sprox.formbase]

The __table_options__ dictionary will permit to tune the forms configuration.
To have a look at the available options refer to
Sprox TableBase [http://sprox.org/modules/sprox.tablebase.html#sprox.tablebase.TableBase],
Sprox TableFiller [http://sprox.org/modules/sprox.fillerbase.html?highlight=tablefiller#sprox.fillerbase.TableFiller],
and their parents as well.

The __setters__ option provides a way to add new simple methods on the fly
to the controller. The key of the provided dictionary is the name of the method, while
the value is a tuple where the first argument is the attribute of the object
that has to be changed. The second argument is the value that has to be set, if the
second argument is a callable it will be called passing the object to edit as the
argument.

In the previous example calling http://localhost:8080/movies/5/release will mark
the movie 5 as released today.

Enabling SubString Searches

The CrudRestController provides ready to use search function, when opening
the controller index you will see a list of entries and a search box.

By default the search box looks for perfect matches, this is often not the case
especially if you are looking in long text entries that the user might not remember,
this behavior can be changed by using the substring_filters option.

You can enable substring searches for all the text fields by setting it to True:

class MovieController(EasyCrudRestController):
 model = Movie
 substring_filters = True

 __table_options__ = {
 '__omit_fields__':['movie_id'],
 }

This will permit to search for text inside our movies title and descriptions.
If you want to restrict substring searches to only some fields you can specify them
explicitly:

class MovieController(EasyCrudRestController):
 model = Movie
 substring_filters = ['description']

 __table_options__ = {
 '__omit_fields__':['movie_id'],
 }

Remembering Previous Values

The default behavior of the CrudRestController is to set fields to the submitted
value, if the user submits an empty value the object property gets emptied,
there are cases where you might prefer it to keep the previous value when an empty one
is provided. This behavior can be enabled using the remember_values option.

This is specially the case with images, you usually prefer to keep the previous image
if a new one is not provided instead of deleting it at all.

Suppose we have a Photo model which has an image field using tgext.datahelpers
AttachedImage to provide an image field (pease refer to
tgext.datahelpers documentation [https://pypi.python.org/pypi/tgext.datahelpers#image-attachments-with-thumbnail]
for more details). By default each time the user submits the edit form without specifying a
new image we would lose our previous image, to avoid this behavior and just keep our previous
image when none is specified we can use the remember_values option:

class PhotoManageController(EasyCrudRestController):
 model = Photo
 remember_values = ['image']

 __table_options__ = {
 '__omit_fields__':['uid'],
 '__xml_fields__' : ['image'],

 'image': lambda filler,row: Markup('' % row.image.thumb_url) if row.image else ''
 }

 __form_options__ = {
 '__field_widget_types__':{'image':FileField},
 '__field_validator_types__' : {'image':FieldStorageUploadConverter},
 '__field_widget_args__': {'image':{'label':'Photo PNG (640x280)'}},
 '__hide_fields__':['uid']
 }

Customizing Pagination

The CrudRestController provides pagination support, by default this is enabled
and provides 7 entries per page.

To tune pagination you can set the pagination set of options. To change
the number of entries displayed you can set pagination['items_per_page'].

To display 20 items per page you can for example use:

class MovieController(EasyCrudRestController):
 model = Movie
 pagination = {'items_per_page': 20}

To totally disable pagination just set the pagination option to False:

class MovieController(EasyCrudRestController):
 model = Movie
 pagination = False

Custom CrudRestController

The EasyCrudRestController provides a preconfigured CrudRestController
but often you will need to deeply customize it for your needs. To do that
we can start over with a clean controller and start customizing it:

from tgext.crud import CrudRestController
from moviedemo.model import DBSession, Movie

class MovieController(CrudRestController):
 model = Movie

class RootController(BaseController):
 movies = MovieController(DBSession)

Well that won’t actually get you anywhere, in fact, it will do nothing
at all. We need to provide CrudRestController with a set of widgets
and datafillers so that it knows how to handle your REST requests.
First, lets get all of the Movies to display in a table.

Sprox

Sprox [http://sprox.org] is a library that can help you to generate
forms and filler data. It utilizes metadata extracted from the
database definitions to provide things like form fields, drop downs,
and column header data for view widgets. Sprox is also customizable,
so we can go in and modify the way we want our data displayed once we
get going with it. Here we define a table widget using Sprox’s
sprox.tablebase.TableBase class for our movie table.:

from sprox.tablebase import TableBase

class MovieTable(TableBase):
 __model__ = Movie
 __omit_fields__ = ['genre_id']
movie_table = MovieTable(DBSession)

Filling Our Table With Data

So, now we have our movie_table, but it’s not going to do us much good
without data to fill it. Sprox provides a
sprox.fillerbase.TableFiller class which will retrieve the
relevant data from the database and package it in a dictionary for
consumption. This is useful if you are creating JSON. Basically,
you can provide CrudRestController with any object that has a
get_value function and it will work because of duck typing. Just make
certain that your get_value function returns the right data type for
the widget you are filling. Here is what the filler would look like
instantiated.:

from sprox.fillerbase import TableFiller

class MovieTableFiller(TableFiller):
 __model__ = Movie
movie_table_filler = MovieTableFiller(DBSession)

Putting It All Together

Let’s modify our CrudRestController to utilize our new table. The new
RootController would look like this:

from tgext.crud import CrudRestController
from moviedemo.model import DBSession, Movie
from sprox.tablebase import TableBase
from sprox.fillerbase import TableFiller

class MovieTable(TableBase):
 __model__ = Movie
movie_table = MovieTable(DBSession)

class MovieTableFiller(TableFiller):
 __model__ = Movie
movie_table_filler = MovieTableFiller(DBSession)

class MovieController(CrudRestController):
 model = Movie
 table = movie_table
 table_filler = movie_table_filler

class RootController(BaseController):
 movie = MovieController(DBSession)

You can now visit /movies/ and it will display a list of movies.

Forms

One of the nice thing about Sprox table definitions is that they
provide you with a set of RESTful links. CrudRestController provides
methods for these pages, but you must provide the widgets for the
forms. Specifically, we are talking about the edit and new forms.
Here is one way you might create a form to add a new record to the
database using sprox.formbase.AddRecordForm:

class MovieAddForm(AddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['genre_id', 'movie_id']
movie_add_form = MovieAddForm(DBSession)

Adding this to your movie controller would look make it now look
something like this:

class MovieController(CrudRestController):
 model = Movie
 table = movie_table
 table_filler = movie_table_filler
 new_form = movie_add_form

You can now visit /movies/new.

Edit Form

Now we just need to map a form to the edit function so that we can
close the loop on our controller. The reason we need separate forms
for Add and Edit is due to validation. Sprox will check the database
for uniqueness on a “new” form. On an edit form, this is not required
since we are updating, not creating.:

from sprox.formbase import EditableForm

class MovieEditForm(EditableForm):
 __model__ = Movie
 __omit_fields__ = ['genre_id', 'movie_id']
movie_edit_form = MovieEditForm(DBSession)

The biggest difference between this form and that of the “new” form is
that we have to get data from the database to fill in the form. Here
is how we use sprox.formbase.EditFormFiller to do that:

from sprox.fillerbase import EditFormFiller

class MovieEditFiller(EditFormFiller):
 __model__ = Movie
movie_edit_filler = MovieEditFiller(DBSession)

Now it is a simple as adding our filler and form definitions to the
MovieController and close the loop on our presentation.

Declarative

If you are interested in brevity, the crud controller may be created
in a more declarative manner like this:

from tgext.crud import CrudRestController
from sprox.tablebase import TableBase
from sprox.formbase import EditableForm, AddRecordForm
from sprox.fillerbase import TableFiller, EditFormFiller

class DeclarativeMovieController(CrudRestController):
 model = Movie

 class new_form_type(AddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['genre_id', 'movie_id']

 class edit_form_type(EditableForm):
 __model__ = Movie
 __omit_fields__ = ['genre_id', 'movie_id']

 class edit_filler_type(EditFormFiller):
 __model__ = Movie

 class table_type(TableBase):
 __model__ = Movie
 __omit_fields__ = ['genre_id', 'movie_id']

 class table_filler_type(TableFiller):
 __model__ = Movie

Options reference

The tgext.crud.CrudRestController and tgext.crud.EasyCrudRestController
provide a bunch of configuration options that can be changed by subclassing
the controller and providing them in a declarative way:

	
class tgext.crud.CrudRestController(session, menu_items=None)

	

	Initialization options:

		
	session

	database session

	menu_items

	Dictionary or mapping type of links to other CRUD sections.
This is used to generate the links sidebar of the CRUD interface.
Can be specified in the form model_items['lower_model_name'] = ModelClass or
model_items['link'] = 'Name'.

	Class attributes:

		
	title

	Title to be used for each page. default: 'Turbogears Admin System'

	model

	Model this class is associated with.

	remember_values

	List of model attributes that need to keep previous value when not provided
on submission instead of replacing the existing value with an empty one.
It’s commonly used with file fields to avoid having to reupload the file
again when the model is edited.

	keep_params

	List of URL parameters that need to be kept around when redirecting between
the various pages of the CRUD controller. Can be used to keep around filters
or sorting when editing a subset of the models.

	search_fields

	Enables searching on some fields, can be True, False or a list
of fields for which searching should be enabled.

	substring_filters

	Enable substring filtering for some fields, by default is disabled.
Pass True to enable it on all fields or pass a list of field
names to enable it only on some fields.

	json_dictify

	True or False, enables advanced dictification of retrieved models
when providing JSON responses. This also enables JSON encoding of related entities
for the returned model.

	conditional_update_field

	Name of the field used to perform conditional updates when PUT method is
used as a REST API. None disables conditional updates (which is the default).

	pagination

	Dictionary of options for pagination. False disables pagination.
By default {'items_per_page': 7} is provided.
Currently the only supported option is items_per_page.

	response_type

	Limit response to a single format, can be: ‘application/json’ or ‘text/html’.
By default tgext.crud will detect expected response from Accept header and
will provide response content according to the expected one. If you want
to avoid HTML access to a plain JSON API you can use this option to limit
valid responses to application/json.

	resources

	A list of CSSSource / JSSource that have to be injected inside CRUD
pages when rendering. By default tgext.crud.resources.crud_style and
tgext.crud.resources.crud_script are injected.

	table

	The sprox.tablebase.TableBase Widget instance used to display the table.
By default tgext.crud.utils.SortableTableBase is used which permits to sort
table by columns.

	table_filler

	The sprox.fillerbase.TableFiller instance used to retrieve data for the table.
If you want to customize how data is retrieved override the
TableFiller._do_get_provider_count_and_objs method to return different entities and count.
By default tgext.crud.utils.RequestLocalTableFiller is used which keeps
track of the numer of entities retrieved during the current request to enable pagination.

	edit_form

	Form to be used for editing an existing model.
By default sprox.formbase.EditForm is used.

	edit_filler

	sprox.fillerbase.RecordFiller subclass used to load the values for
an entity that need to be edited. Override the RecordFiller.get_value
method to provide custom values.

	new_form

	Form that defines how to create a new model.
By default sprox.formbase.AddRecordForm is used.

Customizing Crud Operations

We have really been focusing on the View portion of our controller.
This is because CrudRestController performs all of the applicable
creates, updates, and deletes on your target object for you. This
default functionality is provided by
sprox.saormprovider.SAORMProvider. This can of course be
overridden.

Overriding Crud Operations

CrudRestController extends RestController, which means that any
methods available through RestController are also available to CRC.

	Method
	Description
	Example Method(s) / URL(s)

	get_all
	Display the table widget and its data
	GET /movies/

	new
	Display new_form
	GET /movies/new

	edit
	Display edit_form and the containing record’s data
	GET /movies/1/edit

	post
	Create a new record
	POST /movies/

	put
	Update an existing record
	POST /movies/1?_method=PUT

	PUT /movies/1

	post_delete
	Delete an existing record
	POST /movies/1?_method=DELETE

	DELETE /movies/1

	get_delete
	Delete Confirmation page
	Get /movies/1/delete

If you are familiar with RestController you may notice that get_one is
missing. There are plans to add this functionality in the near
future. Also, you may note the ?_method on some of the URLs. This is
basically a hack because existing browsers do not support the PUT and
DELETE methods. Just note that if you decide to incorporate a TW in
your edit_form description you must provide a
HiddenField('_method') in the definition.

Adding Functionality

REST provides consistency across Controller classes and makes it easy
to override the functionality of a given RESTful method. For
instance, you may want to get an email any time someone adds a movie.
Here is what your new controller code would look like:

class MovieController(CrudRestController):

 # (...)

 @expose(inherit=True)
 def post(self, **kw):
 email_info()
 return super(MovieController, self).post(**kw)

You might notice that the function has the @expose decorator. This is
required because the expose decoration occurs at the class-level, so
that means that when you override the class method, the expose is
eliminated. We add it back to the method by adding @expose with the
inherit parameter to inherit the behavior from the parent method.

For more details you can refer to the
TGController Subclassing documentation.

Overriding Templates

To override the template for a given method, you would simple
re-define that method, providing an expose to your own template, while
simply returning the value of the super class’s method.:

class MovieController(CrudRestController):

 # (...)

 @expose('movie_demo.templates.my_get_all_template', inherit=True)
 def get_all(self, *args, **kw):
 return super(MovieController, self).get_all(*args, **kw)

Removing Functionality

You can also block-out capabilities of the RestController you do not
wish implemented. Simply define the function that you want to block,
but do not expose it. Here is how we “delete” the delete
functionality.:

class MovieController(CrudRestController):

 # (...)

 def post_delete(self, *args, **kw):
 """This is not allowed."""
 pass

Menu Items

The default templates for tgext.crud make it very easy to add a
menu with links to other resources. Simply provide a dictionary of
names and their representing model classes and it will display these
links on the left hand side. Here is how you would provide links for
your entire model.:

import inspect
from sqlalchemy.orm import class_mapper

models = {}
for m in dir(model):
 m = getattr(model, m)
 if not inspect.isclass(m):
 continue
 try:
 mapper = class_mapper(m)
 models[m.__name__.lower()] = m
 except:
 pass

class RootController(BaseController):
 movie = MovieController(DBSession, menu_items=models)

Customizing The Admin

The TurboGears admin is what you get when you access the
/admin url in a newly quickstarted project.

By default the admin will provide autogenerated access to all the models
imported in your project models/__init__.py. Both the accessible
objects and how to interact with them can be configured using the TGAdminConfig
class.

Restricting Access to some Models

Restricting access to some models is possible by specifying them explicitly
instead of passing model as the first argument to the AdminController:

from tgext.admin import AdminController
from myproject.model import User, Group, DBSession

class RootController(BaseController):
 admin = AdminController([User, Group], DBSession)

Customizing Admin CRUD

The admin page can be configured using the TGAdminConfig class,
supposing we have a game with running Match and a list of Settings
we can declared MatchAdminController and SettingAdminController
which inherit from EasyCrudRestController and tell TurboGears
Admin to use them for the administration of matches and settings:

class GameAdminConfig(TGAdminConfig):
 class match(CrudRestControllerConfig):
 defaultCrudRestController = MatchAdminController
 class setting(CrudRestControllerConfig):
 defaultCrudRestController = SettingAdminController

class RootController(BaseController):
 admin = AdminController([model.Match, model.Setting], DBSession, config_type=GameAdminConfig)

This will create an administration controller which uses our custom CrudRestControllers
to manage Match and Settings instances.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	TurboGears2 CookBook

SQLAlchemy Master Slave Load Balancing

Since version 2.2 TurboGears has basic support for Master/Slave load balancing
and provides a set of utilities to use it.

TurboGears permits to declare a master server and any number of slave servers, all the
writes will automatically redirected to the master node, while the other calls will
be dispatched randomly to the slave nodes.

All the queries executed outside of TurboGears controllers will run only on the
master node, those include the queries performed by the authentication stack to
initially look up an already logged in user, its groups and permissions.

Enabling Master Slave Balancing

To enable Master Slave load Balancing you just need to edit your model/__init__.py
making the sessionmaker use the TurboGears BalancedSession:

from tg.configuration.sqla.balanced_session import BalancedSession

maker = sessionmaker(autoflush=True, autocommit=False,
 class_=BalancedSession,
 extension=ZopeTransactionExtension())

Doing this by itself will suffice to make load balancing work, but still
as there is only the standard database configuration the BalancedSession
will just be redirecting all the queries to the only available serve.

Configuring Balanced Nodes

To let load balancing work we must specify at least a master and slave server
inside our application configuration. The master server can be specified
using the sqlalchemy.master set of options, while any number of slaves
can be configured using the sqlalchemy.slaves options:

sqlalchemy.master.url = mysql://username:password@masterhost:port/databasename
sqlalchemy.master.pool_recycle = 3600

sqlalchemy.slaves.slave1.url = mysql://username:password@slavehost:port/databasename
sqlalchemy.slaves.slave1.pool_recycle = 3600

The master node can be configured also to be a slave, this is usually the
case when we want the master to also handle some read queries.

Driving the balancer

TurboGears provides a set of utilities to let you change the default behavior
of the load balancer. Those include the @with_engine(engine_name) decorator
and the DBSession().using_engine(engine_name) context.

The with_engine decorator

The with_engine decorator permits to force a controller method to
run on a specific node. It is a great tool for ensuring that some
actions take place on the master node, like controllers that edit
content.

from tg import with_engine

@expose('myproj.templates.about')
@with_engine('master')
def about(self):
 DBSession.query(model.User).all()
 return dict(page='about')

The previous query will be executed on the master node, if the @with_engine
decorator is removed it will get execute on any random slave.

The with_engine decorator can also be used to force turbogears
to use the master node when some parameters are passed by url:

@expose('myproj.templates.index')
@with_engine(master_params=['m'])
def index(self):
 DBSession.query(model.User).all()
 return dict(page='index')

In this case calling http://localhost:8080/index will result in queries
performed on a slave node, while calling http://localhost:8080/index?m=1 will
force the queries to be executed on the master node.

Pay attention that the m=1 parameter can actually have any value, it just
has to be there. This is especially useful when redirecting after an action
that just created a new item to a page that has to show the new item. Using
a parameter specified in master_params we can force TurboGears to fetch
the items from the master node so to avoid odd results due to data propagation
delay.

Keeping master_params around

By default parameters specified in with_engine master_params will be
popped from the controller params. This is to avoid messing with validators
or controller code that doesn’t expect the parameter to exist.

If the controller actually needs to access the parameter a dictionary can be
passed to @with_engine instead of a list. The dictionary keys will be
the parameters, while the value will be if to pop it from the
parameters or not.

@expose('myproj.templates.index')
@with_engine(master_params={'m':False})
def index(self, m=None):
 DBSession.query(model.User).all()
 return dict(page='index', m=m)

Forcing Single Queries on a node

Single queries can be forced to execute on a specific node using the
using_engine method of the BalancedSession. This method
returns a context manager, until queries are executed inside this
context they are run on the constrained engine:

with DBSession().using_engine('master'):
 DBSession.query(model.User).all()
 DBSession.query(model.Permission).all()
DBSession.query(model.Group).all()

In the previous example the Users and the Permissions will be
fetched from the master node, while the Groups will be fetched
from a random slave node.

Debugging Balancing

Setting the root logger of your application to DEBUG will let
you see which node has been choose by the BalancedSession
to perform a specific query.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	TurboGears2 CookBook

Deploying TurboGears

This section describes standard deployment technics for TurboGears2.

	Running a TurboGears under Apache with mod_wsgi

	Running a TurboGears under Circus and Chaussette

	Running a TurboGears under Heroku
	Step 0: Install heroku

	Step 1: Add files needed for heroku

	Step 2: Editing Configuration File

	Step 3: Starting the application

	Step 4: Setup git repo and heroku app

	Step 5: Initialize the heroku stack

	Step 6: Deploy

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	TurboGears2 CookBook

 	Deploying TurboGears

Running a TurboGears under Apache with mod_wsgi

mod_wsgi is an Apache module developed by Graham Dumpleton.
It allows WSGI programs to be served using the Apache web
server.

This guide will outline broad steps that can be used to get a TurboGears
application running under Apache via mod_wsgi.

	The tutorial assumes you have Apache already installed on your
system. If you do not, install Apache 2.X for your platform in
whatever manner makes sense.

	Once you have Apache installed, install mod_wsgi. Use the
(excellent) installation instructions [http://code.google.com/p/modwsgi/wiki/InstallationInstructions]
for your platform into your system’s Apache installation.

	Create a virtualenvironment with the specific TurboGears version
your application depends on installed.

$ virtualenv /var/tg2env
$ /var/tg2env/bin/pip install tg.devtools

	Activate the virtualenvironment

$ source /var/tg2env/bin/activate
(tg2env)$ #virtualenv now activated

	Install your TurboGears application.

(tg2env)$ cd /var/www/myapp
(tg2env)$ python setup.py develop

	Within the application director, create a
script named app.wsgi. Give it these contents:

APP_CONFIG = "/var/www/myapp/myapp/production.ini"

#Setup logging
import logging
logging.config.fileConfig(APP_CONFIG)

#Load the application
from paste.deploy import loadapp
application = loadapp('config:%s' % APP_CONFIG)

	Edit your Apache configuration and add some stuff.

<VirtualHost *:80>
 ServerName www.site1.com

 WSGIProcessGroup www.site1.com
 WSGIDaemonProcess www.site1.com user=www-data group=www-data threads=4 python-path=/var/tg2env/lib/python2.7/site-packages
 WSGIScriptAlias / /var/www/myapp/app.wsgi

 #Serve static files directly without TurboGears
 Alias /images /var/www/myapp/myapp/public/images
 Alias /css /var/www/myapp/myapp/public/css
 Alias /js /var/www/myapp/myapp/public/js

 CustomLog logs/www.site1.com-access_log common
 ErrorLog logs/www.site1.com-error_log
</VirtualHost>

	Restart Apache

$ sudo apache2ctl restart

	Visit http://www.site1.com/ in a browser to access the application.

See the mod_wsgi configuration documentation [http://code.google.com/p/modwsgi/wiki/ConfigurationGuidelines] for
more in-depth configuration information.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	TurboGears2 CookBook

 	Deploying TurboGears

Running a TurboGears under Circus and Chaussette

Circus is a process & socket manager.
It can be used to monitor and control processes and sockets, when paired
with the Chaussette WSGI server it can became a powerful tool to
deploy your application and manage any related process your applications needs.

Circus can take care of starting your memcached, redis, database server or
batch process with your application itself providing a single point where
to configure the full application environment.

This guide will outline broad steps that can be used to get a TurboGears
application running under Chaussette through Circus.

	The tutorial assumes you have Circus already installed on your system.
If you do not, install it in whatever manner makes sense for your environment.

A possible way is by performing:

$ pip install circus

	Create a virtual environment with the specific TurboGears version
your application depends on installed.

$ virtualenv /var/tg2env
$ /var/tg2env/bin/pip install tg.devtools

	Activate the virtual environment

$ source /var/tg2env/bin/activate
(tg2env)$ #virtualenv now activated

	Once you have the environment enabled you will need to install the Chaussette
WSGI Server:

(tg2env)$ pip install chaussette

	Chaussette supports many backends to serve the requests. The default one is based on
wsgiref, which is not really fast.
Have a look at the Chaussette Documentation [http://chaussette.readthedocs.org/en/latest/]
for the available backends: waitress, gevent, meinheld and many more are supported.

For this tutorial we are going to use Waitress, which is a multithreaded WSGI server,
so we need to install it inside virtual environment:

(tg2env)$ pip install waitress

	Now the environment is ready for deploy, you just need to install the TurboGears application.

(tg2env)$ cd /var/www/myapp
(tg2env)$ python setup.py develop

	We now create a circus configuration file with the informations required to load
and start your application. This can be performed using the gearbox deploy-circus
command from gearbox-tools [http://pypi.python.org/pypi/gearbox-tools] package or by manually writing it:

[circus]
check_delay = 5
endpoint = tcp://127.0.0.1:5555
debug = true

[env:myapp]
PATH=/var/tg2env/bin:$PATH
VIRTUAL_ENV=/var/tg2env

[watcher:myapp]
working_dir = /var/www/myapp
cmd = chaussette --backend waitress --fd $(circus.sockets.myapp) paste:production.ini
use_sockets = True
warmup_delay = 0
numprocesses = 1

stderr_stream.class = FileStream
stderr_stream.filename = /var/log/circus/myapp.log
stderr_stream.refresh_time = 0.3

stdout_stream.class = FileStream
stdout_stream.filename = /var/log/circus/myapp.log
stdout_stream.refresh_time = 0.3

[socket:myapp]
host = localhost
port = 8080

	Now start circus with the configuration file, after being started it will load
your application:

$ circusd circus.ini

2013-02-15 18:19:54 [20923] [INFO] Starting master on pid 20923
2013-02-15 18:19:54 [20923] [INFO] sockets started
2013-02-15 18:19:54 [20923] [INFO] myapp started
2013-02-15 18:19:54 [20923] [INFO] Arbiter now waiting for commands

	Visit http://localhost:8080/ in a browser to access the application.
You can now proxy it behind Apache, Nginx or any other web server or even use
the VHostino [https://github.com/amol-/vhostino] project for circus
to serve multiple applications through virtual hosts

See the circus documentation [http://circus.readthedocs.org/en/latest/] for
more in-depth configuration information.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	TurboGears2 CookBook

 	Deploying TurboGears

Running a TurboGears under Heroku

This recipe assumes that you have a TurboGears app setup using a Paste INI file,
inside a package called ‘myapp’. If you are deploying a custom TurboGears application
in minimal mode you might have to tune the following instructions.

Step 0: Install heroku

Install the heroku gem per their instructions [http://devcenter.heroku.com/articles/quickstart].

Step 1: Add files needed for heroku

You will need to add the following files with the contents as shown to the
root of your project directory (the directory containing the setup.py).

requirements.txt:

You can autogenerate this file by running:

$ pip freeze > requirements.txt

You will have probably have a line in your requirements file that has your project name in it.
It might look like either of the following two lines depending on how you setup your project.
If either of these lines exist, delete them.

projectname=0.1dev
 or
-e git+git@xxxx:<git username>/xxxxx.git....#egg=projectname

Now that you have properly frozen your application dependencies it is required to add
the webserver you want to use to actually serve your application requests.

This tutorial uses the Waitress webserver, so we need to add it to the dependencies
declared in the requirements.txt

$ echo "waitress" >> requirements.txt

Step 2: Editing Configuration File

As heroku passes some configuration options in ENVIRON variables, it is necessary
for our application to read them from the Heroku environment. Those are typically
the PORT where your application server has to listen, the URL of your
database and so on...

First of all we need to copy the development.ini to a production.ini file
we are going to use for the heroku deployment:

$ cp development.ini production.ini

The only options you are required to change are the one related to the server.
So your [server:main] section should look like:

[server:main]
use = egg:waitress#main
host = 0.0.0.0
get port = heroku_port

Then probably want to disable the debug inside the [DEFAULT] section.

Note

If you want to use a different server instead of waitress, as gevent,
CherryPy or something else, as far as it is compatible with PasteDeploy
changing the use = egg:waitress#main to whatever you want usually is enough.

Step 3: Starting the application

Procfile:

Generate this by running:

$ echo "web: ./run" > Procfile

run:

Create run with the following:

#!/bin/bash
python setup.py develop
gearbox serve --debug -c production.ini heroku_port=$PORT

Note

Make sure to chmod +x run before continuing.
The ‘develop’ step is necessary because the current package must be
installed before paste can load it from the INI file.

Step 4: Setup git repo and heroku app

Navigate to your project directory (directory with setup.py) if not already there.
If you project is already under git version control, skip to the ‘Initialize the heroku stack’ section.

Inside your projects directory, if this project is not tracked under git it is recommended that you first create a good .gitignore file (you can skip this step). You can get the recommended python one by running:

$ wget -O .gitignore https://raw.github.com/github/gitignore/master/TurboGears2.gitignore

Once that is done, run:

$ git init
$ git add .
$ git commit -m "initial commit"

Step 5: Initialize the heroku stack

$ heroku create

Step 6: Deploy

To deploy a new version, push it to heroku:

$ git push heroku master

Make sure to start one worker:

$ heroku scale web=1

Check to see if your app is running

$ heroku ps

Take a look at the logs to debug any errors if necessary:

$ heroku logs -t

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	TurboGears2 CookBook

Upgrading Your TurboGears Project

From 2.3 to 2.3.1

Projects quickstarted on 2.3 should work out of the box.

AppConfig.register_hook Deprecation

register_hook function in application configuration got deprecated
and replaced by tg.hooks.register and tg.hooks.wrap_controller.

register_hook will continue to work like before, but will be removed in
future versions. Check Hooks Guide and upgrade
to tg.hooks based hooks to avoid issues on register_hook removal.

Exposition and Wrappers now resolved lazily

Due to Configuration Milestones support
controller exposition is now resolved lazily when the configuration
process has setup the renderers.
This enables a smarter exposition able to correctly behave even when controllers
are declared before the application configuration.

Application wrappers dependencies are now solved lazily too, this makes possible
to reorder them before applying the actual wrappers so that the order of
registration doesn’t mapper when a wrapper ordering is specified.

Some methods in AppConfig got renamed

To provide a cleaner distinction between methods users are expected to
subclass to customize the configuration process and methods which
are part of TurboGears setup itself.

Validation error reporting cleanup

TurboGears always provided information on failed validations in a
unorganized manner inside tmpl_context.form_errors and other
locations.

Validation information are now reported in request.validation
dictionary all together. tmpl_context.form_errors and
tmpl_context.form_values are still available but deprecated.

From 2.2 to 2.3

Projects quickstarted on 2.2 should mostly work out of the box.

GearBox replaced PasteScript

Just by installing gearbox itself your TurboGears project will be able to use gearbox system wide
commands like gearbox serve, gearbox setup-app and gearbox makepackage commands.
These commands provide a replacement for the paster serve, paster setup-app and paster create commands.

The main difference with the paster command is usually only that gearbox commands explicitly set the
configuration file using the --config option instead of accepting it positionally. By default gearbox
will always load a configuration file named development.ini, this mean you can simply run gearbox serve
in place of paster serve development.ini

Gearbox HTTP Servers

If you are moving your TurboGears2 project from paster you will probably end serving your
application with Paste HTTP server even if you are using the gearbox serve command.

The reason for this behavior is that gearbox is going to use what is specified inside
the server:main section of your .ini file to serve your application.
TurboGears2 projects quickstarted before 2.3 used Paste and so the projects is probably
configured to use Paste#http as the server. This is not an issue by itself, it will just require
you to have Paste installed to be able to serve the application, to totally remove the Paste
dependency simply replace Paste#http with gearbox#wsgiref.

Enabling GearBox migrate and tgshell commands

To enable gearbox migrate and gearbox tgshell commands make sure that your setup.py entry_points
look like:

entry_points={
 'paste.app_factory': [
 'main = makonoauth.config.middleware:make_app'
],
 'gearbox.plugins': [
 'turbogears-devtools = tg.devtools'
]
}

The paste.app_factory section will let gearbox serve know how to create the application that
has to be served. Gearbox relies on PasteDeploy for application setup, so it required a paste.app_factory
section to be able to correctly load the application.

While the gearbox.plugins section will let gearbox itself know that inside that directory the tg.devtools
commands have to be enabled making gearbox tgshell and gearbox migrate available when we run gearbox
from inside our project directory.

Removing Paste dependency

When performing python setup.py develop you will notice that Paste will be installed.
To remove such dependency you should remove the setup_requires and paster_plugins
entries from your setup.py:

setup_requires=["PasteScript >= 1.7"],
paster_plugins=['PasteScript', 'Pylons', 'TurboGears2', 'tg.devtools']

WebHelpers Dependency

If your project used WebHelpers, the package is not a turbogears dependency anymore,
you should remember to add it to your setup.py dependencies.

Migrations moved from sqlalchemy-migrate to Alembic

Due to sqlalchemy-migrate not supporting SQLAlchemy 0.8 and Python 3, the migrations
for newly quickstarted projects will now rely on Alembic. The migrations are now handled
using gearbox migrate command, which supports the same subcommands as the paster migrate one.

The gearbox sqla-migrate command is also provided for backward compatibility for projects that need
to keep using sqlalchemy-migrate.

Pagination module moved from tg.paginate to tg.support.paginate

The pagination code, which was previously imported from webhelpers, is now embedded in the
TurboGears distribution, but it changed its exact location.
If you are using tg.paginate.Page manually at the moment, you will have to fix your imports to
be tg.support.paginate.Page.

Anyway, you should preferrably use the decorator approach with tg.decorators.paginate -
then your code will be independent of the TurboGears internals.

From 2.1 to 2.2

Projects quickstarted on 2.1 should mostly work out of the box.

Main points of interest when upgrading from 2.1 to 2.2 are related to some features deprecated in 2.1
that now got removed, to the new ToscaWidgets2 support and to the New Authentication layer.

Both ToscaWidgets2 and the new auth layer are disabled by default, so they should not get in
your way unless you explicitly want.

Deprecations now removed

tg.url changed in release 2.1, in 2.0 parameters for the url could be passed as
paremeters for the tg.url function. This continued to work in 2.1 but provided a
DeprecationWarning. Since 2.1 parameters to the url call must be passed in the params
argument as a dictionary. Support for url parameters passed as arguments have been totally
removed in 2.2

use_legacy_renderer option isn’t supported anymore. Legacy renderers (Buffets) got
deprecated in previous versions and are not available anymore in 2.2.

__before__ and __after__ controller methods got deprecated in 2.1 and are not
called anymore, make sure you switched to the new _before and _after methods.

Avoiding ToscaWidgets2

If you want to keep using ToscaWidgets1 simply don’t install ToscaWidgets2 in your enviroment.

If your project has been quickstarted before 2.2 and uses ToscaWidgets1 it can continue to
work that way, by default projects that don’t enable tw2 in any way will continue to use
ToscaWidgets1.

If you install tw2 packages in your environment the admin interface, sprox, crud and all the
functions related to form generation will switch to ToscaWidgets2.
This will force you to enable tw2 wit the use_toscawidgets2 option, otherwise they will
stop working.

So if need to keep using ToscaWidgets1 only, don’t install any tw2 package.

Mixing ToscaWidgets2 and ToscaWidgets1

Mixing the two widgets library is perfectly possible and can be achieved using both the
use_toscawidgets and use_toscawidgets2 options. When ToscaWidgets2 is installed
the admin, sprox and the crud controller will switch to tw2, this will require you to
enable the use_toscawidgets2 option.

If you manually specified any widget inside Sprox forms or CrudRestController
you will have to migrate those to tw2. All the other forms in your application can keep
being ToscaWidgets1 forms and widgets.

Moving to ToscaWidgets2

Switching to tw2 can be achieved by simply placing the prefer_toscawidgets2 option in
your config/app_cfg.py. This will totally disable ToscaWidgets1, being it installed or
not. So all your forms will have to be migrated to ToscaWidgets2.

New Authentication Layer

2.2 release introduced a new authentication layer to support repoze.who v2 and prepare for
moving forward to Python3. When the new authentication layer is not in use, the old one
based on repoze.what, repoze.who v1 and repoze.who-testutil will be used.

As 2.1 applications didn’t explicitly enable the new authentication layer they should
continue to work as before.

Switching to the new Authentication Layer

Switching to the new authentication layer should be quite straightforward for applications
that didn’t customize authentication. The new layer gets enabled only when a
base_config.sa_auth.authmetadata object is present inside your config/app_cfg.py.

To switch a plain project to the new authentication layer simply add those lines to your
app_cfg.py:

from tg.configuration.auth import TGAuthMetadata

#This tells to TurboGears how to retrieve the data for your user
class ApplicationAuthMetadata(TGAuthMetadata):
 def __init__(self, sa_auth):
 self.sa_auth = sa_auth
 def get_user(self, identity, userid):
 return self.sa_auth.dbsession.query(self.sa_auth.user_class).filter_by(user_name=userid).first()
 def get_groups(self, identity, userid):
 return [g.group_name for g in identity['user'].groups]
 def get_permissions(self, identity, userid):
 return [p.permission_name for p in identity['user'].permissions]

base_config.sa_auth.authmetadata = ApplicationAuthMetadata(base_config.sa_auth)

If you customized authentication in any way, you will probably have to port forward all your
customizations, in this case, if things get too complex you can keep remaining on the old
authentication layer, things will continue to work as before.

After enabling the new authentication layer you will have to switch your repoze.what imports
to tg imports:

#from repoze.what import predicates becames
from tg import predicates

All the predicates previously available in repoze.what should continue to be available.
Your project should now be able to upgrade to repoze.who v2, before doing that remember to remove
the following packages which are not in use anymore and might conflict with repoze.who v2:

	repoze.what

	repoze.what.plugins.sql

	repoze.what-pylons

	repoze.what-quickstart

	repoze.who-testutil

The only repoze.who packages you should end up having installed are:

	repoze.who-2.0

	repoze.who.plugins.sa

	repoze.who_friendlyform

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	TurboGears2 CookBook

Streaming Response

Streaming permits to your controller to send data that yet has to be created to the client,
this can be really useful when your app needs to send an huge amount of data to the client,
much more data than you are able to keep in memory.

Streaming can also be useful when you have to send content to the client that yet has to be
generated when you provide an answer to the client keeping an open connection between the
application and the client itself.

In TurboGears2 streaming can be achieved returning a generator from your controllers.

Making your application streaming compliant

So the first thing you want to do when using streaming is disabling any middleware
that edits the content of your response. Since version 2.3 disabling debug mode
is not required anymore.

Most middlewares like debugbar, ToscaWidgets and so on will avoid touching your
response if it is not of text/html content type.
So streaming files or json is usually safe.

Streaming with Generators

Streaming involves returning a generator from your controller, this will let
the generator create the content while being read by client.

@expose(content_type='application/json')
def stream_list(self):
 def output_pause():
 num = 0
 yield '['
 while num < 9:
 num += 1
 yield '%s, ' % num
 time.sleep(1)
 yield '10]'
 return output_pause()

This simple example will slowly stream the numbers from 1 to 10 in a json array.

Accessing TurboGears objects

While streaming content is quite simple some teardown functions get executed
before your streamer, this has the side effect of changing how your application
behaves.

Accessing Request

Since version 2.3 all the global turbogears objects are accessible
while running the generator. So if you need to have access to them,
you can freely read and write to them. Just keep in mind that your
response has already been started, so it is not possible to change
your outgoing response while running the generator.

@expose(content_type='text/css')
def stream(self):
 def output_pause(req):
 num = 0
 while num < 10:
 num += 1
 yield '%s/%s\n' % (tg.request.path_info, num)
 time.sleep(1)
 return output_pause()

This example, while not returning any real css, shows how it is possible
to access the turbogears request inside the generator.

Reading from Database

Since version 2.3 is is possible to read from the database as usual:

@expose(content_type='application/json')
def stream_db(self):
 def output_pause():
 num = 0
 yield '['
 while num < 9:
 u = DBSession.query(model.User).filter_by(user_id=num).first()
 num += 1
 yield u and '%d, ' % u.user_id or 'null, '
 time.sleep(1)
 yield 'null]'
 return output_pause()

Writing to Database

If you need to write data on the database you will have to manually flush the session
and commit the transaction. This is due to the fact that TurboGears2
won’t be able to do it for you as the request flow already ended.

@expose(content_type='application/json')
def stream_list(self):
 def output_pause():
 import transaction
 num = 0
 while num < 9:
 DBSession.add(model.Permission(permission_name='perm_%s'%num))
 yield 'Added Permission\n'
 num += 1
 time.sleep(1)
 DBSession.flush()
 transaction.commit()
 return output_pause()

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	TurboGears2 CookBook

Scheduling Tasks

On Posix systems, using cron is a perfectly valid way to schedule
tasks for your application.

However, it sometimes happen that you need to interact intimately with
the runtime environment of your application, that you need to schedule
jobs dynamically, or that your hosting service does not provide access
to cron. In those cases, you can schedule jobs with the TGScheduler
module.

Installation

TGScheduler is registered on PyPI and therefore can be installed
with easy_install:

$ pip install tgscheduler

Setup

TGScheduler is not started by default. To allow your tasks to run,
simply start the scheduler when your application is loaded. You can
do that in lib/app_globals.py:

import tgscheduler

class Globals(object):
 def __init__(self):
 tgscheduler.start_scheduler()

Scheduling Tasks

To you have four ways to schudule tasks:

	add_interval_task();

	add_monthly_task();

	add_single_task();

	add_weekday_task().

Each of those receive a callable and a time specifier that defines
when to run a function. As an example, if you want to update the
stock prices in your database every 15 minutes, you would do something
like the following:

def update_stocks():
 url = 'http://example.com/stock_prices.xml'
 data = urllib2.urlopen(url).read()
 etree = lxml.etree.fromtsring(data)
 for el in etree.xpath("//stock"):
 price = model.StockPrice(el.get("name"), int(el.get("price")))
 model.DBSession.add(price)

class Globals(object):
 def __init__(self):
 tgscheduler.start_scheduler()
 tgscheduler.add_interval_task(60*15, update_stocks)

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	TurboGears2 CookBook

Using Multiple Databases In TurboGears

	Status:	RoughDoc

Table of Contents

	Using Multiple Databases In TurboGears
	Define your database urls in the [app:main] section of your .ini file(s)

	Change The Way Your App Loads The Database Engines

	Update Your Model’s __init__ To Handle Multiple Sessions And Metadata

	Tell Your Models Which Engine To Use

	Optional: Create And Populate Each Database In Websetup.py

The goal of this tutorial is to configure TurboGears to use multiple
databases. In this tutorial we will simply set up two different
databases engines that will use db session handlers of DBSession and
DBSession2, db metadata names of metadata and metadata2, and
DeclarativeBase objects of DeclarativeBase and DeclarativeBase2.

Define your database urls in the [app:main] section of your .ini file(s)

The first thing you will need to do is edit your .ini file to specify
multiple url options for the sqlalchemy configuration.

In myapp/development.ini (or production.ini, or whatever.ini you are
using), comment out the original sqlalchemy.url assignment and add the
multiple config options:

#sqlalchemy.url = sqlite:///%(here)s/devdata.db
sqlalchemy.first.url = sqlite:///%(here)s/database_1.db
sqlalchemy.second.url = sqlite:///%(here)s/database_2.db

Change The Way Your App Loads The Database Engines

Now we need to instruct the app to load the multiple databases
correctly. This requires telling base_config (in app_cfg.py) to load
our own custom AppConfig with the proper multi-db assignments and a
call to the model’s init_model method (more on that in the next step).

In myapp/config/app_cfg.py:

make sure these imports are added to the top
from tg.configuration import AppConfig, config
from myapp.model import init_model

add this before base_config =
class MultiDBAppConfig(AppConfig):
 def setup_sqlalchemy(self):
 """Setup SQLAlchemy database engine(s)"""
 from sqlalchemy import engine_from_config
 engine1 = engine_from_config(config, 'sqlalchemy.first.')
 engine2 = engine_from_config(config, 'sqlalchemy.second.')
 # engine1 should be assigned to sa_engine as well as your first engine's name
 config['tg.app_globals'].sa_engine = engine1
 config['tg.app_globals'].sa_engine_first = engine1
 config['tg.app_globals'].sa_engine_second = engine2
 # Pass the engines to init_model, to be able to introspect tables
 init_model(engine1, engine2)

#base_config = AppConfig()
base_config = MultiDBAppConfig()

Update Your Model’s __init__ To Handle Multiple Sessions And Metadata

Switching the model’s init from a single-db config to a multi-db
simply means we have to duplicate our DBSession and metata
assignments, and then update the init_model method to assign/configure
each engine correctly.

In myapp/model/__init__.py:

after the first maker/DBSession assignment, add a 2nd one
maker2 = sessionmaker(autoflush=True, autocommit=False,
 extension=ZopeTransactionExtension())
DBSession2 = scoped_session(maker2)

after the first DeclarativeBase assignment, add a 2nd one
DeclarativeBase2 = declarative_base()

uncomment the metadata2 line and assign it to DeclarativeBase2.metadata
metadata2 = DeclarativeBase2.metadata

finally, modify the init_model method to allow both engines to be passed (see previous step)
and assign the sessions and metadata to each engine
def init_model(engine1, engine2):
 """Call me before using any of the tables or classes in the model."""

DBSession.configure(bind=engine)
 DBSession.configure(bind=engine1)
 DBSession2.configure(bind=engine2)

 metadata.bind = engine1
 metadata2.bind = engine2

Tell Your Models Which Engine To Use

Now that the configuration has all been taken care of, you can
instruct your models to inherit from either the first or second
DeclarativeBase depending on which DB engine you want it to use.

For example, in myapp/model/spam.py (uses engine1):

from sqlalchemy import Table, ForeignKey, Column
from sqlalchemy.types import Integer, Unicode, Boolean
from myapp.model import DeclarativeBase

class Spam(DeclarativeBase):
 __tablename__ = 'spam'

 def __init__(self, id, variety):
 self.id = id
 self.variety = variety

 id = Column(Integer, autoincrement=True, primary_key=True)
 variety = Column(Unicode(50), nullable=False)

And then in myapp/model/eggs.py (uses engine2):

from sqlalchemy import Table, ForeignKey, Column
from sqlalchemy.types import Integer, Unicode, Boolean
from myapp.model import DeclarativeBase2

class Eggs(DeclarativeBase2):
 __tablename__ = 'eggs'

 def __init__(self, id, pkg_qty):
 self.id = id
 self.pkg_qty = pkg_qty

 id = Column(Integer, autoincrement=True, primary_key=True)
 pkg_qty = Column(Integer, default=12)

If you needed to use the DBSession here (or in your controllers), you
would use DBSession for the 1st engine and DBSession2 for the 2nd (see
the previous and next sections).

Optional: Create And Populate Each Database In Websetup.py

If you want your setup_app method to populate each database with data,
simply use the appropriate metadata/DBSession objects as you would in
a single-db setup.

In myapp/websetup.py:

def setup_app(command, conf, vars):
 """Place any commands to setup myapp here"""
 load_environment(conf.global_conf, conf.local_conf)
 # Load the models
 from myapp import model
 print "Creating tables for engine1"
 model.metadata.create_all()
 print "Creating tables for engine2"
 model.metadata2.create_all()

 # populate spam table
 spam = [model.Spam(1, u'Classic'), model.Spam(2, u'Golden Honey Grail')]
 # DBSession is bound to the spam table
 model.DBSession.add_all(spam)

 # populate eggs table
 eggs = [model.Eggs(1, 12), model.Eggs(2, 6)]
 # DBSession2 is bound to the eggs table
 model.DBSession2.add_all(eggs)

 model.DBSession.flush()
 model.DBSession2.flush()
 transaction.commit()
 print "Successfully setup"

Todo

Difficulty: Hard. At some point, we should also find a way to document how to
handle Horizontal and Vertical Partitioning [http://www.sqlalchemy.org/docs/05/session.html#partitioning-strategies]
properly, and document that in here, too.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	TurboGears2 CookBook

Autogenerated Forms with Sprox

This is a succinct explanation on how to use sprox’s form rendering
capabilities within TurboGears2. We will assume the reader is somewhat
versed in TurboGears2’s tg.controllers.RestController. Note
that this is the same technology the Turbogears2 admin is based on, so
this knowledge is valuable to understand how to configure the admin
for your purposes.

Establishing the Model Definition

Let us first assume the following model for this demonstration.:

from sqlalchemy import Column, Integer, String, Date, Text, ForeignKey, Table
from sqlalchemy.orm import relation

from moviedemo.model import DeclarativeBase, metadata

movie_directors_table = Table('movie_directors', metadata,
 Column('movie_id', Integer, ForeignKey('movies.movie_id'), primary_key = True),
 Column('director_id', Integer, ForeignKey('directors.director_id'), primary_key = True))

class Genre(DeclarativeBase):
 __tablename__ = "genres"
 genre_id = Column(Integer, primary_key=True)
 name = Column(String(100))
 description = Column(String(200))

class Movie(DeclarativeBase):
 __tablename__ = "movies"
 movie_id = Column(Integer, primary_key=True)
 title = Column(String(100), nullable=False)
 description = Column(Text, nullable=True)
 genre_id = Column(Integer, ForeignKey('genres.genre_id'))
 genre = relation('Genre', backref='movies')
 release_date = Column(Date, nullable=True)

class Director(DeclarativeBase):
 __tablename__ = "directors"
 movie_id = Column(Integer, primary_key=True)
 title = Column(String(100), nullable=False)
 movies = relation(Movie, secondary_join=movie_directors_table, backref="directors")

The Basic Sprox Form

Here is how we create a basic form for adding a new Movie to the database:

class NewMovieForm(AddRecordForm):
 __model__ = Movie
new_movie_form = NewMovieForm(DBSession)

And our controller code would look something like this:

@expose('moviedemo.templates.sproxdemo.movies.new')
def new(self, **kw):
 tmpl_context.widget = new_movie_form
 return dict(value=kw)

You may have noticed that we are passing keywords into the method. This is so that the
values previously typed by the user can be displayed on failed validation.

And finally, our template code:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:py="http://genshi.edgewall.org/"
 xmlns:xi="http://www.w3.org/2001/XInclude">
 <xi:include href="master.html" />
<head/>
<body>
 <div style="height:0px;"> </div>
 <div>
 <div style="float:left width: 80%">
 <h2 style="margin-top:1px;>Create New Movie</h2>
 ${tmpl_context.widget(value=value)}
 </div>
 </div>
</body>
</html>

Which produces a form like this:

[image: ../_images/form_basic.png]

Omitting Fields

Now, we can use the __omit_fields__ modifier to remove the “movie_id” and “genre_id” fields,
as they will be of little use to our users. Our form code now becomes:

class NewMovieForm(AddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['genre_id', 'movie_id']

The rendered form now looks like this:

[image: ../_images/form_omit.png]

Limiting fields

If you have more omitted fields than required fields, you might want to use the __limit_fields__
operator to eliminate the fields you don’t want. The same above form will be rendered with the
following code:

class NewMovieForm(AddRecordForm):
 __model__ = Movie[
 __limit_fields__ = ['title', 'description', 'release_date', 'genre', 'directors']

Field Ordering

If you want the fields displayed in a ordering different from that of the specified schema,
you may use field_ordering to do so. Here is our form with the fields moved around a bit:

class NewMovieForm(AddRecordForm):
__model__ = Movie
 __omit_fields__ = ['movie_id', 'genre_id']
 __field_order__ = ['title', 'description', 'genre', 'directors']

Notice how the release_date field that was not specified was still appended to the end of the form.

[image: ../_images/form_order.png]

Overriding Field Attributes

Sometimes we will want to modify some of the HTML attributes associated with a field. This is as easy
as passing a __field_attrs__ modifier to our form definition. Here is how we could modify the description
to have only 2 rows:

class NewMovieForm(AddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['movie_id', 'genre_id']
 __field_attrs__ = {'description':{'rows':'2'}}

Here is the resultant form:

[image: ../_images/attrs.png]

Overriding a Form Field

Sometimes you want to override a field all together. Sprox allows you to do this by providing
an attribute to your form class declaratively. Simply instantiate your field within the widget
and it will override the widget used for that field. Let’s change the movie title to a password
field just for fun.:

from tw.forms.fields import PasswordField

class NewMovieForm(AddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['movie_id', 'genre_id']
 __field_attrs__ = {'description':{'rows':'2'}}
 title = PasswordField

[image: ../_images/password.png]
You can see now that the title is “starred” out. Note that you may also send an “instance” of
a widget for a field, but you must pass in the fieldname to the widget. This is a limitation
of ToscaWidgets. (You may not change the “id” of a widget after it has been created.):

title = PasswordField('title')

Field Widget Args

Sometimes you want to provide sprox with a class for a field, and have sprox set the arguments
to a widget, but you either want to provide an additional argument, or override one of the arguments
that sprox chooses. For this, pass a dictionary into the __field_widget_args__ parameter with the
key being the field you would like to pass the arg into, and the value a dictionary of args to set
for that field. Here is an example of how to set the rows and columns for the description field of a form.:

class NewMovieForm(AddRecordForm):
 __model__ = Movie
 __field_widget_args__ = {'description':{'rows':30, 'cols':30}}

Custom Dropdown Field Names

Sometimes you want to display a field to the user for the dropdown that has not been selected by
sprox. This is easy to override. Simply pass the field names for the select boxes you want to
display into the __dropdown_field_names__ modifier.:

class NewMovieForm(AddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['movie_id', 'genre_id']
 __field_order__ = ['title', 'description', 'genre', 'directors']
 __dropdown_field_names__ = ['description', 'name']

If you want to be more specific about which fields should display which field, you can pass
a dictionary into the __dropdown_field_names__ modifier.:

class NewMovieForm(AddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['movie_id', 'genre_id']
 __field_order__ = ['title', 'description', 'genre', 'directors']
 __dropdown_field_names__ = {'genre':'description', 'directors':'name'}

Either will produce a new dropdown like this:

[image: ../_images/form_dropdown.png]

Creating Custom Dropdown Data

Sometimes providing a fieldname alone is not enough of a customization to inform your users into what
they should be selecting. For this example, we will provide both name and description for the Genre field.
This requires us to override the genre widget with one of our choosing. We will exend the existing
sprox dropdown widget, modifying the update_params method to inject both name and description into
the dropdown. This requires some knowledge of ToscaWidgets in general, but this recipe will work
for the majority of developers looking to modify their dropdowns in a custom manner.

First, we extend the Sprox SingleSelect Field as follows:

from sprox.widgets import PropertySingleSelectField

class GenreField(PropertySingleSelectField):
 def _my_update_params(self, d, nullable=False):
 genres = DBSession.query(Genre).all()
 options = [(genre.genre_id, '%s (%s)'%(genre.name, genre.description))
 for genre in genres]
 d['options']= options
 return d

Then we include our new widget in the definition of the our movie form:

class NewMovieForm(AddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['movie_id', 'genre_id']
 __field_order__ = ['title', 'description', 'genre', 'directors']
 __dropdown_field_names__ = {'genre':'description', 'directors':'name'}
 genre = GenreField

Here is the resulting dropdown:

[image: ../_images/form_update_params.png]

Adding a New Field

There may come a time when you want to add a field to your view which is not part of your
database model. The classic case for this is password validation, where you want to provide
a second entry field to ensure the user has provided a correct password, but you do not
want/need that data to be stored in the database. Here is how we would go about
adding a second description field to our widget.:

from tw.forms.fields import TextArea

class NewMovieForm(AddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['movie_id', 'genre_id']
 __field_order__ = ['title', 'description', 'description2', 'genre', 'directors']
 description2 = TextArea('description2')

For additional widgets, you must provide an instance of the widget since sprox will not
have enough information about the schema of the widget in order to populate it correctly.
Here’s what our form now looks like:

[image: ../_images/add_field.png]

Validation

Turbogears2 has some great tools for validation that work well with sprox. In order
to validate our form, we must first give the form a place to POST to, with a
new method in our controller that looks like:

@validate(new_movie_form, error_handler=new)
@expose()
def post(self, **kw):
 del kw['sprox_id']
 kw['genre'] = DBSession.query(Genre).get(kw['genre'])
 kw['directors'] = [DBSession.query(Director).get(id) for id in kw['directors']]
 kw['release_date'] = datetime.strptime(kw['release_date'],"%Y-%m-%d")
 movie = Movie(**kw)
 DBSession.add(movie)
 flash('your movie was successfully added')
 redirect('/movies/')

A couple of things about this. First, we must remove the sprox_id from the keywords
because they conflict with the Movie definition. This variable may go away in future
versions. genre and directors both need to be converted into their related objects before
they are applied to the object, and the release_date needs to be formatted as a datetime object
if you are using sqlite.

Here is what the form looks like on a failed validation:

[image: ../_images/validation.png]

Overriding a Validator

Often times you will want to provide your own custom field validator. The best way to
do this is to add the validator declaratively to your Form Definition:

from formencode.validators import String
class NewMovieForm(AddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['movie_id', 'genre_id']
 title = String(min=4)

The resulting validation message looks like this:

[image: ../_images/validator.png]

Overriding both Field and Validator

Ah, you may have realized that sometimes you must override both widget and validator. Sprox
handles this too, by providing a :class:sprox.formbase.Field class that you can use to wrap
your widget and validator together.:

from formencode.validators import String
from sprox.formbase import Field
from tw.forms.fields import PasswordField

class NewMovieForm(AddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['movie_id', 'genre_id']
 title = Field(PasswordField, String(min=4))

Again, the field class does not care if you pass instances or class of the widget.

[image: ../_images/field.png]

Required Fields

You can tell sprox to make a field required even if it is nullable in the database by passing
the fieldname into a list of the __require_fields__ modifier.:

class NewMovieForm(AddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['movie_id', 'genre_id']
 __require_fields__ = ['description']

And the form now sports a validation error:

[image: ../_images/require.png]

Form Validation

You can validate at the form level as well. This is particularly interesting if you need to
compare two fields. See TurboGears Validation.

Conclusion

sprox.formbase.FormBase class provides a flexible mechanism for creating customized forms.
It provides sensible widgets and validators based on your schema, but can be overridden for your own
needs. FormBase provides declarative addition of fields, ways to limit and omit fields to a set that
is appropriate for your application. Sprox provides automated drop-down boxes, as well as providing
a way to override those widgets for your purposes.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	TurboGears2 CookBook

Preparing Your Development Environment

Installing and Using Git

Please refer to the Git [http://www.git-scm.com/] site for directions on how to install a
current version of Git on your system. Note that we do not recommend
using a version less than 1.5 for working with Git. Versions earlier
than that seemed overly complex to use.

The best way to use a version control system (and especially a
distributed version control system like Git [http://www.git-scm.com/]) is a subject that
could span several books.

Instead of going through all of the detail of the many ways to use
Git [http://www.git-scm.com/], we refer you to the Git documentation [http://www.git-scm.com/documentation] site for a long list
of tutorials, online documentation, and books (both paper and ebook)
for you to read that will teach you the many options you can use with
Git [http://www.git-scm.com/].

Create A virtualenv

As stated in virtualenv Notes, a virtualenv is extremely recommended
for development work. Make a new blank virtualenv and activate
it. This way, you will have all of your work isolated, preventing
conflicts with anything else on which you might be working.

Do not do any easy_install’s of any sort. We will cover that in the next step.

Installing TurboGears2

On the TurboGears2 [https://github.com/TurboGears] project pages, there are a bunch of repositories
related to the turbogears project. The most important are:

	TG2.x Core [https://github.com/TurboGears/tg2]

	This is the actual core of TurboGears2. Unless you are working on
modifying a template or one of the Gearbox [https://github.com/TurboGears/gearbox] based tools, or even
the documentation, this is the repository you want.

	TG2.x Devtools [https://github.com/TurboGears/tg2devtools]

	This repository is the add-on tools. It gets updated when you wish
to make a change to help an application developer (as opposed to
an application installer). It contains all the stock TurboGears2
templates, and references the Gearbox [https://github.com/TurboGears/gearbox] toolchain to provide an HTTP
server, along with other tools.

	TG2.x Docs [https://github.com/TurboGears/tg2docs]

	This repository contains two versions of the documentation. The
first version (located in the docs directory) is the older docs,
and is gradually being phased out. The newer version (located
under the book directory) contains this file (and others) and is
gradually being brought on par with the old, and will eventually
replace the older version entirely.

The best way to prepare your development environment is to take the
following steps:

	Clone the first three repositories (TG2.x Core [https://github.com/TurboGears/tg2],
TG2.x Devtools [https://github.com/TurboGears/tg2devtools], and TG2.x Docs [https://github.com/TurboGears/tg2docs]).

	Enter the top level directory for your TG2.x Core clone, and run
python setup.py tgdevelop and python setup.py tgdeps

	Enter the top level directory for your TG2.x Devtools clone, and
run python setup.py tgdevelop and python setup.py tgdeps

	Enter the book directory for your TG2.x Docs clone, and
run python setup.py tgdevelop and python setup.py tgdeps

After you’ve done all this, you have a working copy of the code
sitting in your system. You can explore the code and begin working
through any of the tickets [https://github.com/TurboGears/tg2/issues?state=open] you wish, or even on your own new
features that have not yet been submitted.

Note that, for all repositories, work is to be done off of the
development branch. Either work directly on that branch, or do the
work on a branch made from the development branch. The master
branch is reserved for released code.

When working on your feature or ticket, make certain to add the test
cases. Without them, the code will not be accepted.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	TurboGears2 CookBook

Testing Your Changes

After doing your development work, before sending to the main
repositories (or sending in a pull request), you must make sure that
your code does not break anything.

This process is actually rather painless. The first time you do it,
you need to run python setup.py nosetests from the top of your
working tree. This will download any missing packages that are
required for testing, and then run the tests.

After that first time, you may use nosetests, and all of the tests
will be run.

In either case, you will be told about any failures. If you have any,
either fix the code or (if the test case is wrong) fix the test. Then
re-run the tests.

If you are interested, you can also see the current status of the
tests, and how much of the core code is actually being tested. Run
this command:

$ nosetests --with-coverage --cover-erase --cover-package=tg

You will now see which lines are being tested, which ones are not, and
have a thorough report on the status of the testing coverage.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TurboGears 2.3.1 documentation

 	TurboGears2 CookBook

Preparing a Release of TurboGears

Prerequisites

	You have a working knowledge of how to use a virtualenv [http://pypi.python.org/pypi/virtualenv].

	You have shell access to the turbogears [http://www.turbogears.org/] site.

	You have permissions to update configuration and run builds on
Jenkins [http://jenkins.turbogears.org/]

	You know how to run the nosetests on your local git clones of
TurboGears.

	You have to have a working knowledge of git, and how to do merging
and branching.

	You need permission to update the TurboGears2 and tg.devtools
packages on PyPI [http://pypi.python.org/]

With those prerequisites in mind, this document will not cover all the
command lines that you could run. Instead, we will specify steps as
“activate your virtualenv” or “run nosetests” or the like.

Summary of Steps

Preparing a release of TurboGears is going to take some time and
effort. It is unlikely to be completed in a mere day or two, so please
plan on taking some time to work through it all.

The steps for the release, in summary, are as follows:

	Ticket System Triage

	Repository Branching

	Closing Remaining Tickets

	Upgrading All Local Packages As High As Possible

	Testing Jenkins With The Upgraded Packages And Code

	Finalizing Changes On ‘next’ Branch

	Preparing Changelog And Release Announcement

	Preparing Packages And The Documentation

	Uploading The Documentation

	Making The Source Distribution For The New Eggbasket

	Making The New Eggbasket The Current On Turbogears.org

	Pushing to PyPI [http://pypi.python.org/]

	Publishing Release Annoucement And Closing Milestones

	Final Cleanup

Below, we discuss each of these steps in detail.

Ticket System Triage

Open the ticket system on SourceForge [https://sourceforge.net/p/turbogears2/tickets/]. Click “Edit Milestones”, and
create the milestone that will be worked on after the milestone you
are now working on releasing. For example, if you are working on
release 2.1.1, you will create milestone 2.1.2. Also, make sure that
there exists a major milestone after the current one. For example, if
you are working on 2.1.1, make sure that 2.2.0 exists.

Next, you need to work your way through all of the open tickets on
SourceForge [https://sourceforge.net/p/turbogears2/tickets/] and determine where they belong. This really does mean
all open tickets. Tickets for the next major milestone could have
been resolved in the current milestone. Tickets in the current
milestone could be postponed to the next minor or major milestone. As
a result, all open tickets must be visited and verified for which
milestone they belong to.

Once this process has been completed, it would be wise to post an
announcement to the TG ML [http://groups.google.com/group/turbogears] and the TG-Dev ML [http://groups.google.com/group/turbogears-trunk] informing people
that any new tickets should only be placed against the next milestone
(and what it is).

Repository Branching

We have three main repositories: TG2 [https://sourceforge.net/p/turbogears2/tg2/], TG2Devtools [https://sourceforge.net/p/turbogears2/tg2devtools/], and
TG2Docs [https://sourceforge.net/p/turbogears2/tg2docs/]. Each of them functions in a similar fashion for this
process:

	Clone the repository

	Checkout the development branch

	Branch development and make a “next” branch

Once the “next” branch is made, this is where you will do all work
until the release is done.

Closing Remaining Tickets

Working exclusively on the “next” branch in any of the relevant
repositories, close out any remaining open tickets for this
milestone. This particular step is likely to be the step that takes
the greatest amount of time. To make it worse, we can’t give guidance
in this document on how to do this. Each ticket is different.

The one thing we can say is this: Make sure you are running your
tests. Jenkins [http://jenkins.turbogears.org/] will be watching any commits you push, and running
tests. Don’t break him!

Upgrading all local packages as high as possible

This part is fairly involved. As you will be uploading the result onto
the TurboGears [http://www.turbogears.org/] site, it is highly recommended that you have shell
access to it.

Preparing Your Environment

Create a new virtual environment, and get “basketweaver” and “yolk”
installed. You will need them both. They will be used later to find
the eggs that can be updated, download the .tar.gz files, and prepare
an eggbasket for public consumption.

Finally, you will need to make sure you have a copy of Python 2.4 and
Python 2.6 installed and ready to work.

Mirroring the Current Packages

In order to mirror the current version of the eggbasket [http://www.turbogears.org/2.1/downloads/current/], the
easiest way is to use a command similar to this:

user@host:~> rsync -avPL user@turbogears.org:/home/turbogearsorg/var/static/2.1/downloads/2.1/ ${HOME}/eggbasket/
user@host:~> chmod -R 0755 ${HOME}/eggbasket

Change the version from 2.1 to whatever it needs to be to correspond
to the latest and greatest version of TurboGears.

Configuring to Install TurboGears from LocalHost

In order to make the testing happen locally, you will need to make
some updates to your system’s configuration. Edit your /etc/hosts file
(or %SYSTEMDIR%etchosts.txt file on Windows), and add a reference
that points www.turbogears.org to your local machine.

After doing this, update your web server to tell it that the proper
path for the TurboGears files is your eggbasket. Assuming that your
eggbasket is being stored at /home/user/eggbasket, and you are using
Apache, a line similar to this (replacing the version as needed) in
your httpd.conf will do the trick:

Alias /2.1/downloads/next /home/user/eggbasket

You are likely to need to restart your local webserver to make that
work properly.

Final Change to “next” branch

For TG2 [https://sourceforge.net/p/turbogears2/tg2/], TG2DevTools [https://sourceforge.net/p/turbogears2/tg2devtools/], and TG2Docs [https://sourceforge.net/p/turbogears2/tg2docs/], you must make one change
in each of them: setup.py has a “dependency_links” attribute. Change
the word “current” to “next”, and commit the change. Don’t push the
change to the world yet, though. You’re not ready for that just yet.

Make sure to change the template itself in
tg2devtools/devtools/templates/turbogears/setup.py_tmpl !

Installing Packages

For both Python 2.4 and Python 2.6, create a new virtualenv and run
python setup.py tgdevelop and python setup.py tgdeps for each
of the repositories.

Finding the Packages to Upgrade

Using the following commands, you will get your environment prepared with all possible packages.

user@host:~> cd ${HOME}/tg2
user@host:~> python setup.py nosetests
user@host:~> ls *.egg*

This will show you a complete list of the packages that were
downloaded but not placed into your site-packages directory. Since the
tool we use to scan for updated packages is only looking there, you
need to remove all the local .egg files (except for the TurboGears2
.egg), and then “easy_install” the eggs you removed. Do this until all
.egg files are replaced. Then, do the same for ${HOME}/tg2devtools .

Once done, the following commands should help you get new package
versions for all packages that have upgrades, and get ready to install
them. The following command will help you to upgrade all possible
packages.

user@host:~> for pkg in `yolk -a -U | awk '{ print $1 }'` ; do echo Downloading ${pkg} ; yolk -F ${pkg}; done
user@host:~> makeindex *

Complete the process, looking in the virtual environment’s
site-packages directory. Use yolk to download any/all packages you
can, download the rest manually, and keep reiterating until yolk shows
nothing more than pip, distribute, and (optionally) virtualenvwrapper.

Testing the Upgraded Packages

Once you complete the process to get all packages as upgraded as
possible, it’s time to start the testing. This is likely to be very
easy. Make sure to test the installations with both Python 2.4 and
Python 2.6. Use python setup.py nosetests to run them.

Now, at any point, if a package will not work, you need to either find
a fix or revert to a previous version of that package. The choice must
be made on a case by case basis.

Testing Jenkins With The Upgraded Packages And Code

Now that you have both Python 2.4 and Python 2.6 testing cleanly with
the next branch locally, it’s time to take your eggbasket from your
machine, and place it on the turbogears [http://www.turbogears.org/] server. A command similar
to this will help:

rsync -avP ${HOME}/eggbasket/ user@turbogears.org:eggbasket/

Once done, you will need to make it visible to the world under the
downloads directory. Make sure that it matches the URL you placed in
setup.py. Also pay close attention to the permissions when you do so,
making sure that they are world-readable.

After doing this, visit Jenkins [http://jenkins.turbogears.org/] and update the build processes for
the tg-next packages. Ideally, they will become very simple. Even
still, verify all of the processes, and make sure that they work as
expected.

Once done, you can finally do git push on all of the
repositories. Run the actual builds for all of the tg-next packages,
and make sure they come out clean. If so, the real work is done
finally. The rest will only take you an hour or so. Otherwise,
determine the problem, fix it, update the build process, git push
(if applicable), and re-run the builds until they do come out clean.

As you go through the configuration on Jenkins [http://jenkins.turbogears.org/], please remember
this one very important thing: We are looking to make the installation
process as easy as possible. Follow that guideline, so that we can
make the process easier for our users.

Finalizing Changes On ‘next’ Branch

After all the changes that you’ve made so far, the final changes are
simply to get the new version numbers into the distributed files.

	In TG2 [https://sourceforge.net/p/turbogears2/tg2/]:
	Update tg/release.py to have the new version number.

	Update the dependency_links in setup.py to reference the
“current” URL instead of “next” URL.

	In TG2Devtools [https://sourceforge.net/p/turbogears2/tg2devtools/]:
	Update setup.py:
	Update the version number

	Update the install requirements so that it requires TurboGears2
>= the new version number

	Update the dependency_links to reference the “current” URL
instead of “next” URL.

	Update devtools/templates/turbogears/setup.py_tmpl:
	Update the dependency_links to reference the “current” URL
instead of “next” URL.

	Update the install requirements so that it requires TurboGears2
>= the new version number

	In TG2Docs [https://sourceforge.net/p/turbogears2/tg2docs/]:
	Update book/conf.py and docs/conf.py:
	Update version and release to be the new version

	Update book/setup.py:
	Update the version number

	Update the dependency_links to reference the “current” URL
instead of “next” URL.

Commit all of these changes, but do not push them public, not yet.

Preparing Changelog And Release Announcement

For each of the three repositories, you will need to review the commit
logs since the last release. Gather up the summaries for each one, and
prepare a new file. Use the standard GNU Changelog [http://www.gnu.org/prep/standards/html_node/Change-Logs.html] format. However,
instead of recording individual file changes, record only the
summaries. We don’t need the file changes since Git records those
changes for us.

Chagelog can be easily generate using: git log --pretty="* %s"
command.

Review the `GitHub`_ tickets for this milestone, and record any
tickets that were closed for this repository but were not referenced
in the summaries you’ve already recorded.

The changelog files you’ve made will be the commit message for the
tags you are about to make.

In addition, prepare a release announcement. Anything I can say here
sounds condescending. You should prepare it, though, so that as soon
as you reach the “Publish” step, it’s all done in a few minutes.

Preparing Packages And The Documentation

First, merge the branch “next” onto the branch “master”. Then, tag the
master branch with the new version number, and use the changelog
you’ve generated as the commit message. The tag should be an annotated
tag (i.e.: git tag -a").

Do this for each of the three repositories.

For the documentation, go into the appropriate directory, and type
make html (either the docs or the book, whichever is needed to be
uploaded).

Uploading The Documentation

When you run make html, it will create a directory
“_build/html”. Upload the contents of that directory and replace the
current directory with it. For instance, if you used rsync to upload
to your user account on the server, and fixed the permissions so that
the website user could read the files, you could then do rsync -avP
--delete /path/to/new/docs /path/to/web/docs/directory and have
everything properly uploaded/visible to the users.

	Do not forget the book! Enter the tg2docs/book folder, and run

	make html. This will produce the necessary html files for the
book. Upload the contents of the book/_build/html directory to the
webserver. Use similar commands as were used for copying the older
html docs to complete the process.

Making The Source Distribution For The New Eggbasket

At this point, everything is prepared, with one exception: The source
distributions for TurboGears2 and tg.devtools must be placed in the
eggbasket. Enter your local repository directory for both TG2.x
Core and TG2.x DevTools and run python setup.py sdist. In
both of them, you will produce a directory named dist with a
.tar.gz file for the new version. Copy these files to your
${HOME}/eggbasket, then go to ${HOME}/eggbasket and run
makeindex *.

Using the steps in Testing Jenkins With The Upgraded Packages And
Code, upload the updated (and finalized) eggbasket to the
turbogears.org web server.

Making The New Eggbasket The Current On Turbogears.org

Log in to the turbogears [http://www.turbogears.org/] website. Go into the directory where you
stored the “next” directory, and rename “next” to the version you are
releasing. Remove the “current” link, and then do a symbolic link from
the version being released to “current”, like so: ln -s 2.1.1
current

Pushing to PyPI [http://pypi.python.org/]

For all three repositories, do python setup.py upload.

Publishing Release Annoucement And Closing Milestones

Publish your release announcement to the places of your choice. We
recommend your blog(s) and twitter. In addition, update the
turbogears [http://www.turbogears.org/] “Current Status” page to reflect the new release.

Final Cleanup

For each of the three repositories, merge the “master” branch to the
“development” branch.

You’re done. Sit back and enjoy having accomplished a release.

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	TurboGears 2.3.1 documentation

TurboGears Reference

This page provides a quick access reference to the classes and functions provided by TurboGears

Decorators

Decorators use by the TurboGears controllers.

Not all of these decorators are traditional wrappers. They are much simplified
from the TurboGears 1 decorators, because all they do is register attributes on
the functions they wrap, and then the DecoratedController provides the hooks
needed to support these decorators.

	
class tg.decorators.Decoration(controller)

	Simple class to support ‘simple registration’ type decorators

	
lookup_template_engine(tgl)

	Return the template engine data.

Provides a convenience method to get the proper engine,
content_type, template, and exclude_names for a particular
tg_format (which is pulled off of the request headers).

	
register_custom_template_engine(custom_format, content_type, engine, template, exclude_names, render_params)

	Registers a custom engine on the controller.

Multiple engines can be registered, but only one engine per
custom_format.

The engine is registered when @expose is used with the
custom_format parameter and controllers render using this
engine when the use_custom_format() function is called
with the corresponding custom_format.

exclude_names keeps track of a list of keys which will be
removed from the controller’s dictionary before it is loaded
into the template. This allows you to exclude some information
from JSONification, and other ‘automatic’ engines which don’t
require a template.

render_params registers extra parameters which will be sent
to the rendering method. This allows you to influence things
like the rendering method or the injected doctype.

	
register_template_engine(content_type, engine, template, exclude_names, render_params)

	Registers an engine on the controller.

Multiple engines can be registered, but only one engine per
content_type. If no content type is specified the engine is
registered at / which is the default, and will be used
whenever no content type is specified.

exclude_names keeps track of a list of keys which will be
removed from the controller’s dictionary before it is loaded
into the template. This allows you to exclude some information
from JSONification, and other ‘automatic’ engines which don’t
require a template.

render_params registers extra parameters which will be sent
to the rendering method. This allows you to influence things
like the rendering method or the injected doctype.

	
class tg.decorators.after_render(hook_func)

	A list of callables to be run after the template is rendered.

Will be run before it is returned returned up the WSGI stack.

	
class tg.decorators.before_call(hook_func)

	A list of callables to be run before the controller method is called.

	
class tg.decorators.before_render(hook_func)

	A list of callables to be run before the template is rendered.

	
class tg.decorators.before_validate(hook_func)

	A list of callables to be run before validation is performed.

	
class tg.decorators.expose(template='', content_type=None, exclude_names=None, custom_format=None, render_params=None, inherit=False)

	Register attributes on the decorated function.

	Parameters:	
	template

	Assign a template, you could use the syntax ‘genshi:template’
to use different templates.
The default template engine is genshi.

	content_type

	Assign content type.
The default content type is ‘text/html’.

	exclude_names

	Assign exclude names

	custom_format

	Registers as a custom format which can later be activated calling
use_custom_format

	render_params

	Assign parameters that shall be passed to the rendering method.

	inherit

	Inherit all the decorations from the same method in the parent
class. This will let the exposed method expose the same template
as the overridden method template and keep the same hooks and
validation that the parent method had.

The expose decorator registers a number of attributes on the
decorated function, but does not actually wrap the function the way
TurboGears 1.0 style expose decorators did.

This means that we don’t have to play any kind of special tricks to
maintain the signature of the exposed function.

The exclude_names parameter is new, and it takes a list of keys that
ought to be scrubbed from the dictionary before passing it on to the
rendering engine. This is particularly useful for JSON.

The render_parameters is also new. It takes a dictionary of arguments
that ought to be sent to the rendering engine, like this:

render_params={'method': 'xml', 'doctype': None}

Expose decorator can be stacked like this:

@expose('json', exclude_names='d')
@expose('kid:blogtutorial.templates.test_form',
 content_type='text/html')
@expose('kid:blogtutorial.templates.test_form_xml',
 content_type='text/xml', custom_format='special_xml')
def my_exposed_method(self):
 return dict(a=1, b=2, d="username")

The expose(‘json’) syntax is a special case. json is a
rendering engine, but unlike others it does not require a template,
and expose assumes that it matches content_type=’application/json’

If you want to declare a desired content_type in a url, you
can use the mime-type style dotted notation:

"/mypage.json" ==> for json
"/mypage.html" ==> for text/html
"/mypage.xml" ==> for xml.

If you’re doing an http post, you can also declare the desired
content type in the accept headers, with standard content type
strings.

By default expose assumes that the template is for html. All other
content_types must be explicitly matched to a template and engine.

The last expose decorator example uses the custom_format parameter
which takes an arbitrary value (in this case ‘special_xml’).
You can then use the`use_custom_format` function within the method
to decide which of the ‘custom_format’ registered expose decorators
to use to render the template.

	
tg.decorators.override_template(controller, template)

	Override the template to be used.

Use override_template in a controller in order to change the template
that will be used to render the response dictionary dynamically.

The template string passed in requires that
you include the template engine name, even if you’re using the default.

So you have to pass in a template id string like:

"genshi:myproject.templates.index2"

future versions may make the genshi: optional if you want to use
the default engine.

	
class tg.decorators.paginate(name, use_prefix=False, items_per_page=10, max_items_per_page=0)

	Paginate a given collection.

This decorator is mainly exposing the functionality
of webhelpers.paginate().

	Usage:	

You use this decorator as follows:

class MyController(object):

 @expose()
 @paginate("collection")
 def sample(self, *args):
 collection = get_a_collection()
 return dict(collection=collection)

To render the actual pager, use:

${tmpl_context.paginators.<name>.pager()}

It is possible to have several paginate()-decorators for
one controller action to paginate several collections independently
from each other. If this is desired, don’t forget to set the use_prefix-parameter
to True.

	Parameters:	
	name

	the collection to be paginated.

	items_per_page

	the number of items to be rendered. Defaults to 10

	max_items_per_page

	the maximum number of items allowed to be set via parameter.
Defaults to 0 (does not allow to change that value).

	use_prefix

	if True, the parameters the paginate
decorator renders and reacts to are prefixed with
“<name>_”. This allows for multi-pagination.

	
class tg.decorators.require(predicate, denial_handler=None, smart_denial=False)

	TurboGears-specific action protector.

The default authorization denial handler of this protector will flash
the message of the unmet predicate with warning or error as the
flash status if the HTTP status code is 401 or 403, respectively.

See allow_only for controller-wide authorization.

	
default_denial_handler(reason)

	Authorization denial handler for protectors.

	
tg.decorators.use_custom_format(controller, custom_format)

	Use use_custom_format in a controller in order to change
the active @expose decorator when available.

	
class tg.decorators.validate(validators=None, error_handler=None, form=None)

	Registers which validators ought to be applied.

If you want to validate the contents of your form,
you can use the @validate() decorator to register
the validators that ought to be called.

	Parameters:	
	validators

	Pass in a dictionary of FormEncode validators.
The keys should match the form field names.

	error_handler

	Pass in the controller method which shoudl be used
to handle any form errors

	form

	Pass in a ToscaWidget based form with validators

The first positional parameter can either be a dictonary of validators,
a FormEncode schema validator, or a callable which acts like a FormEncode
validator.

	
class tg.decorators.with_engine(engine_name=None, master_params={})

	Decorator to force usage of a specific database engine
in TurboGears SQLAlchemy BalancedSession.

	Parameters:	
	engine_name – ‘master’ or the name of one of the slaves, if is None
it will not force any specific engine.

	master_params – A dictionary or GET parameters that when present will force
usage of the master node. The keys of the dictionary will be the
name of the parameters to look for, while the values must be whenever
to pop the paramter from the parameters passed to the controller (True/False).
If master_params is a list then it is converted to a dictionary where
the keys are the entries of the list and the value is always True.

Validation

	
class tg.decorators.validate(validators=None, error_handler=None, form=None)

	Registers which validators ought to be applied.

If you want to validate the contents of your form,
you can use the @validate() decorator to register
the validators that ought to be called.

	Parameters:	
	validators

	Pass in a dictionary of FormEncode validators.
The keys should match the form field names.

	error_handler

	Pass in the controller method which shoudl be used
to handle any form errors

	form

	Pass in a ToscaWidget based form with validators

The first positional parameter can either be a dictonary of validators,
a FormEncode schema validator, or a callable which acts like a FormEncode
validator.

	
exception tg.validation.TGValidationError(msg, value=None, error_dict=None)

	Invalid data was encountered during validation.

The constructor can be passed a short message with
the reason of the failed validation.

Authorization

	
class tg.decorators.require(predicate, denial_handler=None, smart_denial=False)

	TurboGears-specific action protector.

The default authorization denial handler of this protector will flash
the message of the unmet predicate with warning or error as the
flash status if the HTTP status code is 401 or 403, respectively.

See allow_only for controller-wide authorization.

Built-in predicate checkers.

This is mostly took from repoze.what.precidates

This is module provides the predicate checkers that were present in the
original “identity” framework of TurboGears 1, plus others.

	
class tg.predicates.CompoundPredicate(*predicates, **kwargs)

	A predicate composed of other predicates.

	
class tg.predicates.All(*predicates, **kwargs)

	Check that all of the specified predicates are met.

	Parameters:	predicates – All of the predicates that must be met.

Example:

Grant access if the current month is July and the user belongs to
the human resources group.
p = All(is_month(7), in_group('hr'))

	
evaluate(environ, credentials)

	Evaluate all the predicates it contains.

	Parameters:	
	environ – The WSGI environment.

	credentials – The repoze.what credentials.

	Raises NotAuthorizedError:

		If one of the predicates is not met.

	
class tg.predicates.Any(*predicates, **kwargs)

	Check that at least one of the specified predicates is met.

	Parameters:	predicates – Any of the predicates that must be met.

Example:

Grant access if the currest user is Richard Stallman or Linus
Torvalds.
p = Any(is_user('rms'), is_user('linus'))

	
evaluate(environ, credentials)

	Evaluate all the predicates it contains.

	Parameters:	
	environ – The WSGI environment.

	credentials – The repoze.what credentials.

	Raises NotAuthorizedError:

		If none of the predicates is met.

	
class tg.predicates.has_all_permissions(*permissions, **kwargs)

	Check that the current user has been granted all of the specified
permissions.

	Parameters:	permissions – The names of all the permissions that must be
granted to the user.

Example:

p = has_all_permissions('view-users', 'edit-users')

	
class tg.predicates.has_any_permission(*permissions, **kwargs)

	Check that the user has at least one of the specified permissions.

	Parameters:	permissions – The names of any of the permissions that have to be
granted to the user.

Example:

p = has_any_permission('manage-users', 'edit-users')

	
class tg.predicates.has_permission(permission_name, **kwargs)

	Check that the current user has the specified permission.

	Parameters:	permission_name – The name of the permission that must be granted to
the user.

Example:

p = has_permission('hire')

	
class tg.predicates.in_all_groups(*groups, **kwargs)

	Check that the user belongs to all of the specified groups.

	Parameters:	groups – The name of all the groups the user must belong to.

Example:

p = in_all_groups('developers', 'designers')

	
class tg.predicates.in_any_group(*groups, **kwargs)

	Check that the user belongs to at least one of the specified groups.

	Parameters:	groups – The name of any of the groups the user may belong to.

Example:

p = in_any_group('directors', 'hr')

	
class tg.predicates.in_group(group_name, **kwargs)

	Check that the user belongs to the specified group.

	Parameters:	group_name (str [http://docs.python.org/library/functions.html#str]) – The name of the group to which the user must belong.

Example:

p = in_group('customers')

	
class tg.predicates.is_user(user_name, **kwargs)

	Check that the authenticated user’s username is the specified one.

	Parameters:	user_name (str [http://docs.python.org/library/functions.html#str]) – The required user name.

Example:

p = is_user('linus')

	
class tg.predicates.is_anonymous(msg=None)

	Check that the current user is anonymous.

Example:

The user must be anonymous!
p = is_anonymous()

New in version 1.0.7.

	
class tg.predicates.not_anonymous(msg=None)

	Check that the current user has been authenticated.

Example:

The user must have been authenticated!
p = not_anonymous()

Pagination

	
class tg.decorators.paginate(name, use_prefix=False, items_per_page=10, max_items_per_page=0)

	Paginate a given collection.

This decorator is mainly exposing the functionality
of webhelpers.paginate().

	Usage:	

You use this decorator as follows:

class MyController(object):

 @expose()
 @paginate("collection")
 def sample(self, *args):
 collection = get_a_collection()
 return dict(collection=collection)

To render the actual pager, use:

${tmpl_context.paginators.<name>.pager()}

It is possible to have several paginate()-decorators for
one controller action to paginate several collections independently
from each other. If this is desired, don’t forget to set the use_prefix-parameter
to True.

	Parameters:	
	name

	the collection to be paginated.

	items_per_page

	the number of items to be rendered. Defaults to 10

	max_items_per_page

	the maximum number of items allowed to be set via parameter.
Defaults to 0 (does not allow to change that value).

	use_prefix

	if True, the parameters the paginate
decorator renders and reacts to are prefixed with
“<name>_”. This allows for multi-pagination.

	
class tg.support.paginate.Page(collection, page=1, items_per_page=20)

	TurboGears Pagination support for @paginate decorator.
It is based on a striped down version of the WebHelpers pagination class
This represents a page inside a collection of items

	
pager(format='~2~', page_param='page', partial_param='partial', show_if_single_page=False, separator=' ', onclick=None, symbol_first='<<', symbol_last='>>', symbol_previous='<', symbol_next='>', link_attr={'class': 'pager_link'}, curpage_attr={'class': 'pager_curpage'}, dotdot_attr={'class': 'pager_dotdot'}, **kwargs)

	Return string with links to other pages (e.g. “1 2 [3] 4 5 6 7”).

	format:

	Format string that defines how the pager is rendered. The string
can contain the following $-tokens that are substituted by the
string.Template module:

	$first_page: number of first reachable page

	$last_page: number of last reachable page

	$page: number of currently selected page

	$page_count: number of reachable pages

	$items_per_page: maximal number of items per page

	$first_item: index of first item on the current page

	$last_item: index of last item on the current page

	$item_count: total number of items

	$link_first: link to first page (unless this is first page)

	$link_last: link to last page (unless this is last page)

	$link_previous: link to previous page (unless this is first page)

	$link_next: link to next page (unless this is last page)

To render a range of pages the token ‘~3~’ can be used. The
number sets the radius of pages around the current page.
Example for a range with radius 3:

‘1 .. 5 6 7 [8] 9 10 11 .. 500’

Default: ‘~2~’

	symbol_first

	String to be displayed as the text for the %(link_first)s
link above.

Default: ‘<<’

	symbol_last

	String to be displayed as the text for the %(link_last)s
link above.

Default: ‘>>’

	symbol_previous

	String to be displayed as the text for the %(link_previous)s
link above.

Default: ‘<’

	symbol_next

	String to be displayed as the text for the %(link_next)s
link above.

Default: ‘>’

	separator:

	String that is used to separate page links/numbers in the
above range of pages.

Default: ‘ ‘

	page_param:

	The name of the parameter that will carry the number of the
page the user just clicked on.

	partial_param:

	When using AJAX/AJAH to do partial updates of the page area the
application has to know whether a partial update (only the
area to be replaced) or a full update (reloading the whole
page) is required. So this parameter is the name of the URL
parameter that gets set to 1 if the ‘onclick’ parameter is
used. So if the user requests a new page through a Javascript
action (onclick) then this parameter gets set and the application
is supposed to return a partial content. And without
Javascript this parameter is not set. The application thus has
to check for the existence of this parameter to determine
whether only a partial or a full page needs to be returned.
See also the examples in this modules docstring.

Default: ‘partial’

Note: If you set this argument and are using a URL generator
callback, the callback must accept this name as an argument instead
of ‘partial’.

	show_if_single_page:

	if True the navigator will be shown even if there is only
one page

Default: False

	link_attr (optional)

	A dictionary of attributes that get added to A-HREF links
pointing to other pages. Can be used to define a CSS style
or class to customize the look of links.

Example: { ‘style’:’border: 1px solid green’ }

Default: { ‘class’:’pager_link’ }

	curpage_attr (optional)

	A dictionary of attributes that get added to the current
page number in the pager (which is obviously not a link).
If this dictionary is not empty then the elements
will be wrapped in a SPAN tag with the given attributes.

Example: { ‘style’:’border: 3px solid blue’ }

Default: { ‘class’:’pager_curpage’ }

	dotdot_attr (optional)

	A dictionary of attributes that get added to the ‘..’ string
in the pager (which is obviously not a link). If this
dictionary is not empty then the elements will be wrapped in
a SPAN tag with the given attributes.

Example: { ‘style’:’color: #808080’ }

Default: { ‘class’:’pager_dotdot’ }

	onclick (optional)

	This paramter is a string containing optional Javascript code
that will be used as the ‘onclick’ action of each pager link.
It can be used to enhance your pager with AJAX actions loading another
page into a DOM object.

In this string the variable ‘$partial_url’ will be replaced by
the URL linking to the desired page with an added ‘partial=1’
parameter (or whatever you set ‘partial_param’ to).
In addition the ‘$page’ variable gets replaced by the
respective page number.

Note that the URL to the destination page contains a ‘partial_param’
parameter so that you can distinguish between AJAX requests (just
refreshing the paginated area of your page) and full requests (loading
the whole new page).

[Backward compatibility: you can use ‘%s’ instead of ‘$partial_url’]

	jQuery example:

	“$(‘#my-page-area’).load(‘$partial_url’); return false;”

	Yahoo UI example:

	
	“YAHOO.util.Connect.asyncRequest(‘GET’,’$partial_url’,{

	success:function(o){YAHOO.util.Dom.get(‘#my-page-area’).innerHTML=o.responseText;}
},null); return false;”

	scriptaculous example:

	
	“new Ajax.Updater(‘#my-page-area’, ‘$partial_url’,

	{asynchronous:true, evalScripts:true}); return false;”

	ExtJS example:

	“Ext.get(‘#my-page-area’).load({url:’$partial_url’}); return false;”

	Custom example:

	“my_load_page($page)”

Additional keyword arguments are used as arguments in the links.

Configuration

	
class tg.configuration.AppConfig(minimal=False, root_controller=None)

	Class to store application configuration.

This class should have configuration/setup information
that is necessary for proper application function.
Deployment specific configuration information should go in
the config files (e.g. development.ini or deployment.ini).

AppConfig instances have a number of methods that are meant to be
overridden by users who wish to have finer grained control over
the setup of the WSGI environment in which their application is run.

This is the place to configure custom routes, transaction handling,
error handling, etc.

	
add_auth_middleware(app, skip_authentication)

	Configure authentication and authorization.

	Parameters:	
	app – The TG2 application.

	skip_authentication (bool [http://docs.python.org/library/functions.html#bool]) – Should authentication be skipped if
explicitly requested? (used by repoze.who-testutil)

	
add_core_middleware(app)

	Add support for routes dispatch, sessions, and caching.
This is where you would want to override if you wanted to provide your
own routing, session, or caching middleware. Your app_cfg.py might look something
like this:

from tg.configuration import AppConfig
from routes.middleware import RoutesMiddleware
from beaker.middleware import CacheMiddleware
from mysessionier.middleware import SessionMiddleware

class MyAppConfig(AppConfig):
 def add_core_middleware(self, app):
 app = RoutesMiddleware(app, config['routes.map'])
 app = SessionMiddleware(app, config)
 app = CacheMiddleware(app, config)
 return app
base_config = MyAppConfig()

	
add_dbsession_remover_middleware(app)

	Set up middleware that cleans up the sqlalchemy session.

The default behavior of TG 2 is to clean up the session on every
request. Only override this method if you know what you are doing!

	
add_error_middleware(global_conf, app)

	Add middleware which handles errors and exceptions.

	
add_ming_middleware(app)

	Set up the ming middleware for the unit of work

	
add_tm_middleware(app)

	Set up the transaction management middleware.

To abort a transaction inside a TG2 app:

import transaction
transaction.doom()

By default http error responses also roll back transactions, but this
behavior can be overridden by overriding base_config.commit_veto.

	
add_tosca2_middleware(app)

	Configure the ToscaWidgets2 middleware.

If you would like to override the way the TW2 middleware works,
you might do change your app_cfg.py to add something like:

from tg.configuration import AppConfig
from tw2.core.middleware import TwMiddleware

class MyAppConfig(AppConfig):

 def add_tosca2_middleware(self, app):

 app = TwMiddleware(app,
 default_engine=self.default_renderer,
 translator=ugettext,
 auto_reload_templates = False
)

 return app
base_config = MyAppConfig()

The above example would always set the template auto reloading off. (This is normally an
option that is set within your application’s ini file.)

	
add_tosca_middleware(app)

	Configure the ToscaWidgets middleware.

If you would like to override the way the TW middleware works, you might do something like:

from tg.configuration import AppConfig
from tw.api import make_middleware as tw_middleware

class MyAppConfig(AppConfig):

 def add_tosca2_middleware(self, app):

 app = tw_middleware(app, {
 'toscawidgets.framework.default_view': self.default_renderer,
 'toscawidgets.framework.translator': ugettext,
 'toscawidgets.middleware.inject_resources': False,
 })
 return app

base_config = MyAppConfig()

The above example would disable resource injection.

There is more information about the settings you can change
in the ToscaWidgets middleware. <http://toscawidgets.org/documentation/ToscaWidgets/modules/middleware.html>

	
after_init_config()

	Override this method to set up configuration variables at the application
level. This method will be called after your configuration object has
been initialized on startup. Here is how you would use it to override
the default setting of tg.strict_tmpl_context

from tg.configuration import AppConfig
from tg import config

class MyAppConfig(AppConfig):
 def after_init_config(self):
 config['tg.strict_tmpl_context'] = False

base_config = MyAppConfig()

	
make_load_environment()

	Return a load_environment function.

The returned load_environment function can be called to configure
the TurboGears runtime environment for this particular application.
You can do this dynamically with multiple nested TG applications
if necessary.

	
register_wrapper(wrapper, after=None)

	Registers a TurboGears application wrapper.

Application wrappers are like WSGI middlewares but
are executed in the context of TurboGears and work
with abstractions like Request and Respone objects.

Application wrappers are callables built by passing
the next handler in chain and the current TurboGears
configuration.

Every wrapper, when called, is expected to accept
the WSGI environment and a TurboGears context as parameters
and are expected to return a tg.request_local.Response
instance:

class AppWrapper(object):
 def __init__(self, handler, config):
 self.handler = handler

 def __call__(self, environ, context):
 print 'Going to run %s' % context.request.path
 return self.handler(environ, context)

	
setup_auth()

	Override this method to define how you would like the authentication options
to be setup for your application.

	
setup_chameleon_genshi_renderer()

	Setup a renderer and loader for the chameleon.genshi engine.

	
setup_genshi_renderer()

	Setup a renderer and loader for Genshi templates.

Override this to customize the way that the internationalization
filter, template loader

	
setup_helpers_and_globals()

	Add helpers and globals objects to the config.

Override this method to customize the way that app_globals
and helpers are setup.

	
setup_jinja_renderer()

	Setup a renderer and loader for Jinja2 templates.

	
setup_kajiki_renderer()

	Setup a renderer and loader for the fastpt engine.

	
setup_mako_renderer(use_dotted_templatenames=None)

	Setup a renderer and loader for mako templates.

Override this to customize the way that the mako template
renderer is setup. In particular if you want to setup
a different set of search paths, different encodings, or
additonal imports, all you need to do is update the
TemplateLookup constructor.

You can also use your own render_mako function instead of the one
provided by tg.render.

	
setup_ming()

	Setup MongoDB database engine using Ming

	
setup_persistence()

	Override this method to define how your application configures it’s persistence model.
the default is to setup sqlalchemy from the cofiguration file, but you might choose
to set up a persistence system other than sqlalchemy, or add an additional persistence
layer. Here is how you would go about setting up a ming (mongo) persistence layer:

class MingAppConfig(AppConfig):
 def setup_persistence(self):
 self.ming_ds = DataStore(config['mongo.url'])
 session = Session.by_name('main')
 session.bind = self.ming_ds

	
setup_routes()

	Setup the default TG2 routes

Override this and setup your own routes maps if you want to use
custom routes.

It is recommended that you keep the existing application routing in
tact, and just add new connections to the mapper above the routes_placeholder
connection. Lets say you want to add a tg controller SamplesController,
inside the controllers/samples.py file of your application. You would
augment the app_cfg.py in the following way:

from routes import Mapper
from tg.configuration import AppConfig

class MyAppConfig(AppConfig):
 def setup_routes(self):
 map = Mapper(directory=config['paths']['controllers'],
 always_scan=config['debug'])

 # Add a Samples route
 map.connect('/samples/', controller='samples', action=index)

 # Setup a default route for the root of object dispatch
 map.connect('*url', controller='root', action='routes_placeholder')

 config['routes.map'] = map

base_config = MyAppConfig()

	
setup_sqlalchemy()

	Setup SQLAlchemy database engine.

The most common reason for modifying this method is to add
multiple database support. To do this you might modify your
app_cfg.py file in the following manner:

from tg.configuration import AppConfig, config
from myapp.model import init_model

add this before base_config =
class MultiDBAppConfig(AppConfig):
 def setup_sqlalchemy(self):
 '''Setup SQLAlchemy database engine(s)'''
 from sqlalchemy import engine_from_config
 engine1 = engine_from_config(config, 'sqlalchemy.first.')
 engine2 = engine_from_config(config, 'sqlalchemy.second.')
 # engine1 should be assigned to sa_engine as well as your first engine's name
 config['tg.app_globals'].sa_engine = engine1
 config['tg.app_globals'].sa_engine_first = engine1
 config['tg.app_globals'].sa_engine_second = engine2
 # Pass the engines to init_model, to be able to introspect tables
 init_model(engine1, engine2)

#base_config = AppConfig()
base_config = MultiDBAppConfig()

This will pull the config settings from your .ini files to create the necessary
engines for use within your application. Make sure you have a look at Using Multiple Databases In TurboGears
for more information.

	
setup_tg_wsgi_app(load_environment=None)

	Create a base TG app, with all the standard middleware.

	load_environment

	A required callable, which sets up the basic evironment
needed for the application.

	setup_vars

	A dictionary with all special values necessary for setting up
the base wsgi app.

	
class tg.wsgiapp.TGApp(config=None, **kwargs)

	
	
dispatch(controller, environ, context)

	Dispatches to a controller, the controller itself is expected
to implement the routing system.

Override this to change how requests are dispatched to controllers.

	
find_controller(controller)

	Locates a controller by attempting to import it then grab
the SomeController instance from the imported module.

Override this to change how the controller object is found once
the URL has been resolved.

	
resolve(environ, context)

	Uses dispatching information found in
environ['wsgiorg.routing_args'] to retrieve a controller
name and return the controller instance from the appropriate
controller module.

Override this to change how the controller name is found and
returned.

	
setup_app_env(environ)

	Setup Request, Response and TurboGears context objects.

Is also in charge of pushing TurboGears context into the
paste registry and detect test mode. Returns whenever
the testmode is enabled or not and the TurboGears context.

	
setup_pylons_compatibility(environ, controller)

	Updates environ to be backward compatible with Pylons

WebFlash

Flash messaging system for sending info to the user in a non-obtrusive way

	
class tg.flash.TGFlash(cookie_name='webflash', default_status='ok')

	Flash Message Creator

	
tg.flash.get_flash()

	Get the message previously set by calling flash().

Additionally removes the old flash message.

	
tg.flash.get_status()

	Get the status of the last flash message.

Additionally removes the old flash message status.

Rendering

	
class tg.render.RenderChameleonGenshi(loader)

	Singleton that can be called as the Chameleon-Genshi render function.

	
class tg.render.RenderGenshi(loader)

	Singleton that can be called as the Genshi render function.

	
tg.render.cached_template(template_name, render_func, ns_options=(), cache_key=None, cache_type=None, cache_expire=None, **kwargs)

	Cache and render a template, took from Pylons

Cache a template to the namespace template_name, along with a
specific key if provided.

Basic Options

	template_name

	Name of the template, which is used as the template namespace.

	render_func

	Function used to generate the template should it no longer be
valid or doesn’t exist in the cache.

	ns_options

	Tuple of strings, that should correspond to keys likely to be
in the kwargs that should be used to construct the
namespace used for the cache. For example, if the template
language supports the ‘fragment’ option, the namespace should
include it so that the cached copy for a template is not the
same as the fragment version of it.

Caching options (uses Beaker caching middleware)

	cache_key

	Key to cache this copy of the template under.

	cache_type

	Valid options are dbm, file, memory, database,
or memcached.

	cache_expire

	Time in seconds to cache this template with this cache_key
for. Or use ‘never’ to designate that the cache should never
expire.

The minimum key required to trigger caching is
cache_expire='never' which will cache the template forever
seconds with no key.

	
tg.render.render_jinja(template_name, globs, cache_key=None, cache_type=None, cache_expire=None)

	Render a template with Jinja2

Accepts the cache options cache_key, cache_type, and
cache_expire.

	
tg.render.render_kajiki(template_name, globs, cache_key=None, cache_type=None, cache_expire=None, method='xhtml')

	Render a template with Kajiki

Accepts the cache options cache_key, cache_type, and
cache_expire in addition to method which are passed to Kajiki’s
render function.

Request & Response

	
class tg.request_local.Request(environ, charset=None, unicode_errors=None, decode_param_names=None, **kw)

	WebOb Request subclass

The WebOb webob.Request has no charset, or other defaults. This subclass
adds defaults, along with several methods for backwards
compatibility with paste.wsgiwrappers.WSGIRequest.

	
signed_cookie(name, secret)

	Extract a signed cookie of name from the request

The cookie is expected to have been created with
Response.signed_cookie, and the secret should be the
same as the one used to sign it.

Any failure in the signature of the data will result in None
being returned.

	
class tg.request_local.Response(body=None, status=None, headerlist=None, app_iter=None, content_type=None, conditional_response=None, **kw)

	WebOb Response subclass

	
content

	The body of the response, as a str. This will read in the
entire app_iter if necessary.

	
signed_cookie(name, data, secret, **kwargs)

	Save a signed cookie with secret signature

Saves a signed cookie of the pickled data. All other keyword
arguments that WebOb.set_cookie accepts are usable and
passed to the WebOb set_cookie method after creating the signed
cookie value.

Hooks

	
class tg.configuration.hooks._TGHooks

	Manages hooks registrations and notifications

	
notify(hook_name, args=None, kwargs=None, controller=None, context_config=None)

	Notifies a TurboGears hook.

Each function registered for the given hook will be executed,
args and kwargs will be passed to the registered functions
as arguments.

It permits to notify both application hooks:

tg.hooks.notify('custom_global_hook')

Or controller hooks:

tg.hooks.notify('before_render', args=(remainder, params, output),
 controller=RootController.index)

	
notify_with_value(hook_name, value, controller=None, context_config=None)

	Notifies a TurboGears hook which is expected to return a value.

hooks with values are expected to accept an input value an return
a replacement for it. Each registered function will receive as input
the value returned by the previous function in chain.

The resulting value will be returned by the notify_with_value
call itself:

app = tg.hooks.notify_with_value('before_config', app)

	
register(hook_name, func, controller=None)

	Registers a TurboGears hook.

Given an hook name and a function it registers the provided
function for that role. For a complete list of hooks
provided by default have a look at Hooks and Wrappers.

It permits to register hooks both application wide
or for specific controllers:

tg.hooks.register('before_render', hook_func, controller=RootController.index)
tg.hooks.register('startup', startup_function)

	
wrap_controller(func, controller=None)

	Registers a TurboGears controller wrapper.

Controller Wrappers are much like a decorator applied to
every controller.
They receive tg.configuration.AppConfig instance
as an argument and the next handler in chain and are expected
to return a new handler that performs whatever it requires
and then calls the next handler.

A simple example for a controller wrapper is a simple logging wrapper:

def controller_wrapper(app_config, caller):
 def call(*args, **kw):
 try:
 print 'Before handler!'
 return caller(*args, **kw)
 finally:
 print 'After Handler!'
 return call

tg.hooks.wrap_controller(controller_wrapper)

It is also possible to register wrappers for a specific controller:

tg.hooks.wrap_controller(controller_wrapper, controller=RootController.index)

Milestones

	
class tg.configuration.milestones._ConfigMilestoneTracker(name)

	Tracks actions that need to be performed
when a specific configuration point is reached
and required options are correctly initialized

	
reach()

	Marks the milestone as reached.

Runs the registered actions. Calling this
method multiple times should lead to nothing.

	
register(action)

	Registers an action to be called on milestone completion.

If milestone is already passed action is immediately called

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	TurboGears 2.3.1 documentation

 Python Module Index

 t

 			

 		
 t	

 	[image: -]
 	
 tg	

 	
 	
 tg.configuration	

 	
 	
 tg.decorators	

 	
 	
 tg.flash	

 	
 	
 tg.predicates	
 built-in predicate checkers.

 	
 	
 tg.render	

 	
 	
 tg.validation	

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	TurboGears 2.3.1 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	

 	_ConfigMilestoneTracker (class in tg.configuration.milestones)

 	

 	_TGHooks (class in tg.configuration.hooks)

A

 	

 	add_auth_middleware() (tg.configuration.AppConfig method)

 	add_core_middleware() (tg.configuration.AppConfig method)

 	add_dbsession_remover_middleware() (tg.configuration.AppConfig method)

 	add_error_middleware() (tg.configuration.AppConfig method)

 	add_ming_middleware() (tg.configuration.AppConfig method)

 	add_tm_middleware() (tg.configuration.AppConfig method)

 	add_tosca2_middleware() (tg.configuration.AppConfig method)

 	

 	add_tosca_middleware() (tg.configuration.AppConfig method)

 	after_init_config() (tg.configuration.AppConfig method)

 	after_render (class in tg.decorators)

 	All (class in tg.predicates)

 	Any (class in tg.predicates)

 	AppConfig (class in tg.configuration)

B

 	

 	before_call (class in tg.decorators)

 	before_render (class in tg.decorators)

 	

 	before_validate (class in tg.decorators)

C

 	

 	cached_template() (in module tg.render)

 	CompoundPredicate (class in tg.predicates)

 	

 	content (tg.request_local.Response attribute)

 	CrudRestController (class in tgext.crud)

D

 	

 	Decoration (class in tg.decorators)

 	default_denial_handler() (tg.decorators.require method)

 	

 	dispatch() (tg.wsgiapp.TGApp method)

E

 	

 	ETag

 	evaluate() (tg.predicates.All method)

 	

 	(tg.predicates.Any method)

 	

 	expose (class in tg.decorators)

F

 	

 	find_controller() (tg.wsgiapp.TGApp method)

G

 	

 	get_flash() (in module tg.flash)

 	

 	get_status() (in module tg.flash)

H

 	

 	has_all_permissions (class in tg.predicates)

 	has_any_permission (class in tg.predicates)

 	

 	has_permission (class in tg.predicates)

I

 	

 	in_all_groups (class in tg.predicates)

 	in_any_group (class in tg.predicates)

 	in_group (class in tg.predicates)

 	

 	is_anonymous (class in tg.predicates)

 	is_user (class in tg.predicates)

L

 	

 	lookup_template_engine() (tg.decorators.Decoration method)

M

 	

 	make_load_environment() (tg.configuration.AppConfig method)

N

 	

 	not_anonymous (class in tg.predicates)

 	notify() (tg.configuration.hooks._TGHooks method)

 	

 	notify_with_value() (tg.configuration.hooks._TGHooks method)

O

 	

 	override_template() (in module tg.decorators)

P

 	

 	Page (class in tg.support.paginate)

 	pager() (tg.support.paginate.Page method)

 	

 	paginate (class in tg.decorators)

R

 	

 	reach() (tg.configuration.milestones._ConfigMilestoneTracker method)

 	register() (tg.configuration.hooks._TGHooks method)

 	

 	(tg.configuration.milestones._ConfigMilestoneTracker method)

 	register_custom_template_engine() (tg.decorators.Decoration method)

 	register_template_engine() (tg.decorators.Decoration method)

 	register_wrapper() (tg.configuration.AppConfig method)

 	render_jinja() (in module tg.render)

 	render_kajiki() (in module tg.render)

 	

 	RenderChameleonGenshi (class in tg.render)

 	RenderGenshi (class in tg.render)

 	Request (class in tg.request_local)

 	require (class in tg.decorators)

 	resolve() (tg.wsgiapp.TGApp method)

 	Response (class in tg.request_local)

S

 	

 	setup_app_env() (tg.wsgiapp.TGApp method)

 	setup_auth() (tg.configuration.AppConfig method)

 	setup_chameleon_genshi_renderer() (tg.configuration.AppConfig method)

 	setup_genshi_renderer() (tg.configuration.AppConfig method)

 	setup_helpers_and_globals() (tg.configuration.AppConfig method)

 	setup_jinja_renderer() (tg.configuration.AppConfig method)

 	setup_kajiki_renderer() (tg.configuration.AppConfig method)

 	setup_mako_renderer() (tg.configuration.AppConfig method)

 	

 	setup_ming() (tg.configuration.AppConfig method)

 	setup_persistence() (tg.configuration.AppConfig method)

 	setup_pylons_compatibility() (tg.wsgiapp.TGApp method)

 	setup_routes() (tg.configuration.AppConfig method)

 	setup_sqlalchemy() (tg.configuration.AppConfig method)

 	setup_tg_wsgi_app() (tg.configuration.AppConfig method)

 	signed_cookie() (tg.request_local.Request method)

 	

 	(tg.request_local.Response method)

T

 	

 	tg.configuration (module)

 	tg.decorators (module)

 	tg.flash (module)

 	tg.predicates (module), [1]

 	tg.render (module)

 	

 	tg.validation (module)

 	TGApp (class in tg.wsgiapp)

 	TGFlash (class in tg.flash)

 	TGValidationError

U

 	

 	use_custom_format() (in module tg.decorators)

V

 	

 	validate (class in tg.decorators)

W

 	

 	with_engine (class in tg.decorators)

 	

 	wrap_controller() (tg.configuration.hooks._TGHooks method)

 Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

 _static/tg2_files.jpg
The default paste ini

used for starting up

your TurboGears 2
Server.

Static files used in
your site go here.

be found in thi
folder.

Tests and
Configuration

[development.ini
(0 ez_sewp
(& helloworld
_init_py
(& config
init.py
app_cfg.py
[) deployment.ini
environment.py
middleware.py
(& controllers
init.py
13 controller.template
error.py
root.py
secure.py
template.py
@ i18n
& 1ib
_init_py
app_globals.py
base.py
helpers.py
(&3 model
(3 public
(3 templates
(0 tests
(33 websetup
_lnit__.py
bootstrap.py
schema.py
(& helloworld.egg-info
"] MANIFEST.in
README.txt
setup.cfg

ase initializat
data creation code.

you want you
schema to be.
created.

eyl setup.py and
@ setup.pyc setup.clg define how
[} testini to install your
package

_static/up-pressed.png

_static/plus.png

_static/hello-evalexception.jpg
(<[>][(&) [+] @ hup: siocainosts0sonello o cooge)

Module genshi.template.eval:136 in evaluate & view r
Module 2:10 in <Expression u'now.strftime('3¥')"> &
>>>data
[{}, {'select': <function select at 0x25551£0>}, {'select': <function select at 0x2555070>},
('XML': <function XML at 0x17£7£70>, 'tg flash': '', ‘header': <function header at 0x24fbib0>,
‘defined’: <function defined at 0x24£b270>, 'sidebar_top': <function sidebar top at
0x24£b3£0>, 'tmpl_context': <pylons.util.AttribSafeContext0bj at 0x23fbel0 action=u'route’,
controller=u'root', controller url=u'hello’, environ={'routes.route': <routes.base.Route
object at 0x2327e50>, 'H...ate'), form errors=(}, form values=UnicodeMultiDict([]),
pylons=<pylons.util.PylonsContext object at 0x23fb910>, start responses<function
repl_start response at 0x24£b1£0>, url=u'hello’, w=(]>, 'value of': <function value of at
0x24£b230>, 'HIML': <function HTML at 0x17b38b0>, 'sidebar bottom': <function sidebar_bottom
at 0x24£b430>, 'tg': <module 'tg’ from '/Users/markramm-
christensen/python/turbogears/trunk/tg/__init_.pyc'>, 'ET': <function ET at 0x17£2bb0>,
‘footer': <function footer at 0x24fb530>, 'resources': (}}]
data ({), {'select': <function select at 0x25551£0>), {'select': <function select at 0x2555070sg |
view
<< <div class="foottext">
<p>TurboGears 2 is a open source front-to-back web development
</div>
</aiv>
Module genshi.template.eval:267 in lookup_attr @ view
Module genshitemplate.eval:236 in _die ® view
UndefinedError: "now" not defined S

_static/basicmoves_oops.png
Traceback Extra Data Template Source
WebError Traceback:

~» UndefinedError: "hello" not defined

Viewas: Interactive | Text | XML (full)
URL: http://localhost:8080/

Module weberror.evalexception:431 in respond @ view

>> app._iter = self.application(environ, detect_start_response)
Module tg.configuration:643 in wrapper @ view

>> return app(environ, start_response)

Module tg.configuration:543 in remover @ view

>> return app(environ, start_response)

Module repoze.tm:19 in __call__ @ view

>>_result = seff.application(environ, save_status_and_headers)
Module repoze. who.middleware:107 in __call__ @ view
>> app._iter = app(environ, wrapper.wrap_start_response)
Module tw.core.middleware:36 in _call_ & view

>> return seff.wsgi_app(environ, start_response)

Module tw.core.middleware:59 in wsgi_app & _ view

>> resp = req.get_response(sel.application)

Module webob:1325 in get_response @ view
o

_static/hovercomment.png

_static/down.png

_static/nocomment.png

_static/up.png

_images/form_basic.png
ODIG &) (s rocssssomovsnes e Ty)

Welcome to TurboGears 2

The Python web metaframework

Create New Movie

Movie id
Tite

Description

Genreld
Release Date 6501
Genre

Directors ooy wisou

_images/field.png
D (@ 03 v caost0801moves T Giloors Q) @0

Welcome to TurboGears 2

The Python web metaframework

Create New Movie

st T

_images/validation.png
D (@ 03 v caost0801moves T Giloors Q) @0

Welcome to TurboGears 2

The Python web metaframework

Create New Movie

st T

_images/form_order.png
QP @) (o stk moseines &

S

Welcome to TurboGears 2

T The Python web metaframework

Create New Movie

Title

Description

Genre

Direcors i wis
Release Date morseos

_images/attrs.png
P @ 03 oot s080 ot new

R8O
)

Welcome to TurboGears 2

. The Python web metaframework

Create New Movie
Tite

Description

Release Date 2050007

Genre

Directors

tona Ttz

_images/require.png
D (@ 03 v caost0801moves T Giloors Q) @0

Welcome to TurboGears 2

The Python web metaframework

Create New Movie

st T

_images/poedit.png
Fchier _Edtion _Catalogus _ Affichage Marque-pages _ Ads

eRIsz &

orna Trasion]

G2 Tac repository

[pepat Tac deto2

12.% trackits, 127 chaines (0 trachites approximativement, 0 marqueurs incorrects, 111 a tradtire)

_images/form_update_params.png

_images/add_field.png
S

Welcome to TurboGears 2

A The Python web metaframework

Create New Movie

Tide

Description

Description?

Genre

Directors

Release Date 5or64.5

search.html

 Navigation

 		
 index

 		
 modules |

 		TurboGears 2.3.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013 by the TurboGears Doc Team.
 Created using Sphinx 1.2.2.

_images/validator.png
D (@ 03 v caost0801moves T Giloors Q) @0

Welcome to TurboGears 2

The Python web metaframework

Create New Movie

st T

_images/form_dropdown.png

_images/form_omit.png
QP @) (o stk moseines

S

Welcome to TurboGears 2

T The Python web metaframework

Create New Movie

Title

Description

Release Date morseos |
Genre

_static/g_gear.png

_static/hello-oops.jpg
(e Lo HEILI® v tocaostzasometo - CETD

Traceback Extra Data Template Source

Error Traceback:
~UndefinedError: "now" not defined View as: Interactive | Text | XML (full)

URL: http://localhost:8080/hello

Module weberror.evalexception.middieware:364 in respond @ view

>> app_iter = self.application(environ, detect start response)
Module toscawidgets. middieware:40 in _call @ view

>> return self.usgi app(environ, start response)

Module paste.registry:334 in __call, B view

>> app_iter = self.application(environ, star
Module toscawidgets.middleware:55 in wsgi_app ® view

>> app_iter = self.application(environ, start_response)

Module beaker.middieware:74 in_call @ view
>> return self.app(environ, start response)

Module beaker.middleware:145 in _call @ view

>> return self.wrap app(environ, session start response)
Module routes.middleware:99 in _call__ @ view

>> response = self.app(environ, start_response)
Module pylons.wsgiapp:95 in _call B view

>> response = self.dispatch(controller, environ, start_response)
Module pylons.wsgiapp:259 in dispatch & view - o

>> return controller(environ, start_response)

_static/down-pressed.png

_static/file.png

_static/turbogears.png

_images/password.png
QD @ GO @ [l mormscmsoommasirer) @G

The Python web metaframework

Create New Movie

Title

Description

Release Date 505 0655

Genre —

Directors

[

_static/preview.png

_static/comment-close.png

_static/comment.png

_static/poedit.png
Fchier _Edtion _Catalogus _ Affichage Marque-pages _ Ads

eRIsz &

orna Trasion]

G2 Tac repository

[pepat Tac deto2

12.% trackits, 127 chaines (0 trachites approximativement, 0 marqueurs incorrects, 111 a tradtire)

_static/openid-login.png

_static/contents.png

_static/minus.png

_static/basicmoves_flash.png
7 Hello World

_static/header.png
TURBOLZEARS

the rapid web development megaframework:
youve been looking for.

_static/comment-bright.png

_static/menu_rpt.png

_static/navigation.png

_static/ajax-loader.gif

_static/basicmoves_debug_expanded.png
Module genshi.template.base:320 in _eval view:
>> result = _eval_expr(data, ctxt, **vars)
Module genshi.template.base:286 in _eval_expr view
>>retval = expr.evaluate(ctxt)
Module genshi.template.eval: 180 in evaluate view
Module 7:16 in <Expression u'hello’> view
<< <body>
<h1 py:conten

<div id="getting_started">
Module genshi.template.eval:306 in lookup_nane &

ello'>Nello variable replaces this text</h1>

>>> data.get(*hello’, 'not defined')
"not defined'

| Execute || Expand |

__traceback_hide__ True
as <class 'genshi.template.eval .StrictLookup'>

data [{'defined': <function defined at 8x9850d84>, 'header': <function header at 0x9856f7c>, il
name “hello’

val <object object at Gxb7ce2548>

view

Module gensh.template.eval:405 in undefined view

UndefinedError: "hello” not defined

TURBOGEARS ONLINE ASSISTANCE Extra Features

>> Display the lines of code near each part of the traceback
‘Show a debug prompt to allow you to directly debug the code

at the traceback.

| Re-RET Dame |

_static/top.png

_static/bg_rpt.png

