

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	TurboGears 2.3.0b2 documentation

The TurboGears documentation

	
Get Started

	
Recipes and Tips

	
Extensions and Tools

	
About TurboGears

	
Index and API Reference

The TurboGears Web Framework

TurboGears is an ObjectDispatch based Python web development framework made for rapid projects development.

from tg import expose
from helloworld.lib.base import BaseController

class RootController(BaseController):
 @expose()
 def index(self):
 return "<h1>Hello World</h1>"

TurboGears is meant to run inside python virtualenv and provides its own private index to
avoid messing with your system packages and to provide a reliable set of packages that will
correctly work together.

$ virtualenv --no-site-packages tg2env
$ source tg2env/bin/activate
(tg2env)$ easy_install -i http://tg.gy/current tg.devtools

To try TurboGears feel free to quickstart a new TurboGears application and start
playing around:

(tg2env)$ paster quickstart -n -x example
(tg2env)$ cd example/
(tg2env)$ python setup.py develop
(tg2env)$ paster serve development.ini

Visiting http://localhost:8080/index you will see a ready made sample application
with a brief introduction to the framework itself.

Explore the TurboGears Tutorials to get started with TurboGears!

 Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	tg2.3.0b2

 	rtfd2.3.0b1

 	rtfd2.2.2

 	latest

 	development

 Navigation

 	
 index

 	
 modules |

 	TurboGears 2.3.0b2 documentation

 Python Module Index

 b |
 f |
 p |
 r |
 t |
 w

 			

 		
 b	

 	[image: -]
 	
 beaker	

 	
 	
 beaker.cache	

 	
 	
 beaker.container	

 	
 	
 beaker.ext.database	

 	
 	
 beaker.ext.memcached	

 	
 	
 beaker.middleware	

 	
 	
 beaker.session	

 	
 	
 beaker.synchronization	

 	
 	
 beaker.util	

 			

 		
 f	

 	[image: -]
 	
 formencode	

 	
 	
 formencode.api	

 	
 	
 formencode.compound	

 	
 	
 formencode.foreach	

 	
 	
 formencode.htmlfill	

 	
 	
 formencode.schema	

 	
 	
 formencode.validators	

 			

 		
 p	

 	[image: -]
 	
 pylons	

 	
 	
 pylons.commands	

 	
 	
 pylons.configuration	

 	
 	
 pylons.controllers	

 	
 	
 pylons.controllers.core	

 	
 	
 pylons.controllers.util	

 	
 	
 pylons.controllers.xmlrpc	

 	
 	
 pylons.decorators	

 	
 	
 pylons.decorators.cache	

 	
 	
 pylons.decorators.rest	

 	
 	
 pylons.decorators.secure	

 	
 	
 pylons.error	

 	
 	
 pylons.i18n.translation	

 	
 	
 pylons.log	

 	
 	
 pylons.middleware	

 	
 	
 pylons.templating	

 	
 	
 pylons.test	

 	
 	
 pylons.util	

 	
 	
 pylons.wsgiapp	

 			

 		
 r	

 	[image: -]
 	
 repoze	

 	
 	
 repoze.who	
 Setup authentication in WSGI applications

 	[image: -]
 	
 routes	

 	
 	
 routes.mapper	

 	
 	
 routes.route	

 	
 	
 routes.util	

 			

 		
 t	

 	[image: -]
 	
 tg	

 	
 	
 tg.configuration	

 	
 	
 tg.controllers	

 	
 	
 tg.decorators	

 	
 	
 tg.flash	

 	
 	
 tg.predicates	
 built-in predicate checkers.

 	[image: -]
 	
 tgext	

 	
 	
 tgext.geo.commands	

 			

 		
 w	

 	[image: -]
 	
 weberror	

 	
 	
 weberror.collector	

 	
 	
 weberror.errormiddleware	

 	
 	
 weberror.evalcontext	

 	
 	
 weberror.evalexception	

 	
 	
 weberror.formatter	

 	
 	
 weberror.reporter	

 	[image: -]
 	
 webhelpers	

 	
 	
 webhelpers.date	

 	
 	
 webhelpers.feedgenerator	

 	
 	
 webhelpers.html.converters	

 	
 	
 webhelpers.html.tags	

 	
 	
 webhelpers.html.tools	

 	
 	
 webhelpers.mimehelper	

 	
 	
 webhelpers.misc	

 	
 	
 webhelpers.number	

 	
 	
 webhelpers.paginate	

 	
 	
 webhelpers.pylonslib	

 	
 	
 webhelpers.text	

 	[image: -]
 	
 webob	

 	
 	
 webob.byterange	

 	
 	
 webob.cachecontrol	

 	
 	
 webob.etag	

 	
 	
 webob.exc	

 	
 	
 webob.multidict	

 Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	tg2.3.0b2

 	rtfd2.3.0b1

 	rtfd2.2.2

 	latest

 	development

 Navigation

 	
 index

 	
 modules |

 	TurboGears 2.3.0b2 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

_

 	

 	__call__() (pylons.controllers.core.WSGIController method)

 	

 	(pylons.controllers.xmlrpc.XMLRPCController method)

 	(pylons.wsgiapp.PylonsApp method)

 	(webhelpers.pylonslib.Flash method)

 	__init__() (formencode.api.Invalid method)

 	

 	(pylons.middleware.StatusCodeRedirect method)

 	(routes.mapper.Mapper method)

 	(routes.route.Route method)

 	(webhelpers.feedgenerator.SyndicationFeed method)

 	(webhelpers.html.tags.ModelTags method)

 	(webhelpers.pylonslib.Flash method)

 	_cgi_FieldStorage__repr__patch() (in module webob.request)

 	_dispatch_call() (pylons.controllers.core.WSGIController method)

 	

 	_get_method_args() (pylons.controllers.core.WSGIController method)

 	_inspect_call() (pylons.controllers.core.WSGIController method)

 	_perform_call() (pylons.controllers.core.WSGIController method)

 	_str2html() (in module weberror.formatter)

A

 	

 	abort() (in module pylons.controllers.util)

 	AbstractFormatter (class in weberror.formatter)

 	Accept (class in webob.acceptparse)

 	accept_html() (webob.acceptparse.MIMEAccept method)

 	accept_ranges (webob.Response attribute)

 	accepts_html (webob.acceptparse.MIMEAccept attribute)

 	add() (webob.multidict.MultiDict method)

 	

 	(webob.multidict.UnicodeMultiDict method)

 	add_alias() (webhelpers.mimehelper.MIMETypes class method)

 	add_core_middleware() (tg.configuration.AppConfig method)

 	add_error_middleware() (tg.configuration.AppConfig method)

 	add_fallback() (in module pylons.i18n.translation)

 	add_item() (webhelpers.feedgenerator.SyndicationFeed method)

 	add_item_elements() (webhelpers.feedgenerator.SyndicationFeed method)

 	add_root_elements() (webhelpers.feedgenerator.SyndicationFeed method)

 	add_tm_middleware() (tg.configuration.AppConfig method)

 	add_tosca2_middleware() (tg.configuration.AppConfig method)

 	add_tosca_middleware() (tg.configuration.AppConfig method)

 	after_render (class in tg.decorators)

 	

 	age (webob.Response attribute)

 	All (class in formencode.compound)

 	

 	(class in tg.predicates)

 	all() (in module webhelpers.misc)

 	all_messages() (formencode.api.Validator class method)

 	allow (webob.Response attribute)

 	Any (class in formencode.compound)

 	

 	(class in tg.predicates)

 	any() (in module webhelpers.misc)

 	AnyETag (in module webob.etag)

 	app_globals

 	app_iter (webob.Response attribute)

 	app_iter_range() (webob.Response method)

 	AppConfig (class in tg.configuration)

 	AppIterRange (class in webob.response)

 	AttribSafeContextObj (class in pylons.util)

 	authenticate_form() (in module pylons.decorators.secure)

 	auto_discovery_link() (in module webhelpers.html.tags)

 	auto_link() (in module webhelpers.html.tools)

B

 	

 	b64decode() (in module beaker.session)

 	b64encode() (in module beaker.session)

 	base64encode() (formencode.api.FancyValidator method)

 	beaker.cache (module)

 	beaker.container (module)

 	beaker.ext.database (module)

 	beaker.ext.memcached (module)

 	beaker.middleware (module)

 	beaker.session (module)

 	beaker.synchronization (module)

 	beaker.util (module)

 	beaker_cache() (in module pylons.decorators.cache)

 	

 	before_call (class in tg.decorators)

 	before_render (class in tg.decorators)

 	before_validate (class in tg.decorators)

 	best_match() (webob.acceptparse.Accept method)

 	best_matches() (webob.acceptparse.Accept method)

 	body (webob.Response attribute)

 	body_file (webob.Response attribute)

 	Bool (class in formencode.validators)

 	buildfullreg() (routes.route.Route method)

 	buildnextreg() (routes.route.Route method)

 	button_to() (in module webhelpers.html.tools)

C

 	

 	c

 	Cache (class in beaker.cache)

 	cache() (beaker.cache.CacheManager method)

 	cache_control (webob.Response attribute)

 	CacheControl (class in webob.cachecontrol)

 	cached_template() (in module pylons.templating)

 	CacheManager (class in beaker.cache)

 	CacheMiddleware (class in beaker.middleware)

 	charset (webob.Response attribute)

 	checkbox() (in module webhelpers.html.tags)

 	

 	(webhelpers.html.tags.ModelTags method)

 	chop_at() (in module webhelpers.text)

 	CIDR (class in formencode.validators)

 	clear() (beaker.cache.Cache method)

 	coerce_cache_params() (in module beaker.util)

 	coerce_session_params() (in module beaker.util)

 	collect_exception() (in module weberror.collector)

 	conditional_response_app() (webob.Response method)

 	ConditionSynchronizer (class in beaker.synchronization)

 	ConfirmType (class in formencode.validators)

 	connect() (routes.mapper.Mapper method)

 	Constant (class in formencode.validators)

 	Container (class in beaker.container)

 	ContainerContext (in module beaker.container)

 	content (pylons.controllers.util.Response attribute)

 	

 	content_disposition (webob.Response attribute)

 	content_encoding (webob.Response attribute)

 	content_language (webob.Response attribute)

 	content_length (webob.Response attribute)

 	content_location (webob.Response attribute)

 	content_md5 (webob.Response attribute)

 	content_range (webob.Response attribute)

 	content_range() (webob.byterange.Range method)

 	content_type (webob.Response attribute)

 	content_type_params (webob.Response attribute)

 	ContentRange (class in webob.byterange)

 	ContextObj (class in pylons.util)

 	ControllerCommand (class in pylons.commands)

 	convert_boolean_attrs() (in module webhelpers.html.tags)

 	convert_or_none() (in module webhelpers.misc)

 	copy() (webob.cachecontrol.CacheControl method)

 	

 	(webob.Response method)

 	count_true() (in module webhelpers.misc)

 	create_regs() (routes.mapper.Mapper method)

 	create_text_node() (in module weberror.formatter)

 	CreationAbortedError (class in beaker.container)

 	CreditCardExpires (class in formencode.validators)

 	CreditCardSecurityCode (class in formencode.validators)

 	CreditCardValidator (class in formencode.validators)

D

 	

 	DatabaseContainer (class in beaker.ext.database)

 	DatabaseNamespaceManager (class in beaker.ext.database)

 	date (webob.Response attribute)

 	date() (webhelpers.html.tags.ModelTags method)

 	DateConverter (class in formencode.validators)

 	DateValidator (class in formencode.validators)

 	DBMContainer (class in beaker.container)

 	DBMNamespaceManager (class in beaker.container)

 	DecoratedController (class in tg.controllers)

 	Decoration (class in tg.decorators)

 	

 	default_denial_handler() (tg.decorators.require method)

 	default_formatter() (in module formencode.htmlfill)

 	delete_cookie() (webob.Response method)

 	determine_browser_charset() (pylons.controllers.util.Request method)

 	dict_of_lists() (webob.multidict.MultiDict method)

 	

 	(webob.multidict.UnicodeMultiDict method)

 	DictConverter (class in formencode.validators)

 	dispatch() (pylons.wsgiapp.PylonsApp method)

 	dispatch_on() (in module pylons.decorators.rest)

 	distance_of_time_in_words() (in module webhelpers.date)

E

 	

 	Email (class in formencode.validators)

 	EmailReporter (class in weberror.reporter)

 	emit() (pylons.log.WSGIErrorsHandler method)

 	Empty (class in formencode.validators)

 	Enclosure (class in webhelpers.feedgenerator)

 	encode_content() (webob.Response method)

 	encoded_path() (in module beaker.util)

 	encoding (webob.response.ResponseBodyFile attribute)

 	end_form() (in module webhelpers.html.tags)

 	environ (webob.Response attribute)

 	ErrorHandler() (in module pylons.middleware)

 	ErrorMiddleware (class in weberror.errormiddleware)

 	escape_formatter() (in module formencode.htmlfill)

 	escapenl_formatter() (in module formencode.htmlfill)

 	

 	ETag

 	etag (webob.Response attribute)

 	etag_cache() (in module pylons.controllers.util)

 	ETagMatcher (class in webob.etag)

 	EvalContext (class in weberror.evalcontext)

 	EvalException (class in weberror.evalexception)

 	ExceptionCollector (class in weberror.collector)

 	ExceptionFrame (class in weberror.collector)

 	excerpt() (in module webhelpers.text)

 	exists_property (class in webob.cachecontrol)

 	expires (webob.Response attribute)

 	expose (class in tg.decorators)

 	extend() (routes.mapper.Mapper method)

F

 	

 	FakeCGIBody (class in webob.request)

 	FancyValidator (class in formencode.api)

 	FieldsMatch (class in formencode.validators)

 	FieldStorageUploadConverter (class in formencode.validators)

 	file() (in module webhelpers.html.tags)

 	

 	(webhelpers.html.tags.ModelTags method)

 	FileContainer (class in beaker.container)

 	FileNamespaceManager (class in beaker.container)

 	FileReporter (class in weberror.reporter)

 	FileSynchronizer (class in beaker.synchronization)

 	FileUploadKeeper (class in formencode.validators)

 	FillingParser (class in formencode.htmlfill)

 	filter_frames() (weberror.formatter.AbstractFormatter method)

 	find_controller() (pylons.wsgiapp.PylonsApp method)

 	first_match() (webob.acceptparse.Accept method)

 	Flash (class in webhelpers.pylonslib)

 	flush() (pylons.log.WSGIErrorsHandler method)

 	ForEach (class in formencode.foreach)

 	

 	form() (in module webhelpers.html.tags)

 	format_frame_end() (weberror.formatter.AbstractFormatter method)

 	format_frame_start() (weberror.formatter.AbstractFormatter method)

 	format_html() (in module weberror.formatter)

 	format_number() (in module webhelpers.number)

 	format_text() (in module weberror.formatter)

 	format_xml() (in module weberror.formatter)

 	formencode.api (module)

 	formencode.compound (module)

 	formencode.foreach (module)

 	formencode.htmlfill (module)

 	formencode.schema (module)

 	formencode.validators (module)

 	FormValidator (class in formencode.validators)

 	forward() (in module pylons.controllers.util)

 	from_fieldstorage() (webob.multidict.MultiDict class method)

 	from_file() (webob.Response class method)

G

 	

 	g

 	generate() (routes.mapper.Mapper method)

 	

 	(routes.route.Route method)

 	generate_minimized() (routes.route.Route method)

 	generate_non_minimized() (routes.route.Route method)

 	get() (beaker.cache.Cache method)

 	get_flash() (in module tg.flash)

 	get_lang() (in module pylons.i18n.translation)

 	get_source_line() (weberror.collector.ExceptionFrame method)

 	

 	get_status() (in module tg.flash)

 	get_value() (beaker.cache.Cache method)

 	get_wsgierrors() (pylons.log.WSGIErrorsHandler method)

 	getall() (webob.multidict.MultiDict method)

 	

 	(webob.multidict.UnicodeMultiDict method)

 	getone() (webob.multidict.MultiDict method)

 	

 	(webob.multidict.UnicodeMultiDict method)

 	gettext() (in module pylons.i18n.translation)

 	gettext_noop() (in module pylons.i18n.translation)

H

 	

 	h

 	has_all_permissions (class in tg.predicates)

 	has_any_permission (class in tg.predicates)

 	has_permission (class in tg.predicates)

 	headerlist (webob.Response attribute)

 	headers (webob.Response attribute)

 	hidden() (in module webhelpers.html.tags)

 	

 	(webhelpers.html.tags.ModelTags method)

 	highlight() (in module webhelpers.html.tools)

 	html_escape() (in module webob)

 	html_quote() (in module weberror.formatter)

 	HTMLFormatter (class in weberror.formatter)

 	HTTPAccepted (class in webob.exc)

 	HTTPBadGateway (class in webob.exc)

 	HTTPBadRequest (class in webob.exc)

 	HTTPClientError (class in webob.exc)

 	HTTPConflict (class in webob.exc)

 	HTTPCreated (class in webob.exc)

 	HTTPError (class in webob.exc)

 	HTTPException (class in webob.exc)

 	HTTPExceptionMiddleware (class in webob.exc)

 	HTTPExpectationFailed (class in webob.exc)

 	HTTPFailedDependency (class in webob.exc)

 	HTTPForbidden (class in webob.exc)

 	HTTPFound (class in webob.exc)

 	HTTPGatewayTimeout (class in webob.exc)

 	HTTPGone (class in webob.exc)

 	HTTPInsufficientStorage (class in webob.exc)

 	HTTPInternalServerError (class in webob.exc)

 	HTTPLengthRequired (class in webob.exc)

 	HTTPLocked (class in webob.exc)

 	HTTPMethodNotAllowed (class in webob.exc)

 	

 	HTTPMovedPermanently (class in webob.exc)

 	HTTPMultipleChoices (class in webob.exc)

 	HTTPNoContent (class in webob.exc)

 	HTTPNonAuthoritativeInformation (class in webob.exc)

 	HTTPNotAcceptable (class in webob.exc)

 	HTTPNotFound (class in webob.exc)

 	HTTPNotImplemented (class in webob.exc)

 	HTTPNotModified (class in webob.exc)

 	HTTPOk (class in webob.exc)

 	HTTPPartialContent (class in webob.exc)

 	HTTPPaymentRequired (class in webob.exc)

 	HTTPPreconditionFailed (class in webob.exc)

 	HTTPProxyAuthenticationRequired (class in webob.exc)

 	HTTPRedirection (class in webob.exc)

 	HTTPRequestEntityTooLarge (class in webob.exc)

 	HTTPRequestRangeNotSatisfiable (class in webob.exc)

 	HTTPRequestTimeout (class in webob.exc)

 	HTTPRequestURITooLong (class in webob.exc)

 	HTTPResetContent (class in webob.exc)

 	https (class in tg.decorators)

 	https() (in module pylons.decorators.secure)

 	HTTPSeeOther (class in webob.exc)

 	HTTPServerError (class in webob.exc)

 	HTTPServiceUnavailable (class in webob.exc)

 	HTTPTemporaryRedirect (class in webob.exc)

 	HTTPUnauthorized (class in webob.exc)

 	HTTPUnprocessableEntity (class in webob.exc)

 	HTTPUnsupportedMediaType (class in webob.exc)

 	HTTPUseProxy (class in webob.exc)

 	HTTPVersionNotSupported (class in webob.exc)

I

 	

 	if_empty (formencode.api.FancyValidator attribute)

 	if_invalid (formencode.api.FancyValidator attribute)

 	if_invalid_python (formencode.api.FancyValidator attribute)

 	if_missing (formencode.api.Validator attribute)

 	IfRange (class in webob.etag)

 	image() (in module webhelpers.html.tags)

 	in_all_groups (class in tg.predicates)

 	in_any_group (class in tg.predicates)

 	in_group (class in tg.predicates)

 	IndexListConverter (class in formencode.validators)

 	

 	init() (webhelpers.mimehelper.MIMETypes class method)

 	init_app() (pylons.configuration.PylonsConfig method)

 	init_config() (tg.configuration.AppConfig method)

 	Int (class in formencode.validators)

 	Invalid (class in formencode.api)

 	invalidate() (beaker.cache.CacheManager method)

 	IPhoneNumberValidator (class in formencode.validators)

 	is_user (class in tg.predicates)

 	is_validator() (in module formencode.api)

 	item_attributes() (webhelpers.feedgenerator.SyndicationFeed method)

J

 	

 	javascript_link() (in module webhelpers.html.tags)

 	

 	jsonify() (in module pylons.decorators)

L

 	

 	LanguageError

 	last_modified (webob.Response attribute)

 	latest_post_date() (webhelpers.feedgenerator.SyndicationFeed method)

 	lazify() (in module pylons.i18n.translation)

 	LazyString (class in pylons.i18n.translation)

 	lchop() (in module webhelpers.text)

 	link_to() (in module webhelpers.html.tags)

 	link_to_if() (in module webhelpers.html.tags)

 	

 	link_to_unless() (in module webhelpers.html.tags)

 	load_test_env() (pylons.wsgiapp.PylonsApp method)

 	location (webob.Response attribute)

 	LogReporter (class in weberror.reporter)

 	long_item_list() (weberror.formatter.AbstractFormatter method)

 	lookup_template_engine() (tg.decorators.Decoration method)

 	lurl() (in module tg.controllers)

M

 	

 	MACAddress (class in formencode.validators)

 	mail_to() (in module webhelpers.html.tools)

 	make_full_route() (routes.route.Route method)

 	make_load_environment() (tg.configuration.AppConfig method)

 	make_pre_wrappable() (in module weberror.formatter)

 	make_unicode() (routes.route.Route method)

 	make_wrappable() (in module weberror.formatter)

 	makeregexp() (routes.route.Route method)

 	Mapnik

 	Mapper (class in routes.mapper)

 	markdown() (in module webhelpers.html.converters)

 	MasterClass (webob.acceptparse.MIMENilAccept attribute)

 	

 	(webob.acceptparse.NilAccept attribute)

 	match() (routes.mapper.Mapper method)

 	

 	(routes.route.Route method)

 	(webob.etag.IfRange method)

 	match_response() (webob.etag.IfRange method)

 	MaxLength (class in formencode.validators)

 	md5_etag() (webob.Response method)

 	

 	mean() (in module webhelpers.number)

 	media() (weberror.evalexception.EvalException method)

 	median() (in module webhelpers.number)

 	MemcachedContainer (class in beaker.ext.memcached)

 	MemcachedNamespaceManager (class in beaker.ext.memcached)

 	MemoryContainer (class in beaker.container)

 	MemoryNamespaceManager (class in beaker.container)

 	merge_cookies() (webob.Response method)

 	MIMEAccept (class in webob.acceptparse)

 	MIMENilAccept (class in webob.acceptparse)

 	mimetype() (webhelpers.mimehelper.MIMETypes method)

 	MIMETypes (class in webhelpers.mimehelper)

 	MinLength (class in formencode.validators)

 	mixed() (webob.multidict.MultiDict method)

 	

 	(webob.multidict.UnicodeMultiDict method)

 	ModelTags (class in webhelpers.html.tags)

 	MultiDict (class in webob.multidict)

N

 	

 	NameLock (class in beaker.synchronization)

 	NamespaceManager (class in beaker.container)

 	NestedMultiDict (class in webob.multidict)

 	ngettext() (in module pylons.i18n.translation)

 	NilAccept (class in webob.acceptparse)

 	no() (in module webhelpers.misc)

 	no_escape() (in module webob.exc)

 	NoAccept (class in webob.acceptparse)

 	

 	NoETag (in module webob.etag)

 	NoIfRange (in module webob.etag)

 	none_formatter() (in module formencode.htmlfill)

 	Not (class in tg.predicates)

 	not_anonymous (class in tg.predicates)

 	NotEmpty (class in formencode.validators)

 	NoVars (class in webob.multidict)

 	Number (class in formencode.validators)

O

 	

 	OneOf (class in formencode.validators)

 	

 	override_template() (in module tg.decorators)

P

 	

 	Page (class in webhelpers.paginate)

 	pager() (webhelpers.paginate.Page method)

 	paginate (class in tg.decorators)

 	parse() (webob.acceptparse.Accept static method)

 	

 	(webob.byterange.ContentRange class method)

 	(webob.byterange.Range class method)

 	(webob.cachecontrol.CacheControl class method)

 	(webob.etag.ETagMatcher class method)

 	(webob.etag.IfRange class method)

 	parse_bytes() (webob.byterange.Range static method)

 	password() (in module webhelpers.html.tags)

 	

 	(webhelpers.html.tags.ModelTags method)

 	percent_of() (in module webhelpers.number)

 	PhoneNumber (class in formencode.validators)

 	PlainText (class in formencode.validators)

 	plural() (in module webhelpers.text)

 	pop_messages() (webhelpers.pylonslib.Flash method)

 	PostalCode (class in formencode.validators)

 	pragma (webob.Response attribute)

 	pretty_string_repr() (weberror.formatter.AbstractFormatter method)

 	pylons.commands (module)

 	pylons.configuration (module)

 	pylons.controllers (module)

 	pylons.controllers.core (module)

 	pylons.controllers.util (module)

 	

 	pylons.controllers.xmlrpc (module)

 	pylons.decorators (module)

 	pylons.decorators.cache (module)

 	pylons.decorators.rest (module)

 	pylons.decorators.secure (module)

 	pylons.error (module)

 	pylons.i18n.translation (module)

 	pylons.log (module)

 	pylons.middleware (module)

 	pylons.templating (module)

 	pylons.test (module)

 	pylons.util (module)

 	pylons.wsgiapp (module)

 	pylons_globals() (in module pylons.templating)

 	PylonsApp (class in pylons.wsgiapp)

 	PylonsConfig (class in pylons.configuration)

 	PylonsContext (class in pylons.util)

 	PylonsPlugin (class in pylons.test)

 	
 Python Enhancement Proposals

 	

 	PEP 333, [1]

Q

 	

 	quality() (webob.acceptparse.Accept method)

R

 	

 	radio() (in module webhelpers.html.tags)

 	

 	(webhelpers.html.tags.ModelTags method)

 	Range (class in webob.byterange)

 	range_for_length() (webob.byterange.Range method)

 	rchop() (in module webhelpers.text)

 	redirect() (in module tg.controllers)

 	

 	(routes.mapper.Mapper method)

 	redirect_to() (in module routes.util)

 	Regex (class in formencode.validators)

 	region() (beaker.cache.CacheManager method)

 	region_invalidate() (beaker.cache.CacheManager method)

 	register_custom_template_engine() (tg.decorators.Decoration method)

 	register_globals() (pylons.wsgiapp.PylonsApp method)

 	register_hook() (tg.decorators.Decoration method)

 	register_template_engine() (tg.decorators.Decoration method)

 	relay() (weberror.evalexception.EvalException method)

 	render() (in module formencode.htmlfill)

 	render_genshi() (in module pylons.templating)

 	render_mako() (in module pylons.templating)

 	Reporter (class in weberror.reporter)

 	repoze.who (module)

 	

 	Request (class in pylons.controllers.util)

 	

 	(class in webob)

 	request (webob.Response attribute)

 	RequestClass (webob.Response attribute)

 	require (class in tg.decorators)

 	RequireIfMissing (class in formencode.validators)

 	resolve() (pylons.wsgiapp.PylonsApp method)

 	resource() (routes.mapper.Mapper method)

 	Response (class in pylons.controllers.util)

 	

 	(class in webob)

 	ResponseBodyFile (class in webob.response)

 	RestController (class in tg.controllers)

 	RestControllerCommand (class in pylons.commands)

 	restrict() (in module pylons.decorators.rest)

 	retry_after (webob.Response attribute)

 	root_attributes() (webhelpers.feedgenerator.SyndicationFeed method)

 	Route (class in routes.route)

 	routematch() (routes.mapper.Mapper method)

 	routes.mapper (module)

 	routes.route (module)

 	routes.util (module)

S

 	

 	satisfiable() (webob.byterange.Range method)

 	Schema (class in formencode.schema)

 	select() (in module webhelpers.html.tags)

 	

 	(webhelpers.html.tags.ModelTags method)

 	serialize_cache_control() (in module webob.cachecontrol)

 	server (webob.Response attribute)

 	Session (class in beaker.session)

 	SessionMiddleware (class in beaker.middleware)

 	SessionObject (class in beaker.session)

 	Set (class in formencode.validators)

 	set_cookie() (webob.Response method)

 	set_lang() (in module pylons.i18n.translation)

 	setup_app_env() (pylons.wsgiapp.PylonsApp method)

 	setup_genshi_renderer() (tg.configuration.AppConfig method)

 	setup_helpers_and_globals() (tg.configuration.AppConfig method)

 	setup_jinja_renderer() (tg.configuration.AppConfig method)

 	setup_json_renderer() (tg.configuration.AppConfig method)

 	setup_kajiki_renderer() (tg.configuration.AppConfig method)

 	setup_mako_renderer() (tg.configuration.AppConfig method)

 	setup_routes() (tg.configuration.AppConfig method)

 	setup_sqlalchemy() (tg.configuration.AppConfig method)

 	setup_tg_wsgi_app() (tg.configuration.AppConfig method)

 	ShellCommand (class in pylons.commands)

 	signed_cookie() (pylons.controllers.util.Request method)

 	

 	(pylons.controllers.util.Response method)

 	SignedCookie (class in beaker.session)

 	SignedString (class in formencode.validators)

 	

 	SimpleFormValidator (class in formencode.schema)

 	SimpleStats (class in webhelpers.number)

 	standard_deviation() (in module webhelpers.number)

 	StateProvince (class in formencode.validators)

 	Stats (class in webhelpers.number)

 	status (webob.Response attribute)

 	status_int (webob.Response attribute)

 	StatusCodeRedirect (class in pylons.middleware)

 	str2html() (in module weberror.formatter)

 	String (class in formencode.validators)

 	StringBool (class in formencode.validators)

 	strip_leading_whitespace() (in module webhelpers.text)

 	strip_links() (in module webhelpers.html.tools)

 	strip_tags() (in module webob.exc)

 	StripField (class in formencode.validators)

 	stylesheet_link() (in module webhelpers.html.tags)

 	submit() (in module webhelpers.html.tags)

 	subvalidators() (formencode.api.Validator class method)

 	summary() (weberror.evalexception.EvalException method)

 	SyncDict (class in beaker.util)

 	SynchronizerImpl (class in beaker.synchronization)

 	SyndicationFeed (class in webhelpers.feedgenerator)

 	system_listMethods() (pylons.controllers.xmlrpc.XMLRPCController method)

 	system_methodHelp() (pylons.controllers.xmlrpc.XMLRPCController method)

 	system_methodSignature() (pylons.controllers.xmlrpc.XMLRPCController method)

T

 	

 	text (webob.Response attribute)

 	text() (in module webhelpers.html.tags)

 	

 	(webhelpers.html.tags.ModelTags method)

 	textarea() (in module webhelpers.html.tags)

 	

 	(webhelpers.html.tags.ModelTags method)

 	TextFormatter (class in weberror.formatter)

 	textilize() (in module webhelpers.html.converters)

 	tg.configuration (module)

 	tg.controllers (module)

 	tg.decorators (module)

 	tg.flash (module)

 	tg.predicates (module)

 	

 	TGController (class in tg.controllers)

 	tgext.geo.commands (module)

 	TGFlash (class in tg.flash)

 	ThreadLocal (class in beaker.util)

 	time_ago_in_words() (in module webhelpers.date)

 	TimeConverter (class in formencode.validators)

 	timedelta_to_seconds() (in module webob)

 	tmpl_context, [1]

 	truncate() (in module weberror.formatter)

 	

 	(in module webhelpers.text)

U

 	

 	ubody (webob.Response attribute)

 	ugettext() (in module pylons.i18n.translation)

 	ungettext() (in module pylons.i18n.translation)

 	unicode_body (webob.Response attribute)

 	UnicodeMultiDict (class in webob.multidict)

 	UnicodeString (class in formencode.validators)

 	unpack_errors() (formencode.api.Invalid method)

 	

 	unset_cookie() (webob.Response method)

 	update_dict (webob.cachecontrol.CacheControl attribute)

 	URL (class in formencode.validators)

 	url() (in module tg.controllers)

 	url_for() (in module routes.util)

 	use_custom_format() (in module tg.decorators)

V

 	

 	validate (class in tg.decorators)

 	validate() (in module pylons.decorators)

 	validate_other() (formencode.api.FancyValidator method)

 	validate_python() (formencode.api.FancyValidator method)

 	Validator (class in formencode.api)

 	value_property (class in webob.cachecontrol)

 	

 	vary (webob.Response attribute)

 	verify_directory() (in module beaker.util)

 	verify_options() (in module beaker.util)

 	verify_rules() (in module beaker.util)

 	view() (weberror.evalexception.EvalException method)

 	view_list() (webob.multidict.MultiDict class method)

W

 	

 	WeakValuedRegistry (class in beaker.util)

 	weberror (module)

 	weberror.collector (module)

 	weberror.errormiddleware (module)

 	weberror.evalcontext (module)

 	weberror.evalexception (module)

 	weberror.formatter (module)

 	weberror.reporter (module)

 	webhelpers.date (module)

 	webhelpers.feedgenerator (module)

 	webhelpers.html.converters (module)

 	webhelpers.html.tags (module)

 	webhelpers.html.tools (module)

 	webhelpers.mimehelper (module)

 	webhelpers.misc (module)

 	webhelpers.number (module)

 	webhelpers.paginate (module)

 	webhelpers.pylonslib (module)

 	webhelpers.text (module)

 	

 	webob (module)

 	webob.byterange (module)

 	webob.cachecontrol (module)

 	webob.etag (module)

 	webob.exc (module)

 	webob.multidict (module)

 	with_engine (class in tg.decorators)

 	with_trailing_slash (class in tg.decorators)

 	without_trailing_slash (class in tg.decorators)

 	wrap_paragraphs() (in module webhelpers.text)

 	Wrapper (class in formencode.validators)

 	write() (webhelpers.feedgenerator.SyndicationFeed method)

 	writeString() (webhelpers.feedgenerator.SyndicationFeed method)

 	WSGIAppController (class in tg.controllers)

 	WSGIAppReporter (class in weberror.reporter)

 	WSGIController (class in pylons.controllers.core)

 	WSGIErrorsHandler (class in pylons.log)

 	WSGIHTTPException (class in webob.exc)

 	www_authenticate (webob.Response attribute)

X

 	

 	XMLFormatter (class in weberror.formatter)

 	

 	XMLRPCController (class in pylons.controllers.xmlrpc)

 Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	tg2.3.0b2

 	rtfd2.3.0b1

 	rtfd2.2.2

 	latest

 	development

 _static/openid-login.png

_images/arrow-left.png

_images/hgclone.png
i bitbucket Home Reposiories + Account (inbox Plans Help Log out Gedesen) |7 ‘l

Overview | Downloads (0) Source | Changesets Wiki Issues (0)» Admin Followers (0) ForksiQueues (0)

R branches» ¢ tags » RSS

Aom e pullrequest & fork & paichqueue W follow | get source »

fork of hg-git

pedersen / hg-git
Fixes to make hg-git work on Python 2.3

hg clone https://pedersengbitbucket.org/pedersenshg

Shortog (showing r178:94368a45fees (ip) - r1545c5840bbBaa)

age Author Hessage «
2 weeks & Michael J. Pedersen These changes allow hg-git to work with Python 2.4, which is the default python. 0 30
6 weeks B scotty only look for renames if the file has changed 01 0

6 weeks B scotty fix to previously written tree hash calculation 01 0

main/RestControllers.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Developing RESTful Web Applications with TurboGears

If you are developing an application where you want to expose your
database using a stateless API, tg.controllers.RestController
might be for you. If you want to serve resources with multiple
formats, and handle embedded resource lookup, you might find
RestController useful. If you want to provide simple URLs which are
consistent across all of the data shared and manipulated in your
application, RestController is probably worth a look.

Unlike TGController, RestController provides a mechanism to access the
request’s method, not just the URL. If you are not familiar with how
HTTP requests work, think for a minute about the difference between
sending a form with GET and POST. Primarily, developers use POST to
send data to modify the database. They use GET to retrieve data.
These are HTTP methods.

Standard HTTP verbiage includes: GET, POST, PUT, and DELETE.
RestController supports these, and also adds a few shortcuts for URL
dispatch that makes displaying the data as forms and lists a little
easier for the user. The API docs describe each of the supported
controller functions in brief, so use that if you already understand
REST and need a quick way to start using it, this document will be
your guide. It is intended to provide a step-by-step example of how to
implement REST using RestController.

Working Example of RestController

We return to our faithful workhorse Movie Demo for this Tutorial. I
will not be using ToscaWidgets or Sprox for this demonstration, just
simple forms and validators, along with HTML templates. Creating the
templates and validators by hand is tedious work, but provides the
lowest level description of the problem, so that we cannot be
distracted from the task at hand: understanding RESTful dispatch as it
pertains to TurboGears. The displays will likely be primitive, but
will express the needs of the Tutorial. Here is the Model used to
develop this controller:

from sqlalchemy import Column, Integer, String, Date, Text, ForeignKey, Table
from sqlalchemy.orm import relation

from moviedemo.model import DeclarativeBase, metadata

movie_directors_table = Table('movie_directors', metadata,
 Column('movie_id', Integer, ForeignKey('movies.movie_id'), primary_key = True),
 Column('director_id', Integer, ForeignKey('directors.director_id'), primary_key = True))

class Genre(DeclarativeBase):
 __tablename__ = "genres"
 genre_id = Column(Integer, primary_key=True)
 name = Column(String(100))

class Movie(DeclarativeBase):
 __tablename__ = "movies"
 movie_id = Column(Integer, primary_key=True)
 title = Column(String(100), nullable=False)
 description = Column(Text, nullable=True)
 genre_id = Column(Integer, ForeignKey('genres.genre_id'))
 genre = relation('Genre', backref='movies')
 release_date = Column(Date, nullable=True)

class Director(DeclarativeBase):
 __tablename__ = "directors"
 director_id = Column(Integer, primary_key=True)
 title = Column(String(100), nullable=False)
 movies = relation(Movie, secondary=movie_directors_table, backref="directors")

I am isolating Movies, Genres, and Directors for the purpose of
understanding how objects might relate to one another in a RESTful
context. For purposes of this demonstration, Movies can only have one
Genre, but may be related to one or more Directors. Directors may be
related to one or more Movies.

A Listing Of Our Resource

Lets provide a simple listing of the movies in our database.

Our controller class is going to look like this:

from tg.controllers import RestController
from tg.decorators import with_trailing_slash

class MovieController(RestController):

 @with_trailing_slash
 @expose('moviedemo.templates.movies.rest.get_all')
 def get_all(self):
 movies = DBSession.query(Movie).all()
 return dict(movies=movies)

With a template that looks like this:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:py="http://genshi.edgewall.org/"
 xmlns:xi="http://www.w3.org/2001/XInclude">
 <xi:include href="master.html" />
<head/>
<body>
 <div style="height:0px;"> </div>
 <div>
 <div style="float:left width: 80%">
 <h1 style="margin-top:1px;">Movie Listing</h1>
 New Movie
 <table>
 <tr>
 <th>Title</th>
 <th>Description</th>
 <th>Genre</th>
 <th>Directors</th>
 <th>Release Date</th>
 </tr>
 <tr py:for="i, movie in enumerate(movies)" class="${i%2 and 'even' or 'odd'}">
 <td>${movie.title}</td>
 <td>${movie.description}</td>
 <td>${movie.genre.name}</td>
 <td>
 <py:for each="director in movie.directors">
 ${director.name},
 </py:for>
 </td>
 <td>${movie.release_date}</td>
 </tr>
 </table>
 </div>
 </div>
</body>
</html>

Which produces an output like this:

[image: ../_images/get_all.png]

Displaying A New Form

Now let’s show the user a form to add a new movie.:

@expose('moviedemo.templates.rest.movies.new')
def new(self, **kw):
 genres = DBSession.query(Genre).all()
 directors = DBSession.query(Director).all()

 return dict(values=kw, genres=genres, directors=directors)

And our new template (the meaty part anyway):

<form method="POST" action="./">
 <table>
 <tr><td>Title </td><td><input type="textfield" name="title"/></td></tr>
 <tr><td>Description</td><td> <textarea name="description"></textarea></td></tr>
 <tr><td>Genre</td>
 <td>
 <select name="genre_id">
 <option py:for="genre in genres" value="$genre.genre_id">$genre.name</option>
 </select>
 </td></tr>
 <tr><td>Directors</td>
 <td>
 <select multiple="true" name="directors">
 <option py:for="director in directors" value="$director.director_id">$director.name</option>
 </select>
 </td></tr>

 <tr><td>Release Date</td><td><input type="textfield" name="release_date"/></td></tr>
 </table>

 <input type="submit" value="create"/>
</form>

Which is a plain Jane form like this (sorry I had to obscure the code
a bit using the table).

[image: ../_images/new.png]

Saving Our Item From The Form

We use the post method to define how we go about saving our movie to
the database.:

from datetime import datetime

class MovieRestController(RestController):

 ...

 @expose()
 def post(self, title, description, directors=None, genre_id=None, release_date=None):
 if genre_id is not None:
 genre_id = int(genre_id)
 if directors is not None:
 if not isinstance(directors, list):
 directors = [directors]
 directors = [DBSession.query(Director).get(director) for director in directors]
 if release_date is not None:
 release_date = datetime.strptime(release_date, "%m/%d/%y")
 movie = Movie(title=title, description=description, release_date=release_date, directors=directors, genre_id=genre_id)
 DBSession.add(movie)
 redirect('./')

If the form is successful, we will be redirected to the “get_all”
page. This will not be the case if the user enters some weird date
format for “release_date”. One way to counteract this problem is by
writing a validator to redirect back to the new form when the date
doesn’t match the expected format.

Validating The User’s Input

Before we add our record to the database, it is probably a good idea
to validate the data so we can prompt the user if there are mistakes.
RestController uses the same machinery that TGControllers use for
validation. We use FormEncode’s validators to test that our fields are
not empty, and that the release_date has correct formatting:

@validate({'title':NotEmpty,
 'description':NotEmpty,
 'genre_id':Int(not_empty=True),
 'release_date':DateConverter(not_empty=True)}, error_handler=new)
@expose()
def post(self, **kw):
 ...

Now that we are returning to the new form some values from the failed
validation, we need to send the failed data back to the form so the
user can correct it:

@expose('moviedemo.templates.rest.movies.new')
def new(self, *args, **kw):
 genres = DBSession.query(Genre).all()
 directors = DBSession.query(Director).all()

 if 'directors' in kw and not isinstance(kw['directors'], list):
 kw['directors'] = [kw['directors']]

 return dict(values=kw, genres=genres, directors=directors)

That “directors” bit is in there to convert the directors over to a
list if only one is selected in the select box. **kw holds the
values from the rejected form, which we pass back into the
template. Adding in the validation errors and rejected form values
from our controller, our template looks like this:

<form method="POST" action="./">
 <table>
 <tr><td>Title </td><td><input type="textfield" name="title" value="${values.get('title', '')}"/>${tmpl_context.form_errors.get('title')}</td></tr>
 <tr><td>Description</td><td> <textarea name="description">${values.get('description')}</textarea>${tmpl_context.form_errors.get('description')}</td></tr>
 <tr><td>Genre</td>
 <td>
 <select name="genre_id">
 <py:for each="genre in genres">
 <py:if test="values.get('genre_id') == unicode(genre.genre_id)">
 <option value="$genre.genre_id" selected="selected">$genre.name</option>
 </py:if>
 <py:if test="values.get('genre_id')!= unicode(genre.genre_id)">
 <option value="$genre.genre_id">$genre.name</option>
 </py:if>
 </py:for>
 </select>
 </td></tr>
 <tr><td>Directors</td>
 <td>
 <select multiple="true" name="directors">
 <py:for each="director in directors">
 $director.name
 <py:if test="unicode(director.director_id) in values.get('directors', [])">
 <option value="$director.director_id" selected="selected">$director.name</option>
 </py:if>
 <py:if test="unicode(director.director_id) not in values.get('directors', [])">
 <option value="$director.director_id">$director.name</option>
 </py:if>
 </py:for>
 </select>
 </td></tr>
 <tr><td>Release Date</td><td><input type="textfield" name="release_date" value="${values.get('release_date')}"/>${tmpl_context.form_errors.get('release_date')}</td></tr>
 </table>

 <input type="submit" value="create"/>
</form>

Note that the form_errors are stored in tmpl_context. This is done by
the TG dispatch on a failed validation. If this code doesn’t make you
appreciate ToscaWidgets, I am not sure what will. Here is what the
form looks like when it comes back from a failed validation:

[image: ../_images/validate.png]

Getting One Item From Our Resource

Using the get_one() method, we can display one item from the database
to the user.:

@expose('moviedemo.templates.rest.get_one')
def get_one(self, movie_id):
 movie = DBSession.query(Movie).get(movie_id)
 return dict(movie=movie)

We might also return this item as a json stream.:

@expose('json')
@expose('moviedemo.templates.rest.get_one')
def get_one(self, movie_id):
 movie = DBSession.query(Movie).get(movie_id)
 return dict(movie=movie)

Displaying An Edit Form

This is similar to what we did with the new() method, but now we need
to provide existing data about the user inputs to the form.:

@expose('moviedemo.templates.rest.movies.edit')
def edit(self, movie_id, *args, **kw):
 genres = DBSession.query(Genre).all()
 directors = DBSession.query(Director).all()
 movie = DBSession.query(Movie).get(movie_id)

 values = dict(title=movie.title,
 description=movie.description,
 genre_id=movie.genre_id,
 directors = [str(director.director_id) for director in movie.directors],
 release_date = datetime.strftime(movie.release_date, "%m/%d/%y"),
)

 if 'directors' in kw and not isinstance(kw['directors'], list):
 kw['directors'] = [kw['directors']]
 values.update(kw)

 return dict(values=values, genres=genres, directors=directors)

Here is the form on display, showing /movies/2/edit.

[image: ../_images/edit.png]

Updating Our Record In The Database (With Validation)

PUT is the method used for updating an existing record using REST. We
can validate in the same manner as before, but this time returning to
the edit form on validation failure.:

@validate({'title':NotEmpty,
 'description':NotEmpty,
 'genre_id':Int(not_empty=True),
 'release_date':DateConverter(not_empty=True)}, error_handler=edit)
@expose()
def put(self, movie_id, title, description, directors, genre_id, release_date, **kw):
 movie = DBSession.query(Movie).get(movie_id)
 genre_id = int(genre_id)
 if not isinstance(directors, list):
 directors = [directors]
 directors = [DBSession.query(Director).get(director) for director in directors]

 movie.genre_id = genre_id
 movie.title=title
 movie.description = description
 movie.directors = directors
 movie.release_date = release_date

 DBSession.flush()
 redirect('../')

Displaying A Delete Confirmation

RESTController provides a delete confirmation method, so you can
double check that the user wants to delete a given resource. Here is
the method we would write to allow the user to delete a single
movie.:

@expose('moviedemo.templates.rest.get_delete')
def get_delete(self, movie_id):
 movie = DBSession.query(Movie).get(movie_id)
 return dict(movie=movie)

Here is a template to display some data to the user for deletion confirmation:

<h2>Delete Confirmation</h2>
Are you sure you want to delete this record?
<table>
 <tr>
 <th>Title</th>
 <th>Description</th>
 <th>Genre</th>
 <th>Directors</th>
 <th>Release Date</th>
 </tr>
 <tr>
 <td>${movie.title}</td>
 <td>${movie.description}</td>
 <td>${movie.genre.name}</td>
 <td>
 <py:for each="director in movie.directors">
 ${director.name},
 </py:for>
 </td>
 <td>${movie.release_date}</td>
 </tr>
</table>
<form action='./' method="POST">
 <input type="hidden" name='_method' value='DELETE'/>
 <input type="submit" value="Yes, Delete"/>
</form>

Here is what the confirmation looks like:

[image: ../_images/get_delete.png]

Deleting An Item From Our Resource

The work-horse of delete is attached to the post_delete method. Here
we actually remove the record from the database, and then redirect
back to the listing page.:

@expose()
def post_delete(self, movie_id, **kw):
 DBSession.delete(DBSession.query(Movie).get(movie_id))
 redirect('../')

But The API Docs Say get() And delete() Are Also Supported?

Yes, GET and DELETE methods are both supported. This support is
mainly provided for users of RestController that want to create a
RESTful interface using TG as a framework. This is ideal for programs
that expect their server to be accessed programatically, rather than
through a web browser. get() routes the same way get_all/get_one
routes, delete is hit from either POST or GET methods (which might be
seen as dangerous if you are not careful.)

Non-RESTful Methods?

Let’s face it, REST is cool, but sometimes it doesn’t meet our needs
or time constraints. A good example of this is a case where you want
an autocomplete dropdown in your “edit” form, but the resource that
would provide the Json for this dropdown has not been fleshed out yet.
as a hack, you might add a field_dropdown() method in your controller
which sends back the json required to feed your form. RestController
allows methods named outside of the boundaries of the default methods
supported. In other words, it’s just fine to include a method in your
RestController that does not fit the REST HTML verbiage specification.

Supporting TGController’s Inside RestController

Just as RestController supports obscure names for methods, it can
handle nested TGController classes as well. When dispatch encounters
a URL which maps to a non-RestController, it switches back to the
normal TG dispatch. Simply said, you may include regular classes for
dispatch within your RestController definition.

Nesting Resources With RestControllers

RestControllers expect nesting as any TG controller would, but it uses
a different method of dispatch than regular TG Controllers. This is
necessary when you need resources that are related to other resources.
This can be a matter of perspective, or a hard-link which filters the
results of the sub controller. For our example, we will use a nested
controller to display all of the directors associated with a Movie.

The challenge for design of your RESTful interface is determining how
to associate parts of the URL to the resource definition, and defining
which parts of the URL are part of the dispatch. To do this,
RestController introspects the get_one method to determine how many
bits of the URL to nip off. This is because you may have one or more
identifiers to determine an object; for instance you might use lat/lon
to define a location. Since our MovieController defines a get_one
which takes a movie_id as a parameter, we have no work to do there.
All we have to do now is define our MovieDirectorController, and
provide linkage into the MovieController to provide this
functionality:

class MovieDirectorController(RestController):

 @expose('moviedemo.templates.rest.movie_directors.get_all')
 def get_all(self):
 movie = DBSession.query(Movie).get(movie_id)
 return dict(movie=movie, directors=movie.directors)

class MovieRestController(RestController):

 directors = MovieDirectorController()

 @expose('json')
 def get_one(self, movie_id):
 movies = DBSession.query(Movie).get(movie_id)
 return dict(movie=movie)

And here is the finished product, a show of all directors for a movie:

[image: ../_images/movie_directors.png]
This example only defines the get_all function, I leave the other
RESTful verbiage as an exercise for you to do. One trick that I will
explain, is how to use __before__ to get the related Movie object
within all of your MovieDirectorController methods with a single
define. Here is what the Controller looks like with __before__ added
in:

class MovieDirectorController(RestController):

 def __before__(self, *args, **kw):
 movie_id = request.url.split('/')[-3]
 tg.tmpl_context.movie = DBSession.query(Movie).get(movie_id)

 @with_trailing_slash
 @expose('moviedemo.templates.rest.movie_directors.get_all')
 def get_all(self):
 return dict(movie=tg.tmpl_context.movie, directors=tg.tmpl_context.movie.directors)

The CRC, CrudRestController

If you think this seems like a lot of work just to create some simple
CRUD for your database, well, I have to agree. Luckily we have
ToscaWidgets, FormEncode, and Sprox to help generate the forms for our
templates. We also have CrudRestController which provides all of the create,
update, and delete functionality automatically for our model in
question. It might be worth taking a look!

The Bigger Picture, Sharing Your Resources

There is an effort underway to understand how websites could
communicate directly with each other using REST as a protocol for data
transfer. This means that in the future, TG sites may be able to
share data with one another programatically. You might think of this
as meta-social networking, and a TG site created utilizing
RestControllers will be well-equipped to handle this in the future.

Running The Demo Code

The sample code for this documentation lives in a repository [http://bitbucket.org/percious/moviedemo/overview/].
You can always check it out to play with it by:

hg clone http://bitbucket.org/percious/moviedemo/
cd moviedemo
python setup.py
paster setup-app development.ini
paster serve development.ini

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/flot1.png
B 10
‘Simple Flot Example

modules/pylons/log.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Modules »

pylons.log – Logging for WSGI errors

Logging related functionality

This logging Handler logs to environ['wsgi.errors'] as designated
in PEP 333 [http://www.python.org/dev/peps/pep-0333].

Module Contents

		
class pylons.log.WSGIErrorsHandler(cache=False, *args, **kwargs)

		A handler class that writes logging records to
environ[‘wsgi.errors’].

This code is derived from CherryPy’s
cherrypy._cplogging.WSGIErrorHandler.

		cache

		Whether the wsgi.errors stream is cached (instead of looked up
via pylons.request.environ per every logged message). Enabling
this option is not recommended (particularly for the use case of
logging to wsgi.errors outside of a request) as the behavior
of a cached wsgi.errors stream is not strictly defined. In
particular, mod_wsgi [http://www.modwsgi.org]‘s wsgi.errors
will raise an exception when used outside of a request.

		
emit(record)

		Emit a record

		
flush()

		Flushes the stream

		
get_wsgierrors()

		Return the wsgi.errors stream

Raises a TypeError when outside of a web request
(pylons.request is not setup)

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/recaptcha_field1.jpg
Mm

Type the two words: =
T (relioroin

_static/comment-close.png

main/Deployment/DBServer.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		Deployment »

Production Database

Most production sites will use a dedicated database server rather than
relying on the in-process SQLite engine. Dedicated servers are generally
better able to handle multiple simultaneous clients, are more robust,
and can be moved onto dedicated machines to increase performance.

The subject of installing, managing and configuring database servers
is far outside the scope of this document. There are many books,
courses, and diplomas available on DB administration. This document’s
purpose is to serve as a quick-reference that lets you get started
quickly with setting up common database servers for use with
TurboGears.

Warning

Keep in mind, a database server is a server process running on your
network. As such, you should treat it as a potential source of
security failures. You need to keep your DB server up-to-date and
use strong passwords for all accounts, even if you only expose the
DB on a “trusted” port.

Either PostgreSQL or MySQL is a good default choice for a database server,
using either one is considered part of a Standard Deployment Pattern and should
“just work”.

PostgreSQL

PostgreSQL is a mature, robust, efficient ACID [http://en.wikipedia.org/wiki/ACID] database server. It
is available for all major platforms, and has GUI administrative tools
(though almost all “serious” users use the command-line tools).

PostgreSQL is very well packaged on most Linux distributions, generally
the packages will automatically create a default database cluster
so that all you need to do is to create a user and a database, then
configure your application to use that database:

Create (DB) User and Database

$ sudo apt-get install postgresql
$ sudo -u postgres createuser
interactive questions here, including password
your user doesn't need any particular permissions
$ sudo -u postgres createdb --owner=username databasename

at this point you have a database server and a user account that can
access (just) the one database you’ve created.

Test Database Connection

If you want, you can
test the database using the command-line psql client from PostgreSQL:

$ psql -U username -h localhost databasename
Password for user username:
Welcome to psql 8.3.8, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help with psql commands
 \g or terminate with semicolon to execute query
 \q to quit

SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)

databasename=>\q

You can type SQL statements (followed by a ; and a return) to execute
them immediately against your database.

Warning

Keep in mind, it is easy to lose data if you issue the wrong
command in psql! This is a raw connection to the database and
you are logged in as the owner of the database.

Alter Production Config

Once you are satisfied that your database is defined and accessible,
you can alter your Production Config file to reference it. The
SQLAlchemy URL should point at the database you’ve created:

sqlalchemy.url = sqlite:///%(here)s/devdata.db
sqlalchemy.url = postgres://username:password@hostname:port/databasename

Warning

Your corporate policies may preclude developers having access
to the username/passwords of production sites. In this case, do not
check the production.ini file into your development repository, instead
check it into your configuration-management database (e.g. etckeeper),
and restrict the file’s read permissions as appropriate to allow only the
server process (www-data) to read it.

See Check In Your Config

Install Driver

You need to add a PostgreSQL database driver to your VirtualEnv to
be able to access the server.

(tg2env)$ easy_install psycopg2

Initialize Database

Now you can initialize your application’s database (see Production Config for
how to create the production.ini file):

(tg2env)$ paster setup-app production.ini
(tg2env)$ paster serve production.ini

References

Obviously this is only scratching the surface of PostgreSQL installation
and maintenance. For further information:

		The PostgreSQL Docs [http://www.postgresql.org/docs/8.4/interactive/index.html] – PostgreSQL is extremely well documented, most of the
time any question you are likely to have has already been answered in the
official documentation.

What’s Next?

		Standard Deployment Pattern – if you are deploying your application, you likely want
to continue working through the standard deployment pattern

		Database Choice – discusses how to go about choosing an alternate
database engine.

		Install a Database Driver – discusses initial setup of database drivers

Todo

Priority high: Document setup of MySQL

Todo

Priority low: Document setup of Oracle

Todo

Priority low: Document setup of MSSQL

Todo

Priority low: Document deployment issues with SQLite

Todo

Priority medium: Document setup of MongoDB/Ming (not here)

Todo

Priority low: Document setup of CouchDB (not here)

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

deprecated/ToscaWidgets/Cookbook/Flot.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

JQuery Flot Widget

The FlotWidget class of tw.jquery makes it easy to use the powerful
Flot library [http://code.google.com/p/flot/] from Python.

Flot is a pure Javascript plotting library for jQuery [http://jquery.com].
It produces graphical plots of arbitrary datasets on-the-fly client-side.

The focus is on simple usage (all settings are optional), attractive looks
and interactive features like zooming and mouse tracking.

Installation

easy_install tw.jquery

Usage

The FlotWidget widget supports the following parameters:

Mandatory Parameters:

		data must be a list of data series:

data = [series1, series2, ...]

A series can either be raw data or an dictionary with items.
The raw data format is an list of points:

[(x1, y1), (x2, y2), ...]

For instance, the first series coould be defined as:

series1 = [(1, 3), (2, 14.01), (3.5, 3.14)]

Note that to simplify the internal logic in Flot both the x and y
values must be numbers, even if specifying time series (see below for
how to do this). This is a common problem because you might retrieve
data from the database and serialize them directly to JSON without
noticing the wrong type.

If a null is specified as a point or if one of the coordinates is null
or couldn’t be converted to a number, the point is ignored when
drawing. As a special case, a null value for lines is interpreted as a
line segment end, i.e. the point before and after the null value are
not connected.

The format of a single series dictionary is as follows:

{
 'color': color or number,
 'data': rawdata,
 'label': string,
 'lines': specific lines options,
 'bars': specific bars options,
 'points': specific points options,
 'xaxis': 1 or 2,
 'yaxis': 1 or 2,
 'shadowSize': number
}

You don’t have to specify any of them except the data, the rest are
options that will get default values. Typically you’d only specify
label and data, like this:

series2 = dict(label='y = 3', data=[(0, 3), (10, 3)])

The label is used for the legend; if you don’t specify one, the series
will not show up in the legend.

If you don’t specify color, the series will get a color from the
auto-generated colors. The color is either a CSS color specification
(like “rgb(255, 100, 123)”) or an integer that specifies which of
auto-generated colors to select, e.g. 0 will get color no. 0, etc.

The latter is mostly useful if you let the user add and remove series,
in which case you can hard-code the color index to prevent the colors
from jumping around between the series.

The ‘xaxis’ and ‘yaxis’ options specify which axis to use; specify 2
to get the secondary axis (x axis at top or y axis to the right).
E.g., you can use this to make a dual axis plot by specifying
dict(yaxis=2) for one data series.

The rest of the options are the same as the default options that
can be directly passed as a widget parameter. When you specify them
for a specific data series, they will override the default options
for the plot for that data series.

Here’s a complete example of a simple data specification:

data = [
 dict(label='Foo', data=[(10, 1), (17, -14), (30, 5)]),
 dict(label='Bar', data=[(11, 13), (19, 11), (30, -7)])
]

Optional Parameters:

		id sets the element id of the div element containing the flot graph.

		
		width sets the width of the flot graph.

		Must be specified as a string with units, e.g. ‘400px’.

		
		height sets the height of the flot graph.

		Must be specified as a string with units, e.g. ‘200px’.

		
		label can be a label for the whole flot graph.

		Do not confuse this with the labels for individual data series
mentioned above.

		
		options are the flot default options.

		All of these options are completely optional.
They are documented in the Flot API [http://people.iola.dk/olau/flot/API.txt] documentation.
For instance, you can set:

options = dict(lines=dict(show=True), points=dict(show)=True))

For example, the widget could be instantiated like this:

from tw.jquery import FlotWidget

flot = FlotWidget(id='flot', width='320px',height='160px',
 label='Simple Flot Example')

You can try this in a small example project “flotsample” to draw
some example data. The root controller could be as follows:

import math
from tg import expose, tmpl_context

from tw.jquery import FlotWidget

flot = FlotWidget(id='flotSample', width='320px',height='160px',
 label='Simple Flot Example')

class RootController(BaseController):

 @expose('flotsample.templates.index')
 def index(self):
 tmpl_context.flot = flot
 d1 = [(0.5*i, math.sin(0.5*i)) for i in range(0,28)]
 d2 = [(0, 3), (4, 8), (8, 5), (9, 13)]
 # a None value signifies separate line segments
 d3 = [(0, 12), (7, 12), None, (7, 2.5), (12, 2.5)]
 return dict(page='index', data=[d1, d2, d3])

The widget can be displayed in the flotsample.templates.index template by:

<div py:replace="tmpl_context.flot(data=data)"/>

Our simple example graph will now be drawn like this:

[image: Simple Flot example graph]
Flot supports lines, points, filled areas, bars and any combinations of these,
in the same plot and even on the same data series. Instead of lists with raw
data, we need to pass dictionaries for the individual series.
Here is an example:

@expose('flotsample.templates.index')
def index(self):
 tmpl_context.flot = flot
 d1 = [(0.5*i, math.sin(0.5*i)) for i in range(0, 28)]
 d2 = [(0, 3), (4, 8), (8, 5), (9, 13)]
 d3 = [(0.5*i, math.cos(0.5*i)) for i in range(0, 28)]
 d4 = [(0.1*i, math.sqrt(i)) for i in range(0, 140)]
 d5 = [(0.5*i, math.sqrt(0.5*i)) for i in range(0, 28)]
 data = [
 dict(data=d1, lines=dict(show=True, fill=True)),
 dict(data=d2, bars=dict(show=True)),
 dict(data=d3, points=dict(show=True)),
 dict(data=d4, lines=dict(show=True)),
 dict(data=d5, lines=dict(show=True), points=dict(show=True))
]
 return dict(page='index', data=data,
 label='Different graph types')

Note that we passed a different label to be displayed to the template.
In the template, we must pass that label to the widget. It will then
override the default label the widget was instantiated with:

<div py:replace="tmpl_context.flot(data=data, label=label)"/>

This is how our second example is displayed:

[image: Different graph types with Flot]
There are plenty of options you can set to control the precise looks
of your plot. You can control the axes, the legend, the default graph type,
the look of grid, etc. Luckily, Flot goes to great lengths to provide sensible
defaults which you can then customize as needed for your particular application.
Here is a more complex example showing how to set various options:

@expose('flotsample.templates.index')
def index(self):
 tmpl_context.flot = flot
 d1 = []
 d2 = []
 i = 0
 while i < 2*math.pi:
 d1.append((i, math.sin(i)))
 d2.append((i, math.cos(i)))
 i += 0.25
 d3 = []
 i = 0
 while i < 2*math.pi:
 d3.append((i, math.tan(i)))
 i += 0.1
 data = [
 dict(label='sin(x)', data=d1),
 dict(label='cos(x)', data=d2),
 dict(label='tan(x)', data=d3)
]
 options = dict(
 lines=dict(show=True),
 points=dict(show=True),
 xaxis=dict(ticks=[0,
 (math.pi/2, u'\u03c0/2'), (math.pi, u'\u03c0'),
 (math.pi*3/2, u'3\u03c0/2'), (math.pi*2, u'2\u03c0')]),
 yaxis=dict(ticks=10, min=-2, max=2),
 grid=dict(backgroundColor='#fffaff'))
 return dict(page='index', data=data, options=options,
 label='Setting various options')

Again, we need to adapt the template a little in order to pass our
custom options to the widget:

<div py:replace="tmpl_context.flot(data=data, label=label, options=options)"/>

This will now be displayed as follows:

[image: Setting various options Flot]
All possible options are documented in the Flot API [http://people.iola.dk/olau/flot/API.txt].

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

tutorials.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

Getting Started

Most new users should follow the TurboGears 2.2.2 Standard Installation and then continue on
to Quickstarting A TurboGears 2.2.2 Project, after which they should look at the first
few basic moves in TurboGears 2 At A Glance.

When you feel confident with your understanding of TurboGears at high level
you should give a look at our TurboGears Book and its 20 Minutes Wiki Tutorial
to get start with your first real web application.

		TurboGears 2.2.2 Standard Installation

		Quickstarting A TurboGears 2.2.2 Project

		TurboGears 2 At A Glance

		TurboGears Book: 20 Minutes Wiki Tutorial [http://www.turbogears.org/book/part1/wiki20.html]

		Creating and Validating Forms

		Displaying Flash/Notice Messages

Advanced Tutorials

This is a set of more advanced tutorial that cover some common framework usages.
We suggest to give a look at the Explore A Quickstarted Project tutorial for a better
grasp of a tipical TurboGears web application structure.

		Explore A Quickstarted Project

		Alternate Installation Process

		Database Schema Migrations

		Pagination Quickstart For Turbogears2

		DataGrid Tutorial

		Caching

		Authentication and Authorization in TurboGears 2

		Configuring and using the Logging System

Moving From Other Frameworks

		Intro to TurboGears for CakePHP developers

Sometimes, you don’t need a tutorial. Sometimes, you just need to see
some sample code, or get a specific answer to a specific question, and
tutorials are just too much for you. If that’s you, might we suggest
checking out our Recipes and FAQ?

Old Tutorials

Those tutorials are related to parts of the framework that
got deprecated in the past and are here only for reference
or for projects that still rely on previous versions of
TurboGears.

		The TurboGears 2 Wiki Tutorial

		A Movie Database (Models, Views, Controllers)

		Simple Widget Form Tutorial

		Using ToscaWidgets to Create Forms

		Manual Database Schema Migration in TurboGears 2

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/TG2Philosophy.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

The Turbogears Way

TurboGears 2 is a reinvention of TurboGears and a return to
TurboGears’ roots.

TurboGears is a project that is built upon a foundation of library
development, best-of-breed component selection, and the re-use of
already existing code. And it was always intended to be a small
collection of tools, docs, and helpers that made developing with that
best-of-breed stack easy.

In retrospect, some of the code that was added to the main TurboGears
project should have been released as independent projects that
integrate with TurboGears. This would have allowed those pieces to
grow independently of TurboGears, and would have allowed TurboGears to
remain smaller and easier to develop and debug.

The TurboGears 0.5 release was just a few hundred lines of Python
code, but it built on thousands of lines of code in other libraries.
Those libraries had already been deployed, used, and tested, and were
known to be “production ready.”

TurboGears2 returns to that philosophy. It is built on Pylons, but it
brings a more full-stack approach to pylons. TurboGears 2 is committed
to creating reusable components, and to achieving a long-term stable
API based on the following Python components and libraries:

		Models: SQLAlchemy

		Template engines: Genshi, Mako and Jinja

		URL Dispatching: Object dispatch

		Form Handling: ToscaWidgets and Sprox

		Authentication and Authorization: repoze.who & repoze.what

The zen of TurboGears is:

		Make simple things easy and complex things possible.

		It’s OK to be opinionated,

		But it’s not OK to be obnoxious about those opinions.

		Do your best to do things the right way,

		But when there’s no “one right way,” don’t pretend there is.

Mark Ramm described the relationship between TurboGears and Pylons
this way “TurboGears 2 is to Pylons as Ubuntu is to Debian.”

In other words we’re focused on user experience, and creating a
novice-friendly environment. We ship a smaller subset of components,
and thus are better able to focus, test, and document things so that
new users have the best possible experience.

Meanwhile Pylons provides the power and flexibility of the underlying
core.

And like Ubuntu, we don’t intend to hide that power and flexibility
from advanced users, but we know that they want things set up to just
work too.

Sensible defaults actually encourage code re-use within TurboGears
because they make it possible for a group of TurboGears components to
share assumptions about how things will work.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Deployment/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Deployment

Your code is somewhat useless if people cannot see it. This set of
documentation describes how to deploy your TurboGears 2.2.2
application into a production environment, that is, an environment
suitable for use by non-technical users.

Warning

Deploying a web application incorrectly can seriously compromise
not just the application itself, but the entire server on which
it is installed. If you are unsure about any process or idea,
do not deploy until you are sure.

If you are new to web development, you should likely stick with the
Standard Deployment Pattern. If you are an old hand, feel free to choose
Alternate Deployment Patterns. TurboGears is extremely flexible in how
it can be run and this documentation only begins to cover the
available approaches.

		Standard Deployment Pattern

		Apache Web Server

		Apache Mod-WSGI

		Production Database

		Production Config

		Deploying Your Project Code

		Deploying your TG application with an Egg and Easy Install

		Optimizing Toscawidgets Resources

These sections describe non-standard approaches to deployment. You
should not likely use these unless you are comfortable with web
development and deployment or you have some particular need which
is not met by the standard deployment pattern (above).

		Alternate Deployment Patterns

		Deploy with a Source Code Checkout

		Deploying as a Service/Daemon

		Running TurboGears 2.2.2 behind Apache with Mod Proxy

		FastCGI/WSGI – Running TurboGears 2.2.2 behind Apache

		Lighttpd and FastCGI

		NGINX Web Server

Todo

Document processes for repeatable local-only releases: Local PyPI,
PIP, recordeggs, whole-virtualenv checkin/checkout.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Deployment/nginx/load_balance.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		Deployment »

 		NGINX Web Server »

Load Balancing TG with NGINX

Contents

		Load Balancing TG with NGINX
		Using Nginx as a Reverse Proxy

		References

Nginx [http://nginx.net/] is a fast and light HTTP server, reverse proxy, load balancer (and more).

Using Nginx as a Reverse Proxy

It’s pretty simple to get TurboGears set up behind a Nginx server so that
it proxies requests to the CherryPy server. Here is a sample configuration that
not only proxies to your TurboGears application, but serves static content with
Nginx and load balances between two TurboGears application instances as well.

Todo

references CherryPy, update for TG 2.2.2

http {
 # boilerplate nginx config ...

 upstream mycluster {
 server 127.0.0.1:8080;
 server 127.0.0.1:8081;
 }

 server {
 listen 80;

 # static files
 location ^~ /static/ {
 root /path/to/YourProject/package;
 }
 location = /favicon.ico {
 root /path/to/YourProject/package/public/images;
 }

 # proxy to turbogears app
 location / {
 proxy_pass http://mycluster;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }
 }
}

Next you need to setup a couple TurboGears backends that will comprise the cluster:

Create a copy of your project’s production .ini file (prod.ini) Under the server:main section,
find and change the following line:

port = 8080

to:

port = 8081

Start both instances of your app:

$ paster serve prod.ini &
$ paster serve prod2.ini &

That’s it! Nginx should now be passing requests across both backends transparently.

References

You can find more information and recipes for setting up Nginx on the
English Nginx wiki [http://wiki.codemongers.com/].

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/tg2_files.jpg
The default paste ini

used for starting up

your TurboGears 2
Server.

Static files used in
your site go here.

be found in thi
folder.

Tests and
Configuration

[development.ini
(0 ez_sewp
(& helloworld
_init_py
(& config
init.py
app_cfg.py
[) deployment.ini
environment.py
middleware.py
(& controllers
init.py
13 controller.template
error.py
root.py
secure.py
template.py
@ i18n
& 1ib
_init_py
app_globals.py
base.py
helpers.py
(&3 model
(3 public
(3 templates
(0 tests
(33 websetup
_lnit__.py
bootstrap.py
schema.py
(& helloworld.egg-info
"] MANIFEST.in
README.txt
setup.cfg

ase initializat
data creation code.

you want you
schema to be.
created.

eyl setup.py and
@ setup.pyc setup.clg define how
[} testini to install your
package

deprecated/master_html.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Full Description of master.html

master.html is quite the important page for your site. In fact, it’s
what drives your site and makes it work. However, what’s actually in
it? What do you get?

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

The above is the standard doctype header. Nothing new for any web developer yet.

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:py="http://genshi.edgewall.org/"
 xmlns:xi="http://www.w3.org/2001/XInclude"
 py:strip="">

The above is where things start to get interesting. The standard
namespace for xhtml is declared, and we also declare the genshi
namespace (xmlns:py), along with the XInclude namespace
(xmlns:py). The last bit, the py:strip [http://genshi.edgewall.org/wiki/Documentation/xml-templates.html#id9], is what allows you to
include the master.html in another template. With it written the way
it is, the html tag itself is removed from the output.

<xi:include href="header.html" />
<xi:include href="sidebars.html" />
<xi:include href="footer.html" />

The above segment includes three files, header.html, sidebars.html,
and footer.html. Each of these files defines a Genshi macro [http://genshi.edgewall.org/wiki/Documentation/xml-templates.html#snippet-reuse] that is
called later in master.html. The macro is named the same as the file
name, minus .html (i.e.: header(), footer(), sidebar()).

<head py:match="head" py:attrs="select('@*')">

The above segment grabs all of the elements under this head tag, and
places them into the head tag of the calling page. Remember,
master.html is included in other pages.

<meta content="text/html; charset=UTF-8" http-equiv="content-type" py:replace="''"/>
<title py:replace="''">Your title goes here</title>
<meta py:replace="select('*')"/>

The above segment is used to, basically, trick Genshi. Genshi wants to
see that the document it is examining is has those attributes, but we
don’t want them output. to the user. By using py:replace [http://genshi.edgewall.org/wiki/Documentation/xml-templates.html#id8], we give
Genshi what it wants, and get what we want.

 <link rel="stylesheet" type="text/css" media="screen" href="${tg.url('/css/style.css')}" />
</head>

The above segment gets the default TurboGears style sheet.

<body py:match="body" py:attrs="select('@*')">
 ${header()}

The above segment gets the body attribute from the calling document,
and adds the remaining tags in master.html to it. It then runs the
header() macro.

<ul id="mainmenu">
 <li class="first">Welcome

The above segment is a fairly busy chunk. First, it sets up list to be
used as the menu. It sets the first item in the list to be a link to
the root of the TurboGears project. Finally, it checks to see if the
variable page is defined, and if so, if that variable has the
value index, which indicates that we are on the root page. If so,
it marks the class for the link as the active class.

About

The above segment functions very similarly to the link for the index,
in the previous menu item.

<li py:if="tg.auth_stack_enabled">Authentication

The above segment functions very similarly to the link for the index,
in the first menu item.

Contact

The above segment simply sets up a link pointing to the TurboGears
Google group.

The above segment sets up an if statement [http://genshi.edgewall.org/wiki/Documentation/xml-templates.html#id1], which allows the
template to only show the content of the span tag when the result of
the if statement is True. In this case, the contents of the span
tag will only be shown if authentication is enabled. I keep saying the
contents of the span tag, rather than the span tag, since the span tag
has the attribute py:strip [http://genshi.edgewall.org/wiki/Documentation/xml-templates.html#id9] set to True, which will result in
the span tag itself being removed, but leaving the contents
behind. Combined with the if statement, if authentication is
disabled, this entire segment will be skipped, resulting in nothing
being sent to the browser from this segment.

<li py:if="not request.identity" id="login" class="loginlogout">Login

The above segment checks to see if the client has logged in. If not,
it presents a Login link. It does this using
request.identity. If this variable is not None, then the client
has logged in.

<li py:if="request.identity" id="login" class="loginlogout">Logout

The above segment checks to see if the client has logged in. If so, it
presents a Logout link. It does this using
request.identity. If this variable is not None, then the client
has logged in.

 <li py:if="request.identity" id="admin" class="loginlogout">Admin

The above segment checks to see if the client has logged in. If so, it
presents a Admin link. It does this using request.identity. If
this variable is not None, then the client has logged in. Note that
this means that any logged in user can see the Admin link. If you
wish to protect this from non-privileged users, you will want to look
further into Authentication and Authorization.

<div id="content">
 <py:if test="defined('page')">

The above segment checks to see if the page knows about a variable named page, enclosing the next segement in an if block. If the page is defined, the next segment will be shown.

<div class="currentpage">
 Now Viewing:
 </div>

The above segment displays the name of the page being shown: index, about, etc.

</py:if>

The above segment closes the if block opened earlier.

<py:with vars="flash=tg.flash_obj.render('flash', use_js=False)">

The above segment uses the py:with [http://genshi.edgewall.org/wiki/Documentation/xml-templates.html#py-with] construct to avoid re-rendering
the contents of the flash. What happens here is that a new
variable, named flash, is set to have the value of the output of
the function that will return the text that was flashed in a previous
method call (though possibly still on the same request). By doing this
once, it is possible to simply re-use the output, without having to
call it twice. Why to do this is next:

 <div py:if="flash" py:content="XML(flash)" />
</py:with>

The above segment uses the variable named flash above. If the
variable has any data, display it. If it does not, do nothing. Note
the use of the XML [http://genshi.edgewall.org/wiki/Documentation/plugin.html#extra-implicit-objects] call around the variable flash. This is because
flash is assumed to already be XML, so that we can avoid having
My Text become My Text.

<div py:replace="select('*|text()')"/>
<!-- End of content -->

The above segment is what finally finishes inserting the body of
master.html into the calling document. The result is that the layout
defined in master.html is now wrapped around the body of the document
defined by the caller.

 ${footer()}
 </div>
</body>
</html>

The above segment calls the footer function (from footers.html), and
closes out the page, completing what will be sent to the user.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Deployment/Standard.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		Deployment »

Standard Deployment Pattern

This is the recommended deployment pattern for new users. It is not
necessarily optimal for all projects, it is intended to provide a good
set of defaults from which to later customize:

		Apache Web Server – installed from system packages on a Linux host

		mod_wsgi using a Baseline VirtualEnv
to provide a clean execution environment for an Application-Specific VirtualEnv

		Production Database – such as PostgreSQL or MySQL

		Production Config – being sure to set debug=false (very important!)

		Deploying Your Project Code – using a source-code checkout or an egg-based install

		Enable Your Apache Site – to make the site available

If you have other deployment needs, see the overall Deployment
documentation.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Templates/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Templating Options

TurboGears has a very simple and flexible template system located at tg.render.
Which is a tiny wrapper around pylons.templating to provide dotted template lookup support.

Built in renderers

We currently support the following template engines out of the box.

		Genshi How-To

		Why Mako?

		Why Jinja?

All you need to do to use any one of these template engines is to add it to the list of renderers to prepare in app_cfg.py:

base_config.renderers.append('jinja')

and then specify that you want to use that particular engine in the @expose declaration:

@expose('genshi:myproject.templates.index')
def foo(self, *args, **kwargs)
 pass

We have docs on some of the specifics of each of these template engines:

Writing your own render function

Todo

Difficulty: Medium. Document writing your own render function for templates

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Auth/OpenID.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Adding OpenID Support

OpenID is a mechanism whereby you may delegate authentication
of the user’s identity to third-parties. This allows users to
use a single-sign-on service, such as their web-mail provider to
authenticate at your site.

The OpenID protocol allows you to request
additional information about the user, such as their email,
display-name, preferred userid, etceteras. It also allows the
user to deny or customize that information as it is provided
to you.

There is an OpenID plugin for repoze.who
which is generally configured via a who.ini file.
As an example of what you can do with a custom configuration when
using who.ini, let’s add the ability to use
OpenID to our configuration.

Installation

We need to install the repoze.who.plugins.openid package:

easy_install repoze.who.plugins.openid

Note

You will have to use at least version 0.5.3 or above of
repoze.who.plugins.openid, for this tutorial. Certain
features such as the callback to create new user records
on authentication are very new to the plugin.

Since we will be building on the custom who.ini mechanism,
we need to be using who.ini before we
start this process. If you aren’t currently using who.ini,
follow through that process first.

Auto-registration on OpenID Authentication

Note

OpenIDs are cheap, do not use them for authorization by
themselves. While legitimate users might be wary of tarnishing
their main email address’s “good name”, an attacker can set up
a server that will authenticate them in a few minutes.
A user presenting an OpenID is not to be trusted based
solely based on that provision of information.

If you are starting from a Quick-started project, your
applications will be based around a database-based model of
Users, Groups and Permissions. To minimize the impact on your
application in supporting OpenID, you will normally want to
enroll authenticated OpenID users as Users in your database.

The registration process must determine the level of authorization
to grant an OpenID-based enrollment. Keeping in mind that
OpenIDs are cheap, this should likely be about the same level
of authorization as a user who has provided a (validated) email
address. In our example code we don’t add the user to any
permission-group.

Our registration will be done by our Metadata Provider.
The Metadata Provider is responsible for providing information
such as a user’s display-name or gender about an account based
on the identity of the account. There is currently
an SQLAlchemy Metadata provider which uses the User and Group
accounts to provide Metadata, we set this up in our switch to
using who.ini in our lib/auth.py module
(we named it md_group_plugin there).

Here’s our new metadata provider (in lib/auth.py):

class OpenIDMetadata(object):
 key_map = {
 # maps identity : sreg keys
 'display_name': 'fullname',
 #'username': 'nickname',
 'email_address': 'email',
 }
 def __init__(self):
 """Create the (simplistic) metadata provider"""
 self.mapping = {}
 def register_user(self, open_id, sreg_data):
 """Add SReg extension data to our mapping information"""
 self.mapping[open_id] = sreg_data
 current = model.User.by_user_name(open_id)
 if current:
 # TODO: could update the in-db values...
 if current.password:
 return False
 return True
 else:
 values = self.as_user_values(sreg_data, {})
 model.DBSession.add(
 model.User(
 user_name = open_id,
 **values
)
)
 transaction.commit()
 return True
 def as_user_values(self, values, identity):
 """Given sreg values, convert to User properties"""
 for id_key,sreg_key in self.key_map.items():
 value = values.get(sreg_key)
 if value is not None:
 identity[id_key] = value
 return identity
 def add_metadata(self, environ, identity):
 """Add our stored metadata to given identity if available"""
 key = identity.get('repoze.who.plugins.openid.userid')
 if key:
 values = self.mapping.get(key)
 if values:
 identity = self.as_user_values(values, identity)
 return identity

Note

The only reason to have the registration part of the metadata provider
is that repoze.who doesn’t have a registration plugin-type.
Future versions of the plugin might make the registration function
separate from the metadata provision by explicitly referencing the
registration operation from the OpenID plugin.

Enabling OpenID

We need to alter our who.ini to make use of the various OpenID
components. We configure:

		an identification plugin (which is what actually identifies the user
based on their ability to log into the specified server). It
intercepts requests based on the configured URLs, as it is application
middleware, not controller-based. It stores the identity using the
auth_tkt mechanism, as does our regular FriendlyForm identifier

		our OpenIDMetadata plugin above

		a challenge decider plugin (which determines whether to invoke the
login machinery for a given request)

and then we wire each of those plugins into the main repoze.who
machinery.

[plugin:openid]
use = repoze.who.plugins.openid:make_identification_plugin

store = file
store_file_path = %(here)s/sstore
openid_field = openid
came_from_field = came_from
error_field = error
session_name = beaker.session
login_form_url = /login
login_handler_path = /openid_login_handler
logout_handler_path = /logout_handler
logged_in_url = /
logged_out_url = /
rememberer_name = auth_tkt

[plugin:openidmd]
use = customwho.lib.auth:OpenIDMetadata

[plugin:auth_tkt]
use = repoze.who.plugins.auth_tkt:make_plugin
secret = 'this secret is not really very SECRET!'

[plugin:friendlyform]
use = repoze.who.plugins.friendlyform:FriendlyFormPlugin
login_form_url= /login
login_handler_path = /login_handler
logout_handler_path = /logout_handler
rememberer_name = auth_tkt
post_login_url =
post_logout_url =

[plugin:sqlauth]
use = customwho.lib.auth:auth_plugin

Now the configuration starts wiring together the pieces
[general]
request_classifier = repoze.who.classifiers:default_request_classifier
challenge_decider = repoze.who.plugins.openid.classifiers:openid_challenge_decider

[identifiers]
We can decide who the user is trying to identify as using either
a fresh form-post, the session identifier cookie, or a fresh OpenID
authentication
plugins =
 friendlyform;browser
 openid
 auth_tkt

[authenticators]
openid and password authentication available
plugins =
 openid
 sqlauth

[challengers]
plugins =
 openid
 friendlyform;browser

[mdproviders]
We add our custom metadata provider to the set of
possible metadata providers.
plugins =
 openidmd
 customwho.lib.auth:md_plugin
 customwho.lib.auth:md_group_plugin

Adding the User Interface

[image: ../../_images/openid-login.png]
We provide an OpenID form on our login page to allow the user
to enter their OpenID and log in. We’re using the main “login”
template, as it allows us to provide an “alternate” interface
where the user of OpenID can login just as readily as any other
user. You may prefer to use a separate page for OpenID sign-in,
particularly if you wish to provide more instructions or
specialized sign-in buttons for certain identity providers:

<form action="${tg.url('/openid_login_handler', came_from = came_from.encode('utf-8'), __logins = login_counter.encode('utf-8'))}" method="POST" class="openid-login">
 <input type="text" id="openid" name="openid" class="text" value="http://"></input>
 <input type="submit" id="submit" value="Login with OpenID" />
 <input type="hidden" value="/" name="returnto"/>
 <input type="hidden" value="claim_openid" name="op"/>
 <input type="hidden" value="1" name="openid_login"/>
 <div class="get-an-openid">
 Get an OpenID
 </div>
</form>

At this point, we can point our browser at our site’s /login page and
see a crude form which allows us to type in an OpenID and authenticate
with an OpenID URL.

Note

Most of the major OpenID providers have specified that their
users should not be given raw OpenID logins such as seen above.
Instead they want to have “Log in with Yahoo” or “Log in with Google”
buttons, which under the covers invoke OpenID, but do not require
the user to construct or remember OpenID URLs themselves.

Those who have implemented OpenID have fairly consistently reported
that user confusion is one of the biggest problems for the system,
so if you are going to implement OpenID on your site, plan to spend
some time making your interface simple and obvious. You may find that
you need to implement the sign-on as a full page with background
discussions and examples to avoid user confusion.

Todo

Provide sample code for the “Log in with ...” implementations.

Adding Some Style

OpenID provides a logo suitable for use as a background for text-boxes.
We can download this logo to our project’s public/images directory:

wget http://wiki.openid.net/f/openid-16x16.gif

And then reference it from our css stylesheet public/css/style.css
to get a reasonable looking and somewhat compact login form:

form.openid-login {
 border: thin solid #f7931e;
 padding: .25em;
}
form.openid-login input[type="text"] {
 padding-left: 16px;
 background: url('/images/openid-16x16.gif') top left no-repeat;
 width: 10em;
}
form.openid-login input[type="submit"] {
 background-color: #f7931e;
 color: white;
}

Todo

Difficulty Medium/Hard: document how to provide group/permission
support when using an OpenID Authentication provider.

Todo

Difficulty Hard: document how to store OpenID identifiers in
SQLAlchemy (i.e. add records for each new OpenID identity)

References

		Using who.ini – describes the process to switching to who.ini
from quickstart

		Get an OpenID [http://openid.net/get-an-openid/] – describes how to get an OpenID URI via various services,
you may already have an OpenID provider. If not myopenid.com can be used
to set up a new ID

		Repoze.who.plugins.openid [http://quantumcore.org/docs/repoze.who.plugins.openid/] – documentation for the plugin

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Config/MasterSlave.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

SQLAlchemy Master Slave Load Balancing

Since version 2.2 TurboGears has basic support for Master/Slave load balancing
and provides a set of utilities to use it.

TurboGears permits to declare a master server and any number of slave servers, all the
writes will automatically redirected to the master node, while the other calls will
be dispatched randomly to the slave nodes.

All the queries executed outside of TurboGears controllers will run only on the
master node, those include the queries performed by the authentication stack to
initially look up an already logged in user, its groups and permissions.

Enabling Master Slave Balancing

To enable Master Slave load Balancing you just need to edit your model/__init__.py
making the sessionmaker use the TurboGears BalancedSession:

from tg.configuration.sqla.balanced_session import BalancedSession

maker = sessionmaker(autoflush=True, autocommit=False,
 class_=BalancedSession,
 extension=ZopeTransactionExtension())

Doing this by itself will suffice to make load balancing work, but still
as there is only the standard database configuration the BalancedSession
will just be redirecting all the queries to the only available serve.

Configuring Balanced Nodes

To let load balancing work we must specify at least a master and slave server
inside our application configuration. The master server can be specified
using the sqlalchemy.master set of options, while any number of slaves
can be configured using the sqlalchemy.slaves options:

sqlalchemy.master.url = mysql://username:password@masterhost:port/databasename
sqlalchemy.master.pool_recycle = 3600

sqlalchemy.slaves.slave1.url = mysql://username:password@slavehost:port/databasename
sqlalchemy.slaves.slave1.pool_recycle = 3600

The master node can be configured also to be a slave, this is usually the
case when we want the master to also handle some read queries.

Driving the balancer

TurboGears provides a set of utilities to let you change the default behavior
of the load balancer. Those include the @with_engine(engine_name) decorator
and the DBSession().using_engine(engine_name) context.

The with_engine decorator

The with_engine decorator permits to force a controller method to
run on a specific node. It is a great tool for ensuring that some
actions take place on the master node, like controllers that edit
content.

from tg import with_engine

@expose('myproj.templates.about')
@with_engine('master')
def about(self):
 DBSession.query(model.User).all()
 return dict(page='about')

The previous query will be executed on the master node, if the @with_engine
decorator is removed it will get execute on any random slave.

The with_engine decorator can also be used to force turbogears
to use the master node when some parameters are passed by url:

@expose('myproj.templates.index')
@with_engine(master_params=['m'])
def index(self):
 DBSession.query(model.User).all()
 return dict(page='index')

In this case calling http://localhost:8080/index will result in queries
performed on a slave node, while calling http://localhost:8080/index?m=1 will
force the queries to be executed on the master node.

Pay attention that the m=1 parameter can actually have any value, it just
has to be there. This is especially useful when redirecting after an action
that just created a new item to a page that has to show the new item. Using
a parameter specified in master_params we can force TurboGears to fetch
the items from the master node so to avoid odd results due to data propagation
delay.

Keeping master_params around

By default parameters specified in with_engine master_params will be
popped from the controller params. This is to avoid messing with validators
or controller code that doesn’t expect the parameter to exist.

If the controller actually needs to access the parameter a dictionary can be
passed to @with_engine instead of a list. The dictionary keys will be
the parameters, while the value will be if to pop it from the
parameters or not.

@expose('myproj.templates.index')
@with_engine(master_params={'m':False})
def index(self, m=None):
 DBSession.query(model.User).all()
 return dict(page='index', m=m)

Forcing Single Queries on a node

Single queries can be forced to execute on a specific node using the
using_engine method of the BalancedSession. This method
returns a context manager, until queries are executed inside this
context they are run on the constrained engine:

with DBSession().using_engine('master'):
 DBSession.query(model.User).all()
 DBSession.query(model.Permission).all()
DBSession.query(model.Group).all()

In the previous example the Users and the Permissions will be
fetched from the master node, while the Groups will be fetched
from a random slave node.

Debugging Balancing

Setting the root logger of your application to DEBUG will let
you see which node has been choose by the BalancedSession
to perform a specific query.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

modules/pylons/decorators_cache.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Modules »

pylons.decorators.cache – Cache Decorators

Caching decorator

Module Contents

		
pylons.decorators.cache.beaker_cache(key='cache_default', expire='never', type=None, query_args=False, cache_headers=('content-type', 'content-length'), invalidate_on_startup=False, cache_response=True, **b_kwargs)

		Cache decorator utilizing Beaker. Caches action or other
function that returns a pickle-able object as a result.

Optional arguments:

		key

		None - No variable key, uses function name as key
“cache_default” - Uses all function arguments as the key
string - Use kwargs[key] as key
list - Use [kwargs[k] for k in list] as key

		expire

		Time in seconds before cache expires, or the string “never”.
Defaults to “never”

		type

		Type of cache to use: dbm, memory, file, memcached, or None for
Beaker’s default

		query_args

		Uses the query arguments as the key, defaults to False

		cache_headers

		A tuple of header names indicating response headers that
will also be cached.

		invalidate_on_startup

		If True, the cache will be invalidated each time the application
starts or is restarted.

		cache_response

		Determines whether the response at the time beaker_cache is used
should be cached or not, defaults to True.

Note

When cache_response is set to False, the cache_headers
argument is ignored as none of the response is cached.

If cache_enabled is set to False in the .ini file, then cache is
disabled globally.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Utilities/basketweaver.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Utilities »

Generating your own Private Python Package Index

		Status:		Official

Table of Contents

		Generating your own Private Python Package Index
		Collecting Dependencies using compoze

		Using Basketweaver to create the Index

		Serving with Apache

		Other Personal PyPI alternatives

		Installing from your index

Perhaps you have an application that you need to deploy
in a number of places in your organization, but you cannot
deploy to pypi [http://pypi.python.org] because the code is proprietary. Basketweaver
was a tool that allows you to set up a static file index
which you can share with Apache, NGinx, even Cachefly if
you have a large distribution base and need a CDN for your files.
Here’s how you can take your application, and turn it into
an index you can install from.

Collecting Dependencies using compoze

If your current site-packages is adequate serve to create an index,
you can pull them down using the compoze tool. First, we need to
install it:

easy_install http://dist.repoze.org/legacy/compoze-0.2.tar.gz

Now we can fetch all the packages we need using Compoze:

compoze --fetch-site-packages --path=mytgapp_index

Now, compoze will not pull any local packages, so if you have
things that are not part of pypi [http://pypi.python.org] you are going to need to copy
eggs for them in to the mytgapp_index directory. For more information
on creating your own eggs please see Deploying your TG application with an Egg and Easy Install.

Using Basketweaver to create the Index

easy_install requires .html files in a certain format in
order to pull down dependencies. Basketweaver will take
a directory of eggs and do just that. First, let’s install
it:

easy_install basketweaver

Now, lets move into our mytgapp_index dir and create the index:

cd mytgapp_index
makeindex *

If you list the “index” directory inside, you will see folders
for all dependent packages. Basketweaver will also have created
an index.html for you.

Serving with Apache

Now, copy your top-level index folder to wherever you
serve Apache files from.

Other Personal PyPI alternatives

EggBasket [http://www.chrisarndt.de/projects/eggbasket/] is a TurboGears 1.0 application that provides similar
services, with a web frontend.

Installing from your index

simple. add -i http://path/to/private/index

And Bob’s Your Uncle [http://en.wikipedia.org/wiki/Bob%27s_your_uncle].

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_static/ajax-loader.gif

_images/listing_ss.png
SY

Welcome to TurboGears 2

by The Python web metaframework

User Listin
Haetsting

_static/file.png

_images/autocomplete1.png
My Fleld Name [
NEBRASKA
NEVADA

NEW HAMPSHIRE
NEW JERSEY

NEW/ ME;

NEW/ YORK.
NORTH CAROLINA
NORTHDAKOTA ||
NORTHERN ™

_images/recaptcha_field.jpg
Mm

Type the two words: =
T (relioroin

main/Contributing.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

Contributing To TurboGears 2

If you want to help out, we want to help you help out! The goal of
this document is to help you get started and answer any questions you
might have. The Project Philosophy document has a more high-level
view, whereas this document is nuts-and-bolts. The TurboGears team [http://docs.turbogears.org/TurboGearsTeam]
page lists who is responsible for what (a little outdated don’t trust
it much).

Installation and Tools

To contribute to core, you will want to do a Source Install (Development Version) so that
you can use Mercurial (hg) to generate patches. You may want
to review Using BitBucket’s Mercurial Service with TurboGears if you would like to use the BitBucket
service to collaborate with other developers easily.

Communication Channels

		Internet Relay Chat (IRC) is the primary channel for collaboration and
communication for the core developers. Freenode’s TurboGears Channel
is the primary channel for getting interactive answers to questions.

		If you want to post a piece of code, a traceback, or any significant
piece of text in the IRC channel, consider using a
PasteBin [http://pastebin.ca/] service.

		The TurboGears mailing list [http://groups.google.com/group/turbogears] allows for asking longer-form questions
and can be accessed without an IRC client, such as when you are behind
a corporate firewall.

Source Layout

TurboGears 2 is composed of two core packages.

		tg package is TurboGears 2 core.

		
		tg.devtools is a set of tools used for developing turbogears

		applications but not needed for running them.

Coding Style

Since it’s hard to argue with someone who’s already written a code
style document, TurboGears 2 follows PEP 8 [http://www.python.org/peps/pep-0008.html] conventions. The only
rule we do not enforce is the 80 characters per line, as templates and
other web related files simply don’t fit into 80 chars in a natural
way.

To ensure that files in the TurboGears source code repository have
proper line-endings, you must configure your Subversion client. Please
see the patching guidelines [http://docs.turbogears.org/patching_guidelines] for details.

Testing

Automated unit tests are essential to make the future growth of the
project as error free as possible. Please see Setting up the TurboGears Test Environment and Testing
for more information about how to set up your environment with
TurboGears for testing.

Documenting Changes

The TurboGears Trac [http://trac.turbogears.org/] is mostly used for tracking upcoming changes
and tasks required before release of a new version. The changelog [http://trac.turbogears.org/wiki/2.0/changelog]
provides the human readable list of changes.

Updating the changelog right before a release just slows down the
release. Please update the changelog as you make changes, and this
is especially critical for backwards incompatibilities.

How To Submit A Patch

Please make sure that you read and follow the patching guidelines [http://docs.turbogears.org/patching_guidelines].

Documentation

As mentioned in the Project Philosophy document, a feature doesn’t
truly exist until it’s documented. Tests can serve as good
documentation, because you at least know that they’re accurate. But,
it’s also nice to have some information in English.

There are two kinds of docs, and both have their useful place:

		API reference

		These are generated with sphinx and normally include both TG docs
and the sphinx sources of all upstream packages (that use sphinx)

		Manual

		The TurboGears 2.2.2 documentation is online at
http://turbogears.org/2.1/docs/

Please document your own work. It doesn’t have to be Shakespeare, but
the editors don’t enjoy writing documentation any more than you do
(we’d rather be coding) and it’s much easier to edit an existing doc
than it is to figure out your code and write something from scratch.

Todo

Difficulty: Medium. More doc types will be defined here when doc templates are
brought online.

Contributing Documentation

Please see the document Documentation Generation Guide for detailed instructions
on how to submit documentation to the TurboGears project.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_static/down-pressed.png

main/Profile.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Profiling Your App

		Status:		Work in progress

Table of Contents

		Profiling Your App
		Installing repoze.profile

		Gathering Profile Data

		Viewing Profile Data

TurboGears does not come with a built-in profiler, but an easy to use
WSGI application profiler is just an easy_install away!

Installing repoze.profile

First, install it with easy_install:

easy_install -i http://dist.repoze.org/simple repoze.profile

Next add it to your WSGI stack in middleware.py in the config folder:

from repoze.profile.profiler import AccumulatingProfileMiddleware

def make_app(global_conf, full_stack=True, **app_conf):
 app = make_base_app(global_conf, full_stack=True, **app_conf)

 # Wrap your base TurboGears 2 application with custom middleware here
 app = AccumulatingProfileMiddleware(
 app,
 log_filename='/tmp/proj.log',
 cachegrind_filename='/tmp/cachegrind.out.bar',
 discard_first_request=True,
 flush_at_shutdown=True,
 path='/__profile__'
)

 return app

Gathering Profile Data

Just fire up a browser (or functional test-runner like twill, ab
(apache bench), or whatever). The repoze.profile middleware will
profile everything above it in the WSGI stack.

Viewing Profile Data

There’s a built in web based view of your profile data. It should now
be available at the location /__profile__ in your app. For explanation
of the various columns shown on this page refer to python profiler
docs http://docs.python.org/library/profile.html.

Some distros package the profiler separately. Make sure to install the python-profiler package as well.

Reference:

http://blog.repoze.org/repozeprofile-0_2-released.html

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Config/Rendering.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		TurboGears 2 Configuration »

Template Rendering Config Settings

		Status:		Official

Table of Contents

		Template Rendering Config Settings
		Configuration Attributes

		Making a module available to all Genshi templates

		Overriding AppConfig Rendering Methods

The most common configuration change you’ll likely want to make here
is to add a second template engine or change the template engine used
by your project.

By default TurboGears sets up the Genshi engine, but we also provide
out of the box support for Mako and Jinja. To tell TG to prepare these
templating engines for you all you need to do is install the package
and append ‘mako’ or ‘jinja’ to the renderer’s list here in
app_config.

To change the default renderer to something other than Genshi, just
set the default_renderer to the name of the rendering engine. So, to
add Mako to the list of renderers to prepare, and set it to be the
default, this is all you’d have to do:

base_config.default_renderer = 'mako'
base_config.renderers.append('mako')

Configuration Attributes

base_config.default_renderer – set to the name of the default
render function you want to use.

base_config.renderers – This is a list of render functions that
ought to be prepared for use in the app. This is a shortcut for the
four renderers that TurboGears 2.2.2 provides out of the box.
TG provides renderers for: ‘genshi’, ‘mako’, ‘jinja’, and ‘json’.

In 2.1, If you would like to add additional renderers, you can
add it to the renderers list, and then provide a setup_mytl_renderer
method in your custom AppConfig, where mytl is the name of your
template language.

base_config.use_legacy_renderer – If True old style buffet
renderers will be used. Don’t set this unless you need buffet
renderers for some specific reason, buffet renderers are deprecated
and will probably be removed in 2.1.

base_config.use_dotted_templatenames – Generally you will not
want to change this. But if you want to use the standard
genshi/mako/jinja file system based template search paths, set this to
False. The main advantage of dotted template names is that it’s
very easy to store template files in zipped eggs, but if you’re not
using packaged TurboGears 2.2.2 app components there are some
advantages to the search path syntax.

base_config.renderers – a dictionary with the render function
name as the key, and the actual configured render function as the
value. For the four standard renderers it’s enough to just add the
name to base_config.renderers but for custom renderers you want to
set the renderer up, and set it in this dictionary directly.

Making a module available to all Genshi templates

Sometimes you want to expose an entire module to all of the templates
in your templates directory. Perhaps you have a form library you
like to use, or a png-txt renderer that you want to wrap with <pre>.
This is possible in TG.

First, we must modify our app_cfg.py so that you can share your
link across all templates:

base_config.variable_provider = helpers.add_global_tmpl_vars

Next, you want to modify the lib/helpers.py module of your application
to include the newly added add_global_tmpl_vars method:

import mymodule

def add_global_tmpl_vars():
 return dict(mymodule=mymodule)

That’s pretty much it, you should have access to mymodule in every
template now.

Overriding AppConfig Rendering Methods

		
AppConfig.setup_mako_renderer(use_dotted_templatenames=None)

		Setup a renderer and loader for mako templates.

Override this to customize the way that the mako template
renderer is setup. In particular if you want to setup
a different set of search paths, different encodings, or
additonal imports, all you need to do is update the
TemplateLookup constructor.

You can also use your own render_mako function instead of the one
provided by tg.render.

		
AppConfig.setup_genshi_renderer()

		Setup a renderer and loader for Genshi templates.

Override this to customize the way that the internationalization
filter, template loader

		
AppConfig.setup_jinja_renderer()

		Setup a renderer and loader for Jinja2 templates.

		
AppConfig.setup_kajiki_renderer()

		Setup a renderer and loader for the fastpt engine.

		
AppConfig.setup_json_renderer()

		

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/singleselectcombo.png
Nebraska.
Nevada.

New Hampshire
New Jersey
New Mexico
New York

North Carolina
North Daketa.

TurboGears is an obensource ¢

main/Deployment/ProductionINI.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		Deployment »

Production Config

Your production config file looks much like your development.ini file,
but you will generally need to make a number of changes to make your config
“production ready”. There are a lot of warnings in this document because
there are a lot of ways to seriously compromise your security by
mis-handling or mis-configuring a production.ini file.

Note

Throughout this document we’ll refer to this file as production.ini.
The file can be named anything you like, and there can be multiple versions,
such as having myapp-staging.ini and myapp-production.ini to
configure two different deployment branches of your application.

Warning

You must never check your production.ini files into a
publicly-accessible source-code control system!
Doing so will violate your web-site’s and potentially your
server’s security! See Check In Your Config

Set debug=false

Warning

You MUST set debug=false in your production.ini, Paste
in debug mode provides interactive debugging which allows
any user of the site to run arbitrary Python code! This must never
happen on a production site (or even a development site which is
exposed to other machines), as it will give any visitor to the
site complete control of your server.

In your configuration, you will find a line that looks like this in the
[DEFAULT] section:

[DEFAULT]
...
WARNING == If debug is not set to false, you'll get the interactive
debugger on production, which is a huge security hole.
debug = false

be absolutely sure that debug is set to false. Similarly, there will
be another line (normally further down the file, in the app:main section)
which looks like this:

[app:main]
...
WARNING: *THE LINE BELOW MUST BE UNCOMMENTED ON A PRODUCTION ENVIRONMENT*
Debug mode will enable the interactive debugging tool, allowing ANYONE to
execute malicious code after an exception is raised.
set debug = false

again, be absolutely sure that set debug = false is uncommented and that
the value is false (not true).

Set full_stack to False

This is another security-related configuration element. You should not
expose a full_stack enabled application to the Internet.

[app:main]
...
full_stack = false

Todo

verify whether this is still necessary in TurboGears 2.2.2

Set Your Production Database URL

You will need to alter the SQLAlchemy database URL to reflect your production
database. See Production Database.

Warning

Keep in mind that anyone who has access to
this file will now be able to connect to your database. The
SQLAlchemy URL includes the username and password to log in as
your DB user.

See Check In Your Config

Change Your Keys

There are a number of “private keys” configured in the config file. You should
update each of these to a new value. At minimum, the following keys should
be updated:

[sa_auth]
cookie_secret = long-string-of-digits-here

[app:main]
beaker.session.secret = long-string-of-digits-here

These values should not be shared. See Check In Your Config

Check File-Storage Locations

Warning

This section does not apply if you are deploying your code
using an egg (which is the Standard Deployment Pattern).
It likely applies if you Deploy with a Source Code Checkout.

You may be planning to replace your entire application checkout directory every time
you re-deploy your application, so things such as persistent session-storage,
and cache directories should be located outside your checkout. By default the
quick-started application will use %(here)s variables to control where the
cache and session data is stored. If your production.ini is in your source-code
checkout (see Check In Your Config for issues with this), this will be a
directory that will potentially be deleted frequently, and you will need to
specify an alternate location.

The appropriate location for application data-storage is somewhat open to
sysadmin preference, but a good default choice would be
/var/local/myappname, which would require config lines like this:

[app:main]
...
beaker.session.data_dir = /var/local/myapp/sessions
beaker.cache.data_dir = /var/local/myapp/cache
beaker.cache.lock_dir = /var/local/myapp/locks

You will need to create these directories and make them writable by the
www-data user.

See Caching and Web Session Usage for discussions of the Beaker system
along with alternative deployment options, such as the use of Memcached.

See Deploying Your Project Code.

Check Log-file Options

Generally speaking you will want to store your log files in the standard log
hierarchy for production systems. You will also likely want to configure the
log files to use a logging.handlers.RotatingFileHandler to prevent your
application log-files from filling up your server’s hard-disk.

[handler_logfile]
class = logging.handlers.RotatingFileHandler
args = ('/var/log/myapp/myapp.log', 'a',1024*1024*50,3)
level = WARN
formatter = generic

You may want to set up multiple log-files with different logging levels
configured, or split out a particular type of log (such as access logs)
into a separate file.

You’ll want to reduce the SQLAlchemy logging level to WARN in most cases:

[logger_sqlalchemy]
level = WARN

You will want to be sure that the /var/log/myapp directory exists, and is
writable by the www-data user.

$ sudo mkdir /var/log/myapp
$ sudo chown www-data:www-data /var/log/myapp

See Configuring and using the Logging System for more details.

Configure Proxy Mount Point

Warning

This section only applies to “proxied” sites, which are
not part of the Standard Deployment Pattern.

If you are not mounting your application at the root of your site
(i.e. you are mounting your application as a sub-site of some larger site)
and are using a non-embedded WSGI environment (such as a reverse proxy)
then you will need to configure TurboGears so that it knows how to
resolve application URLs from that base URL.

DO NOT DO THIS WITH MOD-WSGI!
[app:main]
...
filter-with = proxy-prefix

[filter:proxy-prefix]
use = egg:PasteDeploy#prefix
prefix = /wherever_your_app_is mounted

See the PasteDeploy Documentation [http://pythonpaste.org/deploy/modules/config.html] for details on the prefix middleware
being configured here.

Test your Config

Your paster config-file is a regular config-file, and often you can run
it with the Paste web-server. Keep in mind that your config file will
likely specify file-paths that only the www-data user can write to, so
you will likely need to run paster as the www-data user:

$ sudo -u www-data server production.ini

Check In Your Config

Warning

Your production.ini contains secrets, keys, passwords, and everything
else an attacker would need to crack your application and potentially
your server. Never check it into a publicly readable repository!
Particularly, if you run an Open Source project, never check your
production.ini into the main repository!

You will want to check your production.ini into source-code
control of some form, but before you add it to your project’s
source-code project, consider the security implications of doing so.

Your production.ini includes your application’s database connection
parameters (the SQLAlchemy URL). If your organization’s policies
preclude developers from having access to such information, you cannot
check the files into the project. Even if they don’t, if your database
is likely to hold personal, financial or other sensitive information,
you may find it prudent to store the production.ini in a separate
location so that the information can be controlled.

If you have a dedicated sysadmin team, they will often have a preexisting
configuration management system which can be used to store the
production.ini file.

Note

If you are your organization’s entire technical team, you can
likely check your production.ini directly into your application’s
repository, as long as that repository is not shared publically.

What’s Next?

		Production Database – you will normally have to run paster setup-app with your
production.ini in order to initialize your database

		deploy_modwsgi_deploy – if you are using the Standard Deployment Pattern
you will need to move your production.ini to expected location

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

modules/pylons/templating.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Modules »

pylons.templating – Render functions and helpers

Render functions and helpers

Render functions and helpers

pylons.templating includes several basic render functions,
render_mako(), render_genshi() and render_jinja2()
that render templates from the file-system with the assumption that
variables intended for the will be attached to tmpl_context
(hereafter referred to by its short name of c which it is
commonly imported as).

The default render functions work with the template language loader
object that is setup on the app_globals object in the project’s
config/environment.py.

Usage

Generally, one of the render functions will be imported in the
controller. Variables intended for the template are attached to the
c object. The render functions return unicode (they actually
return literal objects, a subclass of
unicode).

Tip

tmpl_context (template context) is abbreviated to c
instead of its full name since it will likely be used extensively
and it’s much faster to use c. Of course, for users that
can’t tolerate one-letter variables, feel free to not import
tmpl_context as c since both names are available in
templates as well.

Example of rendering a template with some variables:

from pylons import tmpl_context as c
from pylons.templating import render_mako as render

from sampleproject.lib.base import BaseController

class SampleController(BaseController):

 def index(self):
 c.first_name = "Joe"
 c.last_name = "Smith"
 return render('/some/template.mako')

And the accompanying Mako template:

Hello ${c.first name}, I see your lastname is ${c.last_name}!

Your controller will have additional default imports for commonly used
functions.

Template Globals

Templates rendered in Pylons should include the default Pylons globals
as the render_mako(), render_genshi() and
render_jinja2() functions. The full list of Pylons globals that
are included in the template’s namespace are:

		c – Template context object

		tmpl_context – Template context object

		config – Pylons PylonsConfig
object (acts as a dict)

		app_globals – Project application globals object

		h – Project helpers module reference

		request – Pylons Request
object for this request

		response – Pylons Response
object for this request

		session – Pylons session object (unless Sessions are
removed)

		url – Routes url generator
object

		translator – Gettext translator object configured for
current locale

		ungettext() – Unicode capable version of gettext’s ngettext
function (handles plural translations)

		_() – Unicode capable gettext translate function

		N_() – gettext no-op function to mark a string for
translation, but doesn’t actually translate

Configuring the template language

The template engine is created in the projects
config/environment.py and attached to the app_globals (g)
instance. Configuration options can be directly passed into the
template engine, and are used by the render functions.

Warning

Don’t change the variable name on app_globals that the
template loader is attached to if you want to use the render_*
functions that pylons.templating comes with. The render_*
functions look for the template loader to render the template.

Module Contents

		
pylons.templating.pylons_globals()

		Create a Bunch of variables that should be available in all templates.

These variables are:

WARNING: This function should not be called from outside of the render()
code. Please consider this function as private.

		quote_plus

		the urllib quote_plus function

		url

		the turbogears.url function for creating flexible URLs

		identity

		the current visitor’s identity information

		session

		the current beaker.session if the session_filter.on it set
in the app.cfg configuration file. If it is not set then session
will be None.

		locale

		the default locale

		inputs

		input values from a form

		errors

		validation errors

		request

		the WebOb Request Object

		config

		the app’s config object

		auth_stack_enabled

		A boolean that determines if the auth stack is present in the environment

		predicates

		The tg.predicates module.

		
pylons.templating.cached_template(template_name, render_func, ns_options=(), cache_key=None, cache_type=None, cache_expire=None, **kwargs)

		Cache and render a template

Cache a template to the namespace template_name, along with a
specific key if provided.

Basic Options

		template_name

		Name of the template, which is used as the template namespace.

		render_func

		Function used to generate the template should it no longer be
valid or doesn’t exist in the cache.

		ns_options

		Tuple of strings, that should correspond to keys likely to be
in the kwargs that should be used to construct the
namespace used for the cache. For example, if the template
language supports the ‘fragment’ option, the namespace should
include it so that the cached copy for a template is not the
same as the fragment version of it.

Caching options (uses Beaker caching middleware)

		cache_key

		Key to cache this copy of the template under.

		cache_type

		Valid options are dbm, file, memory, database,
or memcached.

		cache_expire

		Time in seconds to cache this template with this cache_key
for. Or use ‘never’ to designate that the cache should never
expire.

The minimum key required to trigger caching is
cache_expire='never' which will cache the template forever
seconds with no key.

		
pylons.templating.render_mako(template_name, extra_vars=None, cache_key=None, cache_type=None, cache_expire=None)

		Render a template with Mako

Accepts the cache options cache_key, cache_type, and
cache_expire.

		
pylons.templating.render_genshi(template_name, extra_vars=None, cache_key=None, cache_type=None, cache_expire=None, method='xhtml')

		Render a template with Genshi

Accepts the cache options cache_key, cache_type, and
cache_expire in addition to method which are passed to Genshi’s
render function.

		app_globals

		One instance of Globals is created during application
initialization and is available during requests via the
‘app_globals’ variable. Useful for any given object which
should be shared across the application.

		c

		The template context object, available when a template is
being processed. c is an alias for
tmpl_context

		g

		The application globals object. g is an alias for
app_globals

		h

		A reference to the project helpers module.

		tmpl_context

		The template context object, a place to store all the data for
use in a template. This includes form data, user identity, and
the like.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Performance/TemplatePerformance.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Template Performance

Todo

Difficulty: Medium to Hard. This is an empty file. We need to discuss this topic in depth.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/tg2pagination_fig2.png
Movie List |

“Into the Wild" (2007)
he Big Lebowsky" (1998)
ulp Fiction” (1994) {
2ad Man" (1995)
“Night on Earth” (1991)

apwee

_images/form_basic.png
ODIG &) (s rocssssomovsnes e Ty)

Welcome to TurboGears 2

The Python web metaframework

Create New Movie

Movie id
Tite

Description

Genreld
Release Date 6501
Genre

Directors ooy wisou

modules/pylons/controllers_util.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Modules »

pylons.controllers.util – Controller Utility functions

Utility functions and classes available for use by Controllers

Pylons subclasses the WebOb [http://pythonpaste.org/webob/]
webob.Request and webob.Response classes to provide
backwards compatible functions for earlier versions of Pylons as well
as add a few helper functions to assist with signed cookies.

For reference use, refer to the Request and Response
below.

Functions available:

abort(), forward(), etag_cache(),
mimetype() and redirect()

Module Contents

		
class pylons.controllers.util.Request(environ, charset=(No Default), unicode_errors=(No Default), decode_param_names=(No Default), **kw)

		WebOb Request subclass

The WebOb webob.Request has no charset, or other defaults. This subclass
adds defaults, along with several methods for backwards
compatibility with paste.wsgiwrappers.WSGIRequest.

		
determine_browser_charset()

		Legacy method to return the
webob.Request.accept_charset

		
signed_cookie(name, secret)

		Extract a signed cookie of name from the request

The cookie is expected to have been created with
Response.signed_cookie, and the secret should be the
same as the one used to sign it.

Any failure in the signature of the data will result in None
being returned.

		
class pylons.controllers.util.Response(body=None, status=None, headerlist=None, app_iter=None, request=None, content_type=None, conditional_response=None, **kw)

		WebOb Response subclass

The WebOb Response has no default content type, or error defaults.
This subclass adds defaults, along with several methods for
backwards compatibility with paste.wsgiwrappers.WSGIResponse.

		
content

		The body of the response, as a str. This will read in the
entire app_iter if necessary.

		
signed_cookie(name, data, secret=None, **kwargs)

		Save a signed cookie with secret signature

Saves a signed cookie of the pickled data. All other keyword
arguments that WebOb.set_cookie accepts are usable and
passed to the WebOb set_cookie method after creating the signed
cookie value.

		
pylons.controllers.util.abort(status_code=None, detail='', headers=None, comment=None)

		Aborts the request immediately by returning an HTTP exception

In the event that the status_code is a 300 series error, the detail
attribute will be used as the Location header should one not be
specified in the headers attribute.

		
pylons.controllers.util.etag_cache(key=None)

		Use the HTTP Entity Tag cache for Browser side caching

If a “If-None-Match” header is found, and equivilant to key,
then a 304 HTTP message will be returned with the ETag to tell
the browser that it should use its current cache of the page.

Otherwise, the ETag header will be added to the response headers.

Suggested use is within a Controller Action like so:

import pylons

class YourController(BaseController):
 def index(self):
 etag_cache(key=1)
 return render('/splash.mako')

Note

This works because etag_cache will raise an HTTPNotModified
exception if the ETag received matches the key provided.

		
pylons.controllers.util.forward(wsgi_app)

		Forward the request to a WSGI application. Returns its response.

return forward(FileApp('filename'))

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/ResponseTypes.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Content Types and Request Extensions

Content Types and Request Extensions are supported by both
tg.controllers.TGController and
tg.controllers.RestController.

Request Extensions

Request extensions allow the user to provide a specifier at the
end of their data stream which specifies how they would like
their data retrieved, using a dot operator.

For example: /users, /users.html and /users.json will all resolve to
the users method from the RootController.

A Simple Json Example

TurboGears Controllers gives the developer the ability to attach
common types that will be translated into mime-type to their methods
to express data using different protocols. The most common usage for
this is with json, a standard protocol used for Asynchronous
JavaScript. Consider the following code snippet:

users = "sally", "dave", "john"

class Forum(TGController):

 @expose('json')
 def users(self):
 return {'users':users}

This allows you to map a URL like /forum/users.json

Cascading Exposes To Provide Web Services

Sometimes you want a controller to return content based on the
extension provided by the user, or the lack-there-of. You can cascade
multiple expose decorators to accomplish this. Consider this example:
you have a page which lists the user in a table which is generated
using JavaScript. JS makes an asynchronous call to your web
application to fill the data. It makes sense to fetch the data for
the Json call, but not for the rendering of the HTML template used to
render the data. Here is the users example again which expresses this
use case:

users = "sally", "dave", "john"

class Forum(TGController):

 @expose(myproject.templates.forum.users)
 @expose('json')
 def users(self):
 if pylons.request.response_type == 'application/json':
 return {'users':users}
 return {}

The users method will service both /forum/users/ and
/forum/users.json. Simply provide the JavaScript code with a link to
users.json and you are good to go. This makes providing your users
with RESTful URLs much simpler. You could imagine using this
capability to expose your application’s resources for SOAP, or
XML-RPC.

This method is extensibly used by tgext.admin. Which provides a very clean API out of the box.

Application-Specific Mime-type Configuration

By default, only json/application and text/html are defined mimetypes.
If you would like to use additional mime-types you must register them
with your application’s config. You can accomplish this by adding the
following code your your app_cfg.py file:

base_config.mimetype_lookup = {'.ext':'my-mimetype'}

Setting the Content Type

Setting the Content-Type for your return data is often used to tell
the web browser how to display that data to the user. For instance,
if you want the browser to open an Excel file as such, you need to
tell the browser that the data coming back is in Excel format.

Per Method

Sometimes we want to set the content-type for our response within the
controller method.

By providing the @expose decorator with a content_type parameter we are
able to accomplish this.

Here is an example of how to return a simple .csv file that the browser
will treat as an attachment:

class MyController(BaseController):
 @expose(content_type='text/csv')
 def stats(self):
 return '1,2,3'

It is also possible to set this up with a template:

class MyController(BaseController):
 @expose("mypackage.templates.sometemplate",content_type='text/csv')
 def stats(self):
 ...
 return dict(data = somedata)

Per Request

Sometimes you will want to set the content type at runtime, the best example of
this is when you want to restrict downloads behind auth and you will only know
which file you are serving based on the request parameters.

This is done in the same way as plain old pylons.

Warning

due to bug #2378 [http://trac.turbogears.org/ticket/2378] we currently need to flag the controller as “setting the content type at runtime”

In this example we are flagging the content type:

from tg import request, response
from tg.controllers import CUSTOM_CONTENT_TYPE

class MyController(BaseController):
 @expose(content_type=CUSTOM_CONTENT_TYPE)
 def stats(self):
 response.content_type = 'text/csv'
 response.headerlist.append(('Content-Disposition','attachment;filename=stats.csv'))
 return '1,2,3'

Once the above bug is fixed all you will need is to set the content type at runtime by modifiying the headers:

from tg import response

class MyController(BaseController):
 @expose()
 def stats(self):
 response.headers['Content-type'] = 'text/csv'
 return '1,2,3'

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/itemselector11.png
States:Available
Alabama

Arkansas
Connecticut
Delaware
Florida
Georgia
Hawaii

Selected

= Alaska

: % Arizona
California

main/Validation.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

FormEncode @validate, and TurboGears Validation

When using TurboGears, your controller methods get their arguments
built from the various GET, POST, and URL mechanisms provided by
TurboGears. The only downside is that all the arguments will be
strings and you’d like them converted to their normal Python datatype:
numbers to int, dates to datetime, etc.

This conversion functionality is provided by the FormEncode [http://formencode.org/] package
and is applied to your methods using the @validate()
decorator. FormEncode provides both validation and conversion as a
single step, reasoning that you frequently need to validate something
before you can convert it or that you’ll need to convert something
before you can really validate it.

The @validate() decorator can evaluate both widget-based forms and
the standard form arguments so they are not dependent on widgets at
all.

Furthermore, the @validate() decorator is not really required at
all. It just provides a convenience so that you can assume that you
have the right kind of data inside your controller methods. This helps
separate validation logic from application logic about what to do with
valid data.

If you don’t put a @validate() decorator on your method, you’ll
simply have to do the string conversion in your controller.

Validating arguments (without form widgets)

When not using forms, the story gets a bit more complex. Basically,
you need to specify which validator goes with which argument using the
validators keyword argument. Here’s a simple example:

from formencode import validators

@expose('json')
@validate(validators={"a":validators.Int(), "b":validators.Email})
def two_validators(self, a=None, b=None, *args):
 errors = [{key, value} in tg.tmpl_context.form_errors.iteritems()]
 values = tg.tmpl_context.form_values
 return dict(a=a, b=b, errors=str(errors), values=str(values))

The dictionary passed to validators maps the incoming field names to
the appropriate FormEncode validators, Int in this example.

If there’s a validation error, TurboGears calls the error_handler if
it exists, but it always adds form_errors and form_values to the
tmpl_context, so they will be available there for the rest of the
request. In this case if there are validation errors, we grab both
the error messages and the original unvalidated values and return
them in the error message.

FormEncode provides a number of useful pre-made validators for you to
use: they are available in the formencode.validators module.

For most validators, you can pass keyword arguments for more specific
constraints.

Available Validators

		Attribute

		Bool

		CIDR

		ConfirmType

		Constant

		CreditCardExpires

		CreditCardSecurityCode

		CreditCardValidator

		DateConverter

		DateTime

		DateValidator

		DictConverter

		Email

		Empty

		False

		FancyValidator

		FieldStorageUploadConverter

		FieldsMatch

		FileUploadKeeper

		FormValidator

		IDeclarative

		IPhoneNumberValidator

		ISchema

		IValidator

		Identity

		IndexListConverter

		Int

		Interface

		Invalid

		MACAddress

		MaxLength

		MinLength

		NoDefault

		NotEmpty

		Number

		OneOf

		PhoneNumber

		PlainText

		PostalCode

		Regex

		RequireIfMissing

		RequireIfPresent

		Set

		SignedString

		StateProvince

		String

		StringBool

		StringBoolean

		StripField

		TimeConverter

		True

		URL

		UnicodeString

		Validator

		Wrapper

For the absolute most up-to date list of available validators, check
the FormEncode validators [http://formencode.org/module-formencode.validators.html#classes] module. You can also create your own
validators or build on existing validators by inheriting from one of
the defaults.

See the FormEncode documentation for how this is done.

You can also compose compound validators with logical operations,
the FormEncode compound module provides All (all must pass),
Any (any one must pass) and Pipe (all must pass with the results of
each validator passed to the next item in the Pipe). You can use these
like so:

from formencode.compound import All
...
the_validator=All(
 validators.NotEmpty(),
 validators.UnicodeString(),
)

Validating widget-based forms

The simplest way to use @validate() is to pass in a reference to a
widgets-based form:

@validate(projectname.forms.a_form)

The widgets system will take care of building a schema to handle the
data conversions and you’ll wind up with the int or datetime
objects you specified when building the form. When paired with the
validate decorator, you can handle the common case of building a
form, validating it, redisplaying the form if there are errors, and
converting a valid form into the proper arguments in only a few lines
of Python.

You can also pass the form using a keyword argument:

@validate(form=projectname.forms.a_form)

You might also want to tell TurboGears to pass off handling of invalid
data to a different controller. To do that you just pass the method
you want called to @validate via the error_handler param:

@validate(forms.myform, error_handler=process_form_errors)

The method in question will be called, with the unvalidated data as
its parameters. And error validation messages will be stored in
pylons.tmpl_context.

Here’s a quick example of how this all works:

@expose('json')
@validate(form=myform)
def process_form_errors(self, **kwargs):
 #add error messages to the kwargs dictionary and return it
 kwargs['errors'] = pylons.tmpl_context.form_errors
 return dict(kwargs)

@expose('json')
@validate(form=myform, error_handler=process_form_errors)
def send_to_error_handler(self, **kwargs):
 return dict(kwargs)

If there’s a validation error in myform, the send_to_error_handler
method will never get called. Instead process_form_errors will get
called, and the validation error messages can be picked up from the
form_errors value of the template context object
(pylons.tmpl_context).

Schema validation

Sometimes you need more power and flexibility than you can get from
validating individual form fields. Fortunately FormEncode provides
just the thing for us – Schema validators.

If you want to do multiple-field validation, reuse validators or just
clean up your code, validation Schema``s are the way to go. You
create a validation schema by inheriting from
``formencode.schema.Schema and pass the newly created Schema
as the validators argument instead of passing a dictionary.

Create a schema:

class PwdSchema(schema.Schema):
 pwd1 = validators.String(not_empty=True)
 pwd2 = validators.String(not_empty=True)
 chained_validators = [validators.FieldsMatch('pwd1', 'pwd2')]

Then you can use that schema in @validate rather than a dictionary of
validators:

@expose()
@validate(validators=PwdSchema())
def password(self, pwd1, pwd2):
 if tg.tmpl_context.form_errors:
 return "There was an error"
 else:
 return "Password ok!"

Besides noticing our brilliant security strategy, please notice the
chained_validators part of the schema that guarantees a pair of
matching fields.

Again, for information about Invalid exception objects, creating
your own validators, schema and FormEncode in general, refer to the
FormEncode Validator [http://formencode.org/docs/Validator.html] documentation and don’t be afraid to check the
Formencode.validators source. It’s often clearer than the
documentation.

Note that Schema validation is rigorous by default, in particular, you
must declare every field you are going to pass into your controller
or you will get validation errors. To avoid this, add:

class MySchema(schema.Schema):
 allow_extra_fields=True

to your schema declaration.

Converting URL strings to Python types manually

You can always use e.g. Python’s int() method to convert a string
to an integer and use a try/except block to catch errors in the
conversion process:

from tg import controllers, expose
class Root(controllers.RootController):

#...
 # return the result of x+y
 @expose()
 def addnum(self, x, y)
 try:
 return str(int(x)+int(y))
 except:
 return 'value is not valid'

This isn’t that hard, but it quickly becomes unwieldy when you start
converting large numbers of arguments. Moreover, you still have the
problem of propagating the errors back to your users. In the end, it’s
usually far simpler to use the validation framework.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Config/SQLAlchemy.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		TurboGears 2 Configuration »

SQLAlchemy and Transaction Config Settings

		Status:		Official

Table of Contents

		SQLAlchemy and Transaction Config Settings
		AppConfig Method Overrides

Though the majority of folks will use TurboGears with SQLAlchemy, there
are those who have interest in running the full stack of TG with a non-relational
database like MongoDB [http://www.mongodb.org/] or CouchDB [http://couchdb.apache.org/]. There are a few settings that allow this,
the most pertinent is: use_sqlalchemy:

base_config.use_sqlalchemy – Set to False to turn off sqlalchemy support

TurboGears takes advantage of repoze’s transaction manager software. Basically,
the transaction manager wraps each of your controller methods, and should a method
fail, the transaction will roll back. if you utilize the transaction manager, then
the result of a successful method call results in a commit to the database. If
the contoller method does not utilize the database, there is no database interaction
performed. What this means is that you never have to worry about committing, or
rolling back when controller code fails, TG handles this for you automatically.

base_config.use_transaction_manager – Set to False to turn off the
Transaction Manager and handle transactions yourself.

AppConfig Method Overrides

		
AppConfig.setup_sqlalchemy()

		Setup SQLAlchemy database engine.

The most common reason for modifying this method is to add
multiple database support. To do this you might modify your
app_cfg.py file in the following manner:

from tg.configuration import AppConfig, config
from myapp.model import init_model

add this before base_config =
class MultiDBAppConfig(AppConfig):
 def setup_sqlalchemy(self):
 '''Setup SQLAlchemy database engine(s)'''
 from sqlalchemy import engine_from_config
 engine1 = engine_from_config(config, 'sqlalchemy.first.')
 engine2 = engine_from_config(config, 'sqlalchemy.second.')
 # engine1 should be assigned to sa_engine as well as your first engine's name
 config['tg.app_globals'].sa_engine = engine1
 config['tg.app_globals'].sa_engine_first = engine1
 config['tg.app_globals'].sa_engine_second = engine2
 # Pass the engines to init_model, to be able to introspect tables
 init_model(engine1, engine2)

#base_config = AppConfig()
base_config = MultiDBAppConfig()

This will pull the config settings from your .ini files to create the necessary
engines for use within your application. Make sure you have a look at Using Multiple Databases In TurboGears
for more information.

		
AppConfig.add_tm_middleware(app)

		Set up the transaction management middleware.

To abort a transaction inside a TG2 app:

import transaction
transaction.doom()

By default http error responses also roll back transactions, but this
behavior can be overridden by overriding base_config.commit_veto.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

deprecated/ToscaWidgets/Using.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		ToscaWidgets »

Using Existing Widgets

Finding Existing Widgets

		Check pypi [http://pypi.python.org/pypi?%3Aaction=search&term=toscawidgets&submit=search]

		Toscawidgets provides documentation [http://toscawidgets.org/documentation] for some of it’s
released packages. Some of the docs contain Widget Browsers [http://toscawidgets.org/documentation/tw.forms/modules/fields/forms.html]
that allow you to play with the widget live.

		The Toscawidgets repository [http://toscawidgets.org/hg] holds some widget libraries that have not been released.
Use them at your own risk.

Tutorial

The overall process for using a widget is:

		Create a single instance of the widget (or compound widget), to be
used throughout the program

		Pass this instance from the controller to a template

		In the template, call the widget to display it. Parameters can be
passed at display time, and this is commonly used for the value of
the widget.

For this tutorial we are going to create a star rating widget which
utilizes ajax to store the user response and return a request back to
the browser to update the user’s view.

Before we start using our widget we need to install it. For the time
being, this widget has not been released to pypi so we need to install
from the trunk.

easy_install tw.rating

import the widget into your project

from tw.rating import Ratings

Create the widget inside your controllers definitions.

my_rating = Rating(id='my_rating', action='rating', label_text='')

Create a new controller method to share our widget

@expose('genshi:myproject.templates.widget')
def testing(self, **kw):
 tmpl_context.widget = my_rating
 return dict()

In the template, call the widget to display it.

${tmpl_context.widget(value)}

Here is what the resulting widget looks like:

[image: ../../_images/stars.png]
Now, star widget doesn’t do any good without some kind of server
interaction. For this tutorial we are going to just simply keep track
of the average as the user’s click the stars in memory. This could be
later modified to support some sort of crafty database interaction.

First, lets initialize our “database” of star-click averages:

sum_ratings = 0
num_ratings = 0

Then we make a newly exposed method which shares the same name as the
“action” which is sent into the Widget.

@expose('json')
def rating(self, rating):
 global sum_ratings
 global num_ratings
 rating = int(rating)
 sum_ratings += rating
 num_ratings += 1
 rating = float(sum_ratings)/float(num_ratings)
 return dict(num_ratings=num_ratings, avg_rating=rating)

This method returns a json stream to the widget which is then read as
a response by the javascript on the client side.

Now, this is not a terribly interesting example until you start to
handle the response that comes back. To do that, you just add an
“on_click” parameter to the widget definition.

<div id="avg_stars"/>

First we modify the template to give a place to hold the data that
comes back from the server.

rating = Rating(id='my_rating',
 action='rating',
 label_text='',
 on_click="""$('#avg_stars')[0].textContent='The average is now: '+response.avg_rating""")

The ‘response’ javascript variable will hold an object which is your
extracted json stream. In this case, we are displaying the average
rating. It is important to note that the star widget uses the jQuery
library, and the ‘$’ operator may not work the same in other
libraries.

[image: ../../_images/stars_avg.png]

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

utilities.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

Utilities

		AutoGenerating Model Code with SQLAutocode

		Generating your own Private Python Package Index

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Realtime/moksha.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Moksha

The Moksha Project [https://fedorahosted.org/moksha/] is an Open Source (AGPL [http://en.wikipedia.org/wiki/Affero_General_Public_License]) Python web framework
that aims to simplify the creation of highly-interactive realtime web
applications.

Moksha provides a plugin system for easily integrating existing apps,
widgets, technologies, and APIs. It offers a realtime messaging layer
for the web, which lets you build rich dashboards of live interactive
widgets, while also making it easy to produce and react to messages
and events.

Moksha is currently in the alpha stages, and is still under heavy
development. If you are interested in Moksha you should consider
joining the project and collaborating with the developers.

Features

		Powered by Open Source and Open Standards

		Comprehensive WSGI Middleware Stack

		Application and Widget Plugin Architecture

		Low-latency Browser Socket

		Live Widget API

		Dashboard Creation API

		External Resource Connectors

		Dynamic extension points

		Scalable Architecture

		Messaging Hub that can integrate with an AMQP broker

		Message Producer/Consumer API

		Based on TurboGears2

See Also

You may be interested in the Real-time TurboGears Introduction.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/new_form.png
Welcome to TurboGears 2
The Python web metaframework

New Movie

Description

Relesse Dte 5510
Gee

main/Extensions/Geo/TileCacheTutorial.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Extensions and Tools »

 		tgext.geo: Geographic Extensions for TurboGears »

tgext.geo TileCache Tutorial

Introduction

TileCache is a python WSGI (Web Services Gateway Interface) App that
implements the WMS-C (Web Map Service - Cached) spec for generation
and serving of WMS tiles. This improves the performance of a WMS
service substantially by generating / querying tiles and locally
caching them to serve subsequent tile requests. tgext.geo includes
paster commands for creating controller code that mounts TileCache as
a WSGI App.

About This Tutorial

In this tutorial we will create a TG2 app and use tgext.geo extension
to mount the TileCache WSGI App. We will also modify the template code
for index method to create an OpenLayers Map that will render the
tiles.

Installation

It is assumed that a fresh virtualenv has been created and TG2
installed following the TurboGears 2.2.2 Standard Installation. Install tgext.geo
using easy_install:

(tg2env)$ easy_install -i http://www.turbogears.org/2.0/downloads/current/index tgext.geo

Creating A New TG2 App

Create a new TG2 app using the paster command and change into the
newly created project folder:

(tg2env)$ paster quickstart TilesApp
(tg2env)$ cd TilesApp

Add tgext.geo Paster Plugin

Open the paster plugins file viz. TilesApp.egg-info/paster_plugins.txt
and add a line containing tgext.geo .

Create A TileCache Config

Create a TileCache config in the file tilecache.cfg in the project
folder and add the necessary configuration. Details of this
configuration can be found in the TileCache Documentation [http://tilecache.org/readme.html#configuration]. A sample
tilecache.cfg file can be downloaded from
http://svn.tilecache.org/trunk/tilecache/tilecache.cfg . For example,
a standard WMS tile service would have the following config:

[cache]
type=Disk
base=/tmp/tilecache

Rendering VMAP0 data with WMS
[basic]
type=WMS
url=http://labs.metacarta.com/wms/vmap0
extension=png

Sections for all the required tilecache layers should be added to this
file. For example, the following lines should be added in order to
have a Mapnik Tiles layer using the OpenStreetMap [http://www.openstreetmap.org/] (OSM) data:

Rendering OpenStreetMap data with Mapnik
[osm]
type=Mapnik
mapfile=/home/user/osm-mapnik/osm.xml
spherical_mercator=true
bbox=-20037508.34,-20037508.34,20037508.34,20037508.34
resolutions=156543.0,78271.5,39135.75,19567.875,9783.9375,4891.96875,2445.984375,1222.9921875,611.49609375,305.748046875,152.874023438,76.4370117188,38.2185058594,19.1092529297,9.55462646484,4.77731323242,2.38865661621,1.19432830811,0.597164154053,0.298582077026
metaTile="yes"
metaBuffer=40

Creating The Tiles Controller

Once the tilecache.cfg file is ready, the new controller containing
the TileCache WSGI App can be created using the following paster
command:

(tg2env)$ paster geo-tilecache tiles

where tiles is the new controller. Now edit the root controller
(package/controllers/root.py) to import and mount the controller:

from tilesapp.controllers.tiles import TilesController

class RootController(BaseController):
 tiles = TilesController()

The tiles controller should now be accessible at the url location
http://<host>:<port>/tiles.

Start the server and point your browser to the above url. You should
be able to see the TileCache Capabilities document, which an xml
document describing the service.

Rendering The Tiles In An OpenLayers Map

Adding The Javascript Code

The tiles accessible through the TileCache definition above can be
rendered in an OpenLayers Map as a WMS layer. Modify the index
template to add the following javascript code in the head section:

<script src="/javascript/OpenLayers.js"></script>
<script type="text/javascript">
 var map, layer;
 function init(){
 map = new OpenLayers.Map($('map'), {'maxResolution': 360/512});
 layer = new OpenLayers.Layer.WMS("VMap0",
 "http://localhost:8080/tiles", {layers: 'basic', format: 'image/png' });
 map.addLayer(layer);
 if (!map.getCenter()) map.zoomToMaxExtent();
 }
</script>

When using the OSM Layer, use exactly the same projection, extents and
resolution settings as defined in the tilecache config:

<script src="/javascript/OpenLayers.js"></script>
<script type="text/javascript">
 var map, layer;
 function init(){
 options = {controls:[
 new OpenLayers.Control.LayerSwitcher(),
 new OpenLayers.Control.PanZoomBar()
]};

 options = OpenLayers.Util.extend({
 maxExtent: new OpenLayers.Bounds(-20037508.34,
 -20037508.34,20037508.34,20037508.34),
 maxResolution: 156543.0339,
 projection: new OpenLayers.Projection("EPSG:900913"),
 displayProjection: new OpenLayers.Projection("EPSG:4326"),
 transitionEffect: "resize"
 }, options);

 map = new OpenLayers.Map('map', options);

 layer = new OpenLayers.Layer.WMS("osm", "http://localhost:8080/tiles/",
 {layername: "osm", type: "png"});
 map.addLayer(layer);
 map.setCenter(new OpenLayers.LonLat(2.3, 48.86).transform(
 new OpenLayers.Projection("EPSG:4326"),
 new OpenLayers.Projection("EPSG:900913")), 15);
}
</script>

Download OpenLayers javascript mapping toolkit from the OpenLayers [http://www.openlayers.org/]
site and unzip / untar the archive. Copy the OpenLayers.js file and
the img folder in the archive to project/public/javascript folder.

Adding The Style Code

The following stylesheet code may be added to suite the map display:

<style type="text/css">
 #map {
 width: 100%;
 height: 100%;
 }
</style>

Add The HTML Code

The following HTML code should be sufficient to show the map:

<body onload="init();">
 <div id="map"/>
 <div class="clearingdiv" />
 <div class="notice"> Thank you for choosing TurboGears.</div>
</body>

See TileCache In Action

Its time to see TileCache in action now. Run the paster command to
start the local HTTP server:

(tg2env)$ paster serve --reload development.ini

Point your browser to http://localhost:8080 to view the map. The first
time you see the map and zoom in the tile would be generated and
rendered. In the subsequent requests the response is much faster as
tiles cached earlier are served up.

		Mapnik [http://www.mapnik.org/]

		Mapnik is a C++ toolkit with python bindings for rendering
maps. OpenStreetMap is a free geographic data set containing street
maps. A document describing the rendering of OSM maps using Mapnik can
be found here <http://wiki.openstreetmap.org/index.php/Mapnik>_. The
metaTile param causes mapnik to make use of PIL for rendering the
maps.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/edit.png
Welcome to TurboGears 2

‘The Python web metaframework

_images/stars.png
O i
Giveit3/5

_images/movie_directors.png
Welcome to TurboGears 2
“The Python web metaframework:

Directors of The Matrix

Name Maves Directed
Andy Wachowski The Mat,
Lary Wachowsii The s,

modules/thirdparty/weberror.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Third-party components »

weberror – Weberror

weberror.errormiddleware

Error handler middleware

		
class weberror.errormiddleware.ErrorMiddleware(application, global_conf=None, debug=<NoDefault>, error_email=None, error_log=None, show_exceptions_in_wsgi_errors=<NoDefault>, from_address=None, smtp_server=None, smtp_username=None, smtp_password=None, smtp_use_tls=False, error_subject_prefix=None, error_message=None, xmlhttp_key=None, reporters=None)

		Error handling middleware

Usage:

error_catching_wsgi_app = ErrorMiddleware(wsgi_app)

Settings:

		debug:

		If true, then tracebacks will be shown in the browser.

		error_email:

		an email address (or list of addresses) to send exception
reports to

		error_log:

		a filename to append tracebacks to

		show_exceptions_in_wsgi_errors:

		If true, then errors will be printed to wsgi.errors
(frequently a server error log, or stderr).

		from_address, smtp_server, error_subject_prefix, smtp_username, smtp_password, smtp_use_tls:

		variables to control the emailed exception reports

		error_message:

		When debug mode is off, the error message to show to users.

		xmlhttp_key:

		When this key (default _) is in the request GET variables
(not POST!), expect that this is an XMLHttpRequest, and the
response should be more minimal; it should not be a complete
HTML page.

Environment Configuration:

		paste.throw_errors:

		If this setting in the request environment is true, then this
middleware is disabled. This can be useful in a testing situation
where you don’t want errors to be caught and transformed.

		paste.expected_exceptions:

		When this middleware encounters an exception listed in this
environment variable and when the start_response has not
yet occurred, the exception will be re-raised instead of being
caught. This should generally be set by middleware that may
(but probably shouldn’t be) installed above this middleware,
and wants to get certain exceptions. Exceptions raised after
start_response have been called are always caught since
by definition they are no longer expected.

weberror.evalcontext

		
class weberror.evalcontext.EvalContext(namespace, globs)

		Class that represents a interactive interface. It has its own
namespace. Use eval_context.exec_expr(expr) to run commands; the
output of those commands is returned, as are print statements.

This is essentially what doctest does, and is taken directly from
doctest.

weberror.evalexception

Exception-catching middleware that allows interactive debugging.

This middleware catches all unexpected exceptions. A normal
traceback, like produced by
weberror.exceptions.errormiddleware.ErrorMiddleware is given, plus
controls to see local variables and evaluate expressions in a local
context.

This can only be used in single-process environments, because
subsequent requests must go back to the same process that the
exception originally occurred in. Threaded or non-concurrent
environments both work.

This shouldn’t be used in production in any way. That would just be
silly.

If calling from an XMLHttpRequest call, if the GET variable _ is
given then it will make the response more compact (and less
Javascripty), since if you use innerHTML it’ll kill your browser. You
can look for the header X-Debug-URL in your 500 responses if you want
to see the full debuggable traceback. Also, this URL is printed to
wsgi.errors, so you can open it up in another browser window.

		
class weberror.evalexception.EvalException(application, global_conf=None, error_template_filename=None, xmlhttp_key=None, media_paths=None, templating_formatters=None, head_html='', footer_html='', reporters=None, libraries=None, **params)

		Handles capturing an exception and turning it into an interactive
exception explorer

		
media(req)

		Static path where images and other files live

		
relay(req)

		Relay a request to a remote machine for JS proxying

		
summary(req)

		Returns a JSON-format summary of all the cached
exception reports

		
view(req)

		View old exception reports

weberror.formatter

Formatters for the exception data that comes from ExceptionCollector.

		
class weberror.formatter.AbstractFormatter(show_hidden_frames=False, include_reusable=True, show_extra_data=True, trim_source_paths=(), **kwargs)

		
		
filter_frames(frames)

		Removes any frames that should be hidden, according to the
values of traceback_hide, self.show_hidden_frames, and the
hidden status of the final frame.

		
format_frame_end(frame)

		Called after each frame ends; may return None to output no text.

		
format_frame_start(frame)

		Called before each frame starts; may return None to output no text.

		
long_item_list(lst)

		Returns true if the list contains items that are long, and should
be more nicely formatted.

		
pretty_string_repr(s)

		Formats the string as a triple-quoted string when it contains
newlines.

		
class weberror.formatter.TextFormatter(show_hidden_frames=False, include_reusable=True, show_extra_data=True, trim_source_paths=(), **kwargs)

		

		
class weberror.formatter.HTMLFormatter(show_hidden_frames=False, include_reusable=True, show_extra_data=True, trim_source_paths=(), **kwargs)

		

		
class weberror.formatter.XMLFormatter(show_hidden_frames=False, include_reusable=True, show_extra_data=True, trim_source_paths=(), **kwargs)

		

		
weberror.formatter.create_text_node(doc, elem, text)

		

		
weberror.formatter.html_quote(s)

		

		
weberror.formatter.format_html(exc_data, include_hidden_frames=False, **ops)

		

		
weberror.formatter.format_text(exc_data, **ops)

		

		
weberror.formatter.format_xml(exc_data, **ops)

		

		
weberror.formatter.str2html(src, strip=False, indent_subsequent=0, highlight_inner=False, frame=None, filename=None)

		Convert a string to HTML. Try to be really safe about it,
returning a quoted version of the string if nothing else works.

		
weberror.formatter._str2html(src, strip=False, indent_subsequent=0, highlight_inner=False, frame=None, filename=None)

		

		
weberror.formatter.truncate(string, limit=1000)

		Truncate the string to the limit number of
characters

		
weberror.formatter.make_wrappable(html, wrap_limit=60, split_on=';?&@!$#-/\\"\'')

		

		
weberror.formatter.make_pre_wrappable(html, wrap_limit=60, split_on=';?&@!$#-/\\"\'')

		Like make_wrappable() but intended for text that will
go in a <pre> block, so wrap on a line-by-line basis.

weberror.reporter

		
class weberror.reporter.Reporter(**conf)

		

		
class weberror.reporter.EmailReporter(**conf)

		

		
class weberror.reporter.LogReporter(**conf)

		

		
class weberror.reporter.FileReporter(**conf)

		

		
class weberror.reporter.WSGIAppReporter(exc_data)

		

weberror.collector

An exception collector that finds traceback information plus
supplements

		
class weberror.collector.ExceptionCollector(limit=None)

		Produces a data structure that can be used by formatters to
display exception reports.

Magic variables:

If you define one of these variables in your local scope, you can
add information to tracebacks that happen in that context. This
allows applications to add all sorts of extra information about
the context of the error, including URLs, environmental variables,
users, hostnames, etc. These are the variables we look for:

		__traceback_supplement__:

		You can define this locally or globally (unlike all the other
variables, which must be defined locally).

__traceback_supplement__ is a tuple of (factory, arg1,
arg2...). When there is an exception, factory(arg1, arg2,
...) is called, and the resulting object is inspected for
supplemental information.

		__traceback_info__:

		This information is added to the traceback, usually fairly
literally.

		__traceback_hide__:

		If set and true, this indicates that the frame should be
hidden from abbreviated tracebacks. This way you can hide
some of the complexity of the larger framework and let the
user focus on their own errors.

By setting it to 'before', all frames before this one will
be thrown away. By setting it to 'after' then all frames
after this will be thrown away until 'reset' is found. In
each case the frame where it is set is included, unless you
append '_and_this' to the value (e.g.,
'before_and_this').

Note that formatters will ignore this entirely if the frame
that contains the error wouldn’t normally be shown according
to these rules.

		__traceback_reporter__:

		This should be a reporter object (see the reporter module),
or a list/tuple of reporter objects. All reporters found this
way will be given the exception, innermost first.

		__traceback_decorator__:

		This object (defined in a local or global scope) will get the
result of this function (the CollectedException defined
below). It may modify this object in place, or return an
entirely new object. This gives the object the ability to
manipulate the traceback arbitrarily.

The actually interpretation of these values is largely up to the
reporters and formatters.

collect_exception(*sys.exc_info()) will return an object with
several attributes:

		frames:

		A list of frames

		exception_formatted:

		The formatted exception, generally a full traceback

		exception_type:

		The type of the exception, like ValueError

		exception_value:

		The string value of the exception, like 'x not in list'

		identification_code:

		A hash of the exception data meant to identify the general
exception, so that it shares this code with other exceptions
that derive from the same problem. The code is a hash of
all the module names and function names in the traceback,
plus exception_type. This should be shown to users so they
can refer to the exception later. (@@: should it include a
portion that allows identification of the specific instance
of the exception as well?)

The list of frames goes innermost first. Each frame has these
attributes; some values may be None if they could not be
determined.

		modname:

		the name of the module

		filename:

		the filename of the module

		lineno:

		the line of the error

		revision:

		the contents of __version__ or __revision__

		name:

		the function name

		supplement:

		an object created from __traceback_supplement__

		supplement_exception:

		a simple traceback of any exception __traceback_supplement__
created

		traceback_info:

		the str() of any __traceback_info__ variable found in the local
scope (@@: should it str()-ify it or not?)

		traceback_hide:

		the value of any __traceback_hide__ variable

		traceback_log:

		the value of any __traceback_log__ variable

__traceback_supplement__ is thrown away, but a fixed
set of attributes are captured; each of these attributes is
optional.

		object:

		the name of the object being visited

		source_url:

		the original URL requested

		line:

		the line of source being executed (for interpreters, like ZPT)

		column:

		the column of source being executed

		expression:

		the expression being evaluated (also for interpreters)

		warnings:

		a list of (string) warnings to be displayed

		getInfo:

		a function/method that takes no arguments, and returns a string
describing any extra information

		extraData:

		a function/method that takes no arguments, and returns a
dictionary. The contents of this dictionary will not be
displayed in the context of the traceback, but globally for
the exception. Results will be grouped by the keys in the
dictionaries (which also serve as titles). The keys can also
be tuples of (importance, title); in this case the importance
should be important (shows up at top), normal (shows
up somewhere; unspecified), supplemental (shows up at
bottom), or extra (shows up hidden or not at all).

These are used to create an object with attributes of the same
names (getInfo becomes a string attribute, not a method).
__traceback_supplement__ implementations should be careful to
produce values that are relatively static and unlikely to cause
further errors in the reporting system – any complex
introspection should go in getInfo() and should ultimately
return a string.

Note that all attributes are optional, and under certain
circumstances may be None or may not exist at all – the collector
can only do a best effort, but must avoid creating any exceptions
itself.

Formatters may want to use __traceback_hide__ as a hint to
hide frames that are part of the ‘framework’ or underlying system.
There are a variety of rules about special values for this
variables that formatters should be aware of.

TODO:

More attributes in __traceback_supplement__? Maybe an attribute
that gives a list of local variables that should also be
collected? Also, attributes that would be explicitly meant for
the entire request, not just a single frame. Right now some of
the fixed set of attributes (e.g., source_url) are meant for this
use, but there’s no explicit way for the supplement to indicate
new values, e.g., logged-in user, HTTP referrer, environment, etc.
Also, the attributes that do exist are Zope/Web oriented.

More information on frames? cgitb, for instance, produces
extensive information on local variables. There exists the
possibility that getting this information may cause side effects,
which can make debugging more difficult; but it also provides
fodder for post-mortem debugging. However, the collector is not
meant to be configurable, but to capture everything it can and let
the formatters be configurable. Maybe this would have to be a
configuration value, or maybe it could be indicated by another
magical variable (which would probably mean ‘show all local
variables below this frame’)

		
class weberror.collector.ExceptionFrame(**attrs)

		This represents one frame of the exception. Each frame is a
context in the call stack, typically represented by a line
number and module name in the traceback.

		
get_source_line(context=0)

		Return the source of the current line of this frame. You
probably want to .strip() it as well, as it is likely to have
leading whitespace.

If context is given, then that many lines on either side will
also be returned. E.g., context=1 will give 3 lines.

		
weberror.collector.collect_exception(t, v, tb, limit=None)

		Collection an exception from sys.exc_info().

Use like:

try:
 blah blah
except:
 exc_data = collect_exception(*sys.exc_info())

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

deprecated/ToscaWidgets/Library.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		ToscaWidgets »

Creating ToscaWidgets Libraries

Paster

Paster is a tool which creates a set of boiler-plate scripts akin to
an egg package which you can then build your library inside of.

Use paster to create your own toscapackage.

paster create -t toscawidgets tw.mypackagename

This will create a toscawidgets package with the name
tw.mypackagename. The directory structure looks like this

tw.mypackagename/
|-- setup.cfg
|-- setup.py
|-- tests
| |-- __init__.py
| `-- test_widget.py
|-- toscawidgets
| |-- __init__.py
| |-- __init__.pyc
| `-- widgets
| |-- __init__.py
| |-- __init__.pyc
| `-- mypackage
| |-- __init__.py
| |-- release.py
| |-- samples.py
| |-- static
| `-- widgets.py
`-- tw.mypackagename.egg-info
 |-- PKG-INFO
 |-- SOURCES.txt
 |-- dependency_links.txt
 |-- entry_points.txt
 |-- namespace_packages.txt
 |-- not-zip-safe
 |-- paster_plugins.txt
 |-- requires.txt
 `-- top_level.txt

Now you need to cd into your new package’s directory and install it so
you can import it in your application:

cd tw.mypackagename
python setup.py develop

If you are interested in participating in tw.tools you should follow
the standard package name which is tw. followed by your package name
in all lower case letters.

At this point it is a good idea to modify the setup.py file to add in
dependencies on other public/private packages.

Finally, modify the toscawidgets/widgets/widgets.py to create your
widget(s).

Your imports will look something like:

from tw.mypackagename import mywidgetname

testing your widget

Put a test for your widget in the test_widgets.py file.

tw.tools

tw.tools (and soon to be toscawidgets.org) gives you an easy place to
share and publish your widget code. Simply create a widget package,
and notify the toscawidgets board that you are interested in sharing.
We will give you access to http://twtools.googlecode.com and give your
package a trunk/tags/branches hierarchy. You can decide to create
your own releases, or have us generate releases for you and publish
them to PyPI.

WidgetBrowser

At some point we will add the capability to let the widget browser
know how to instantiate a test-version of your widget and display it
so that it can be integrated with toscawidgets.org

Todo

Difficulty: Hard. get the widget browser working for toscawidgets.org

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Deployment/ModProxy.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		Deployment »

Running TurboGears 2.2.2 behind Apache with Mod Proxy

By running your TurboGears 2.2.2 application behind
Apache you can take advantage of Apache’s
HTTPS abilities or have it serve your static files, but keep your
Paste server independent of the Apache server.

This can allow, for instance, wsgi applications to be run as
regular Unix users instead of under the www-data user account.

Note

We recommend the use of Apache Mod-WSGI where
possible, as it is part of the Standard Deployment Pattern and
should provide better performance in general.

TurboGears Configuration

Warning

You will need a Production Config for your application. There
are significant security implications to a Production Config file,
do not just copy your development.ini file!

If you are not mounting your application at the “root” of your site,
you will need to configure a proxy filter in your production.ini file.
See Configure Proxy Mount Point for details.

Apache Configuration

Here is how to configure Apache 2 as a reverse proxy for your
TurboGears2 application.

In Apache’s httpd.conf uncomment the mod_proxy modules:

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_connect_module modules/mod_proxy_connect.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule proxy_balancer_module modules/mod_proxy_balancer.so

Also note, depending on your distribution, you first might need to
install the apache-mod_proxy packages.

In the virtual hosts section of the httpd.conf file or in the
include file for your virtual host (e.g. httpd-vhosts.conf, but
make sure this is loaded), you would want to have something like this
for your site (adapt the server name, admin, log locations etc.):

NameVirtualHost *

<VirtualHost *>
 ServerName mytgapp.blabla.com
 ServerAdmin here-your-name@blabla.com
 #DocumentRoot /srv/www/vhosts/mytgapp
 Errorlog /var/log/apache2/mytgapp-error_log
 Customlog /var/log/apache2/mytgapp-access_log common
 UseCanonicalName Off
 ServerSignature Off
 AddDefaultCharset utf-8
 ProxyPreserveHost On
 ProxyRequests Off
 ProxyPass /error/ !
 ProxyPass /icons/ !
 ProxyPass /favicon.ico !
 #ProxyPass /static/ !
 ProxyPass / http://127.0.0.1:8080/
 ProxyPassReverse / http://127.0.0.1:8080/
</VirtualHost>

Uncomment the DocumentRoot and ProxyPass /static/ lines if you
want to serve the directory with static content of your TurboGears
application directly by Apache. You will then also need to copy or
link this directory to the configured DocumentRoot directory.

Check that your Apache configuration has no problems:

apachectl -S

or:

apachectl configtest

If everything is ok, run:

apachectl start

Finally, go to your TurboGears project directory and in a console
run:

paster serve production.ini

Note

The above command assumes you have created a config file named production.ini.

Now you should be able to see your webpage in full TurboGears glory at
the address configured as ServerName above.

Setting The Correct Charset

The default templates used by TurboGears specify utf-8 as a
charset. The Apache default charset, returned in the Content-Type
header, is ISO-8859-1. This inconsistency will cause errors
during validation and incorrect rendering of some characters on the
client. Therefore we used the AddDefaultCharset utf-8 directive
above to override the Apache default in the TurboGears virtual host
section.

TurboGears 2.2.2 also automatically sets the charset property by
modifying the Content-type HTTP header on each request that
returns text/* or application/json content types. Apache
notices this pre-existing header and passes it through.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Auth/LoginCleaner.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		Authentication and Authorization in TurboGears 2 »

Adding a custom login cleaner

The default authentication mechanism checks the login user name, exactly
as it was entered by the user in the login form, against the user names
stored in the database. However, sometimes you may want to “sanitize”
the login names that have been entered by the users before comparing them
with the user names stored in the database. For instance, if you know you
have only lower case user names in the database, you may want to automatically
change the entered login name to lower case, so that it will not matter
if a user enters the name capitalized or has the caps lock key active when
typing. Or, if you are using user logins that are numbers, you may want
to remove leading zeros or any whitespace grouping the numbers into blocks.

You can realize such a “login cleaner” either by using a modified repoze.who
form plugin or by wrapping your application in a special WSGI middleware.
Using the repoze.who plugin system may be more simple and obvious in this
case, but the middleware approach can also be used for other purposes not
related to authentication, so we will show both ways of doing it.

In our example, we assume the login names are numbers, and we want to
remove leading zeros and whitespace as well as any non-ascii characters
that may raise errors when decoding the string for comparison with the
login names in the database.

Solution 1, using a modified repoze.who form plugin

Save this module as lib/login_cleaner.py inside your TurboGears application:

from repoze.who.plugins.friendlyform import FriendlyFormPlugin

__all__ = ['LoginCleanerPlugin']

class LoginCleanerFormPlugin(FriendlyFormPlugin):
 """Modified repoze.who FriendlyFormPlugin plugin with login clean-up."""

 def identify(self, environ):
 """Remove interim zeros and iterim whitespace in the login name."""
 identity = super(LoginCleanerFormPlugin, self).identify(environ)
 if identity:
 login = identity['login']
 if login:
 # remove all non-ascii chars and whitespace
 login = ''.join(c for c in login if 32 < ord(c) < 128)
 # remove leading zeros if login is a number
 if login.isdigit():
 login = login.lstrip('0')
 identity['login'] = login
 return identity

In config/app_cfg.py, add this:

from myapp.lib.login_cleaner import LoginCleanerFormPlugin

Set up our modified form plugin for getting the credentials:
base_config.sa_auth.form_plugin = LoginCleanerFormPlugin(
 login_form_url="/login", login_handler_path="/login_handler",
 logout_handler_path="/logout_handler", rememberer_name="cookie",
 post_login_url=base_config.sa_auth.post_login_url,
 post_logout_url=base_config.sa_auth.post_logout_url, charset='utf-8')

Solution 2, using a custom WSGI middleware

Save this module as lib/login_cleaner.py inside your TurboGears application:

from webob import Request

__all__ = ['LoginCleanerMiddleware']

class LoginCleanerMiddleware(object):
 """WSGI middleware for login clean-up."""

 def __init__(self, app,
 login_handler_path='/login_handler', charset='utf-8'):
 self.app = app
 self.login_handler_path = login_handler_path
 self.charset = charset

 def __call__(self, environ, start_response):
 app = self.app
 path_info = environ['PATH_INFO']
 if path_info == self.login_handler_path:
 request = Request(environ, charset=self.charset)
 login = request.POST.get('login')
 if login:
 # remove all non-ascii chars and whitespace
 login = ''.join(c for c in login if 32 < ord(c) < 128)
 # remove leading zeros if login is a number
 if login.isdigit():
 login = login.lstrip('0')
 request.POST['login'] = login
 return app(environ, start_response)

In config/app_cfg.py, add this:

from myapp.lib.login_cleaner import LoginCleanerMiddleware

def make_app(global_conf, full_stack=True, **app_conf):
 app = make_base_app(global_conf, full_stack=True, **app_conf)

 # wrap the application with our custom middleware for login clean-up:
 app = LoginCleanerMiddleware(app, login_handler_path=app_conf.get(
 'sa_auth.login_handler', '/login_handler'))

 return app

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Extensions/Crud/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Extensions and Tools »

TurboGears Automatic CRUD Generation

Overview

This is a simple extension that provides a basic controller class that
can be extended to meet the needs of the developer. The intention is
to provide a fast path to data management by allowing the user to
define forms and override the data interaction with custom
manipulations once the view logic is in place. The name of this
extensible class is CrudRestController.

What is CRUD?

CRUD is a set of functions to manipulate the data in a database:
create, read, update, delete.

Um, REST?

REST is a methodology for mapping resource manipulation to meaningful
URL. For instance if we wanted to edit a user with the ID 3, the URL
might look like: /users/3/edit. For a brief discussion on REST, take
a look at the microformats entry [http://microformats.org/wiki/rest/urls].

Before We Get Started

Here is the model definition we will be using for this tutorial:

from sqlalchemy import Column, Integer, String, Date, Text, ForeignKey
from sqlalchemy.orm import relation

from moviedemo.model import DeclarativeBase

class Genre(DeclarativeBase):
 __tablename__ = "genres"
 genre_id = Column(Integer, primary_key=True)
 name = Column(String(100))

class Movie(DeclarativeBase):
 __tablename__ = "movies"
 movie_id = Column(Integer, primary_key=True)
 title = Column(String(100), nullable=False)
 description = Column(Text, nullable=True)
 genre_id = Column(Integer, ForeignKey('genres.genre_id'))
 genre = relation('Genre', backref='movies')
 release_date = Column(Date, nullable=True)

Putting The CRUD Into REST

EasyCrudRestController

The first thing we want to do is instantiate a EasyCrudRestController.
We import the controller from the extension, and then provide it with a
model class that it will use for its data manipulation. For this
example we will utilize the Movie class.:

from tgext.crud import EasyCrudRestController
from moviedemo.model import DBSession, Movie

class MovieController(EasyCrudRestController):
 model = Movie

class RootController(BaseController):
 movies = MovieController(DBSession)

That will provide a simple and working CRUD controller already configured
with some simple views to list, create, edit and delete objects of
type Movie.

Customizing EasyCrudRestController

The EasyCrudRestController provides some quick customization tools.
Having been thought to quickly prototype parts of your web applications
the EasyCrudRestController permits both to tune forms options and to
add utility methods on the fly:

class TicketCrudController(EasyCrudRestController):
 model = Ticket

 __form_options__ = {
 '__hide_fields__':['_id', 'status', 'sprint'],
 '__field_order__':['title', 'description'],
 '__field_widget_types__':{'description':TextArea}
 }

 __setters__ = {
 'done':('status', 'done'),
 'todo':('status', 'new'),
 'revert':('sprint', lambda ticket:ticket.sprint.project.backlog),
 'sprint':('sprint', lambda ticket:ticket.sprint.project.last_sprint),
 }

The __form_options__ dictionary will permit to tune the forms configuration.
The specified options will be applied to both the form used to create new entities
and to edit the existing ones.
To have a look at the available options refer to
Sprox FormBase [http://sprox.org/modules/sprox.formbase.html#module-sprox.formbase]

The __setters__ option provides a way to add new simple methods on the fly
to the controller. The key of the provided dictionary is the name of the method, while
the value is a tuple where the first argument is the attribute of the object
that has to be changed. The second argument is the value that has to be set, if the
second argument is a callable it will be called passing the object to edit as the
argument.

In the previous example calling http://localhost:8080/tickets/5/done will set the
ticket 5 status to done.

Creating our own CrudRestController

The EasyCrudRestController provides a preconfigured CrudRestController
but often you will need to deeply customize it for your needs. To do that
we can start over with a clean controller and start customizing it:

from tgext.crud import CrudRestController
from moviedemo.model import DBSession, Movie

class MovieController(CrudRestController):
 model = Movie

class RootController(BaseController):
 movies = MovieController(DBSession)

Well that won’t actually get you anywhere, in fact, it will do nothing
at all. We need to provide CrudRestController with a set of widgets
and datafillers so that it knows how to handle your REST requests.
First, lets get all of the Movies to display in a table.

Sprox

Sprox [http://sprox.org] is a library that can help you to generate
forms and filler data. It utilizes metadata extracted from the
database definitions to provide things like form fields, drop downs,
and column header data for view widgets. Sprox is also customizable,
so we can go in and modify the way we want our data displayed once we
get going with it. Here we define a table widget using Sprox’s
sprox.tablebase.TableBase [http://sprox.org/modules/sprox.tablebase.html#sprox.tablebase.TableBase] class for our movie table.:

from sprox.tablebase import TableBase

class MovieTable(TableBase):
 __model__ = Movie
 __omit_fields__ = ['genre_id']
movie_table = MovieTable(DBSession)

Filling Our Table With Data

So, now we have our movie_table, but it’s not going to do us much good
without data to fill it. Sprox provides a
sprox.fillerbase.TableFiller [http://sprox.org/modules/sprox.fillerbase.html#sprox.fillerbase.TableFiller] class which will retrieve the
relevant data from the database and package it in a dictionary for
consumption. This is useful if you are creating JSON [http://www.json.org/]. Basically,
you can provide CrudRestController with any object that has a
get_value function and it will work because of duck typing. Just make
certain that your get_value function returns the right data type for
the widget you are filling. Here is what the filler would look like
instantiated.:

from sprox.fillerbase import TableFiller

class MovieTableFiller(TableFiller):
 __model__ = Movie
movie_table_filler = MovieTableFiller(DBSession)

We add movie_id to the limited fields so that the “__actions__” field
can provide proper links to this primary key.

Putting It All Together

Let’s modify our CrudRestController to utilize our new table. The new
RootController would look like this:

from tgext.crud import CrudRestController
from moviedemo.model import DBSession, Movie
from sprox.tablebase import TableBase
from sprox.fillerbase import TableFiller

class MovieTable(TableBase):
 __model__ = Movie
movie_table = MovieTable(DBSession)

class MovieTableFiller(TableFiller):
 __model__ = Movie
movie_table_filler = MovieTableFiller(DBSession)

class MovieController(CrudRestController):
 model = Movie
 table = movie_table
 table_filler = movie_table_filler

class RootController(BaseController):
 movie = MovieController(DBSession)

You can now visit /movies/ and it will display a list of movies.

[image: ../../../_images/table.png]

Forms

One of the nice thing about Sprox table definitions is that they
provide you with a set of RESTful links. CrudRestController provides
methods for these pages, but you must provide the widgets for the
forms. Specifically, we are talking about the edit and new forms.
Here is one way you might create a form to add a new record to the
database using sprox.formbase.AddRecordForm [http://sprox.org/modules/sprox.formbase.html#sprox.formbase.AddRecordForm]:

class MovieAddForm(AddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['genre_id', 'movie_id']
movie_add_form = MovieAddForm(DBSession)

Adding this to your movie controller would look make it now look
something like this:

class MovieController(CrudRestController):
 model = Movie
 table = movie_table
 table_filler = movie_table_filler
 new_form = movie_add_form

You can now visit /movies/new and get a page that looks like this.

[image: ../../../_images/new_form.png]

Edit Form

Now we just need to map a form to the edit function so that we can
close the loop on our controller. The reason we need separate forms
for Add and Edit is due to validation. Sprox will check the database
for uniqueness on a “new” form. On an edit form, this is not required
since we are updating, not creating.:

from sprox.formbase import EditableForm

class MovieEditForm(EditableForm):
 __model__ = Movie
 __omit_fields__ = ['genre_id', 'movie_id']
movie_edit_form = MovieEditForm(DBSession)

The biggest difference between this form and that of the “new” form is
that we have to get data from the database to fill in the form. Here
is how we use sprox.formbase.EditFormFiller to do that:

from sprox.fillerbase import EditFormFiller

class MovieEditFiller(EditFormFiller):
 __model__ = Movie
movie_edit_filler = MovieEditFiller(DBSession)

Now it is a simple as adding our filler and form definitions to the
MovieController and close the loop on our presentation. Here is
what the form looks like when we go to edit it.

[image: ../../../_images/edit_form.png]

Declarative

If you are interested in brevity, the crud controller may be created
in a more declarative manner like this:

from tgext.crud import CrudRestController
from sprox.tablebase import TableBase
from sprox.formbase import EditableForm, AddRecordForm
from sprox.fillerbase import TableFiller, EditFormFiller

class DeclarativeMovieController(CrudRestController):
 model = Movie

 class new_form_type(AddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['genre_id', 'movie_id']

 class edit_form_type(EditableForm):
 __model__ = Movie
 __omit_fields__ = ['genre_id', 'movie_id']

 class edit_filler_type(EditFormFiller):
 __model__ = Movie

 class table_type(TableBase):
 __model__ = Movie
 __omit_fields__ = ['genre_id', 'movie_id']

 class table_filler_type(TableFiller):
 __model__ = Movie

Crud Operations

We have really been focusing on the View portion of our controller.
This is because CrudRestController performs all of the applicable
creates, updates, and deletes on your target object for you. This
default functionality is provided by
sprox.saormprovider.SAORMProvider. This can of course be
overridden.

Overriding Crud Operations

CrudRestController extends RestController, which means that any
methods available through RestController are also available to CRC.

		Method
		Description
		Example Method(s) / URL(s)

		get_all
		Display the table widget and its data
		GET /movies/

		new
		Display new_form
		GET /movies/new

		edit
		Display edit_form and the containing record’s data
		GET /movies/1/edit

		post
		Create a new record
		POST /movies/

		put
		Update an existing record
		POST /movies/1?_method=PUT

		PUT /movies/1

		post_delete
		Delete an existing record
		POST /movies/1?_method=DELETE

		DELETE /movies/1

		get_delete
		Delete Confirmation page
		Get /movies/1/delete

If you are familiar with RestController you may notice that get_one is
missing. There are plans to add this functionality in the near
future. Also, you may note the ?_method on some of the URLs. This is
basically a hack because existing browsers do not support the PUT and
DELETE methods. Just note that if you decide to incorporate a TW in
your edit_form description you must provide a
HiddenField('_method') in the definition.

Adding Functionality

REST provides consistency across Controller classes and makes it easy
to override the functionality of a given RESTful method. For
instance, you may want to get an email any time someone adds a movie.
Here is what your new controller code would look like:

class MovieController(CrudRestController):

 # (...)

 @expose(inherit=True)
 def post(self, **kw):
 email_info()
 return super(MovieController, self).post(**kw)

You might notice that the function has the @expose decorator. This is
required because the expose decoration occurs at the class-level, so
that means that when you override the class method, the expose is
eliminated. We add it back to the method by adding @expose with the
inherit parameter to inherit the behavior from the parent method.

For more details you can refer to the
TGController Subclassing documentation.

Overriding Templates

To override the template for a given method, you would simple
re-define that method, providing an expose to your own template, while
simply returning the value of the super class’s method.:

class MovieController(CrudRestController):

 # (...)

 @expose('movie_demo.templates.my_get_all_template', inherit=True)
 def get_all(self, *args, **kw):
 return super(MovieController, self).get_all(*args, **kw)

Removing Functionality

You can also block-out capabilities of the RestController you do not
wish implemented. Simply define the function that you want to block,
but do not expose it. Here is how we “delete” the delete
functionality.:

class MovieController(CrudRestController):

 # (...)

 def post_delete(self, *args, **kw):
 """This is not allowed."""
 pass

Menu Items

The default templates for tgext.crud make it very easy to add a
menu with links to other resources. Simply provide a dictionary of
names and their representing model classes and it will display these
links on the left hand side. Here is how you would provide links for
your entire model.:

import inspect
from sqlalchemy.orm import class_mapper

models = {}
for m in dir(model):
 m = getattr(model, m)
 if not inspect.isclass(m):
 continue
 try:
 mapper = class_mapper(m)
 models[m.__name__.lower()] = m
 except:
 pass

class RootController(BaseController):
 movie = MovieController(DBSession, menu_items=models)

Which results in a new listing page like this.

[image: ../../../_images/menu_items.png]

CRC: The Sweet Spot

CrudRestController represents sort of a sweet-spot with respect to
functionality. It doesn’t do everything for you, but it can save you
a bunch of work, especially when you are prototyping an application.
If you need more flexibility, you should take a look at
RestController, which provides no form/crud functionality. If you are
really looking for something that makes all of the forms for you, but
can be configured, take a look at the Turbogears Admin System [http://pypi.python.org/pypi/tgext.admin].

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

modules/thirdparty/webob.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Third-party components »

webob – WebOb

WebOb

		
class webob.Request(environ, charset=(No Default), unicode_errors=(No Default), decode_param_names=(No Default), **kw)

		The default request implementation

		
class webob.Response(body=None, status=None, headerlist=None, app_iter=None, request=None, content_type=None, conditional_response=None, **kw)

		Represents a WSGI response

		
RequestClass

		alias of Request

		
accept_ranges

		Gets and sets the Accept-Ranges header (HTTP spec section 14.5 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.5]).

		
age

		Gets and sets the Age header (HTTP spec section 14.6 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.6]). Converts it using int.

		
allow

		Gets and sets the Allow header (HTTP spec section 14.7 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.7]). Converts it using list.

		
app_iter

		Returns the app_iter of the response.

If body was set, this will create an app_iter from that body
(a single-item list)

		
app_iter_range(start, stop)

		Return a new app_iter built from the response app_iter, that
serves up only the given start:stop range.

		
body

		The body of the response, as a str. This will read in the
entire app_iter if necessary.

		
body_file

		A file-like object that can be used to write to the
body. If you passed in a list app_iter, that app_iter will be
modified by writes.

		
cache_control

		Get/set/modify the Cache-Control header (HTTP spec section 14.9 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9])

		
charset

		Get/set the charset (in the Content-Type)

		
conditional_response_app(environ, start_response)

		Like the normal __call__ interface, but checks conditional headers:

		If-Modified-Since (304 Not Modified; only on GET, HEAD)

		If-None-Match (304 Not Modified; only on GET, HEAD)

		Range (406 Partial Content; only on GET, HEAD)

		
content_disposition

		Gets and sets the Content-Disposition header (HTTP spec section 19.5.1 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec19.html#sec19.5.1]).

		
content_encoding

		Gets and sets the Content-Encoding header (HTTP spec section 14.11 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.11]).

		
content_language

		Gets and sets the Content-Language header (HTTP spec section 14.12 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.12]). Converts it using list.

		
content_length

		Gets and sets the Content-Length header (HTTP spec section 14.17 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17]). Converts it using int.

		
content_location

		Gets and sets the Content-Location header (HTTP spec section 14.14 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.14]).

		
content_md5

		Gets and sets the Content-MD5 header (HTTP spec section 14.14 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.14]).

		
content_range

		Gets and sets the Content-Range header (HTTP spec section 14.16 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.16]). Converts it using ContentRange object.

		
content_type

		Get/set the Content-Type header (or None), without the
charset or any parameters.

If you include parameters (or ; at all) when setting the
content_type, any existing parameters will be deleted;
otherwise they will be preserved.

		
content_type_params

		A dictionary of all the parameters in the content type.

(This is not a view, set to change, modifications of the dict would not be
applied otherwise)

		
copy()

		Makes a copy of the response

		
date

		Gets and sets the Date header (HTTP spec section 14.18 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.18]). Converts it using HTTP date.

		
delete_cookie(key, path='/', domain=None)

		Delete a cookie from the client. Note that path and domain must match
how the cookie was originally set.

This sets the cookie to the empty string, and max_age=0 so
that it should expire immediately.

		
encode_content(encoding='gzip', lazy=False)

		Encode the content with the given encoding (only gzip and
identity are supported).

		
environ

		Get/set the request environ associated with this response, if
any.

		
etag

		Gets and sets the ETag header (HTTP spec section 14.19 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.19]). Converts it using Entity tag.

		
expires

		Gets and sets the Expires header (HTTP spec section 14.21 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.21]). Converts it using HTTP date.

		
classmethod from_file(fp)

		Reads a response from a file-like object (it must implement
.read(size) and .readline()).

It will read up to the end of the response, not the end of the
file.

This reads the response as represented by str(resp); it
may not read every valid HTTP response properly. Responses
must have a Content-Length

		
headerlist

		The list of response headers

		
headers

		The headers in a dictionary-like object

		
last_modified

		Gets and sets the Last-Modified header (HTTP spec section 14.29 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.29]). Converts it using HTTP date.

		
location

		Gets and sets the Location header (HTTP spec section 14.30 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.30]).

		
md5_etag(body=None, set_content_md5=False)

		Generate an etag for the response object using an MD5 hash of
the body (the body parameter, or self.body if not given)

Sets self.etag
If set_content_md5 is True sets self.content_md5 as well

		
merge_cookies(resp)

		Merge the cookies that were set on this response with the
given resp object (which can be any WSGI application).

If the resp is a webob.Response object, then the
other object will be modified in-place.

		
pragma

		Gets and sets the Pragma header (HTTP spec section 14.32 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.32]).

		
request

		Return the request associated with this response if any.

		
retry_after

		Gets and sets the Retry-After header (HTTP spec section 14.37 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.37]). Converts it using HTTP date or delta seconds.

		
server

		Gets and sets the Server header (HTTP spec section 14.38 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.38]).

		
set_cookie(key, value='', max_age=None, path='/', domain=None, secure=False, httponly=False, comment=None, expires=None, overwrite=False)

		Set (add) a cookie for the response

		
status

		The status string

		
status_int

		The status as an integer

		
text

		Get/set the unicode value of the body (using the charset of the
Content-Type)

		
ubody

		Deprecated alias for .text

		
unicode_body

		Deprecated alias for .text

		
unset_cookie(key, strict=True)

		Unset a cookie with the given name (remove it from the
response).

		
vary

		Gets and sets the Vary header (HTTP spec section 14.44 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.44]). Converts it using list.

		
www_authenticate

		Gets and sets the WWW-Authenticate header (HTTP spec section 14.47 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.47]). Converts it using parse_auth and serialize_auth.

		
webob.html_escape(s)

		HTML-escape a string or object

This converts any non-string objects passed into it to strings
(actually, using unicode()). All values returned are
non-unicode strings (using &#num; entities for all non-ASCII
characters).

None is treated specially, and returns the empty string.

		
webob.timedelta_to_seconds(td)

		Converts a timedelta instance to seconds.

webob.acceptparse [http://pythonpaste.org/webob/modules/webob.html#webob.acceptparse]

		
class webob.acceptparse.Accept(header_value)

		Represents a generic Accept-* style header.

This object should not be modified. To add items you can use
accept_obj + 'accept_thing' to get a new object

		
best_match(offers, default_match=None)

		Returns the best match in the sequence of offered types.

The sequence can be a simple sequence, or you can have
(match, server_quality) items in the sequence. If you
have these tuples then the client quality is multiplied by the
server_quality to get a total. If two matches have equal
weight, then the one that shows up first in the offers list
will be returned.

But among matches with the same quality the match to a more specific
requested type will be chosen. For example a match to text/* trumps /.

default_match (default None) is returned if there is no intersection.

		
best_matches(fallback=None)

		Return all the matches in order of quality, with fallback (if
given) at the end.

		
first_match(offers)

		DEPRECATED
Returns the first allowed offered type. Ignores quality.
Returns the first offered type if nothing else matches; or if you include None
at the end of the match list then that will be returned.

		
static parse(value)

		Parse Accept-* style header.

Return iterator of (value, quality) pairs.
quality defaults to 1.

		
quality(offer, modifier=1)

		Return the quality of the given offer. Returns None if there
is no match (not 0).

		
class webob.acceptparse.NilAccept

		Represents an Accept header with no value.

		
MasterClass

		alias of Accept

		
class webob.acceptparse.NoAccept

		

		
class webob.acceptparse.MIMEAccept(header_value)

		Represents the Accept header, which is a list of mimetypes.

This class knows about mime wildcards, like image/*

		
accept_html()

		Returns true if any HTML-like type is accepted

		
accepts_html

		Returns true if any HTML-like type is accepted

		
class webob.acceptparse.MIMENilAccept

		
		
MasterClass

		alias of MIMEAccept

webob.byterange

		
class webob.byterange.Range(ranges)

		Represents the Range header.

This only represents bytes ranges, which are the only kind
specified in HTTP. This can represent multiple sets of ranges,
but no place else is this multi-range facility supported.

		
content_range(length)

		Works like range_for_length; returns None or a ContentRange object

You can use it like:

response.content_range = req.range.content_range(response.content_length)

Though it’s still up to you to actually serve that content range!

		
classmethod parse(header)

		Parse the header; may return None if header is invalid

		
static parse_bytes(header)

		Parse a Range header into (bytes, list_of_ranges).
ranges in list_of_ranges are non-inclusive (unlike the HTTP header).

Will return None if the header is invalid

		
range_for_length(length)

		If there is only one range, and if it is satisfiable by
the given length, then return a (begin, end) non-inclusive range
of bytes to serve. Otherwise return None

		
satisfiable(length)

		Returns true if this range can be satisfied by the resource
with the given byte length.

		
class webob.byterange.ContentRange(start, stop, length)

		Represents the Content-Range header

This header is start-stop/length, where start-stop and length
can be * (represented as None in the attributes).

		
classmethod parse(value)

		Parse the header. May return None if it cannot parse.

webob.cachecontrol

Represents the Cache-Control header

		
class webob.cachecontrol.exists_property(prop, type=None)

		Represents a property that either is listed in the Cache-Control
header, or is not listed (has no value)

		
class webob.cachecontrol.value_property(prop, default=None, none=None, type=None)

		Represents a property that has a value in the Cache-Control header.

When no value is actually given, the value of self.none is returned.

		
class webob.cachecontrol.CacheControl(properties, type)

		Represents the Cache-Control header.

By giving a type of 'request' or 'response' you can
control what attributes are allowed (some Cache-Control values
only apply to requests or responses).

		
copy()

		Returns a copy of this object.

		
classmethod parse(header, updates_to=None, type=None)

		Parse the header, returning a CacheControl object.

The object is bound to the request or response object
updates_to, if that is given.

		
update_dict

		alias of UpdateDict

		
webob.cachecontrol.serialize_cache_control(properties)

		

webob.etag

Does parsing of ETag-related headers: If-None-Matches, If-Matches

Also If-Range parsing

		
webob.etag.AnyETag

		

		
webob.etag.NoETag

		

		
class webob.etag.ETagMatcher(etags, weak_etags=())

		Represents an ETag request. Supports containment to see if an
ETag matches. You can also use
etag_matcher.weak_contains(etag) to allow weak ETags to match
(allowable for conditional GET requests, but not ranges or other
methods).

		
classmethod parse(value)

		Parse this from a header value

		
class webob.etag.IfRange(etag=None, date=None)

		Parses and represents the If-Range header, which can be
an ETag or a date

		
match(etag=None, last_modified=None)

		Return True if the If-Range header matches the given etag or last_modified

		
match_response(response)

		Return True if this matches the given webob.Response instance.

		
classmethod parse(value)

		Parse this from a header value.

		
webob.etag.NoIfRange

		

mod:webob.exc

HTTP Exception

This module processes Python exceptions that relate to HTTP exceptions
by defining a set of exceptions, all subclasses of HTTPException.
Each exception, in addition to being a Python exception that can be
raised and caught, is also a WSGI application and webob.Response
object.

This module defines exceptions according to RFC 2068 [1] : codes with
100-300 are not really errors; 400’s are client errors, and 500’s are
server errors. According to the WSGI specification [2] , the application
can call start_response more then once only under two conditions:
(a) the response has not yet been sent, or (b) if the second and
subsequent invocations of start_response have a valid exc_info
argument obtained from sys.exc_info(). The WSGI specification then
requires the server or gateway to handle the case where content has been
sent and then an exception was encountered.

		Exception

		
		HTTPException

		
		HTTPOk

		
		200 - HTTPOk

		201 - HTTPCreated

		202 - HTTPAccepted

		203 - HTTPNonAuthoritativeInformation

		204 - HTTPNoContent

		205 - HTTPResetContent

		206 - HTTPPartialContent

		HTTPRedirection

		
		300 - HTTPMultipleChoices

		301 - HTTPMovedPermanently

		302 - HTTPFound

		303 - HTTPSeeOther

		304 - HTTPNotModified

		305 - HTTPUseProxy

		306 - Unused (not implemented, obviously)

		307 - HTTPTemporaryRedirect

		HTTPError

		
		HTTPClientError

		
		400 - HTTPBadRequest

		401 - HTTPUnauthorized

		402 - HTTPPaymentRequired

		403 - HTTPForbidden

		404 - HTTPNotFound

		405 - HTTPMethodNotAllowed

		406 - HTTPNotAcceptable

		407 - HTTPProxyAuthenticationRequired

		408 - HTTPRequestTimeout

		409 - HTTPConflict

		410 - HTTPGone

		411 - HTTPLengthRequired

		412 - HTTPPreconditionFailed

		413 - HTTPRequestEntityTooLarge

		414 - HTTPRequestURITooLong

		415 - HTTPUnsupportedMediaType

		416 - HTTPRequestRangeNotSatisfiable

		417 - HTTPExpectationFailed

		HTTPServerError

		
		500 - HTTPInternalServerError

		501 - HTTPNotImplemented

		502 - HTTPBadGateway

		503 - HTTPServiceUnavailable

		504 - HTTPGatewayTimeout

		505 - HTTPVersionNotSupported

Subclass usage notes:

The HTTPException class is complicated by 4 factors:

		The content given to the exception may either be plain-text or
as html-text.

		The template may want to have string-substitutions taken from
the current environ or values from incoming headers. This
is especially troublesome due to case sensitivity.

		The final output may either be text/plain or text/html
mime-type as requested by the client application.

		Each exception has a default explanation, but those who
raise exceptions may want to provide additional detail.

Subclass attributes and call parameters are designed to provide an easier path
through the complications.

Attributes:

		code

		the HTTP status code for the exception

		title

		remainder of the status line (stuff after the code)

		explanation

		a plain-text explanation of the error message that is
not subject to environment or header substitutions;
it is accessible in the template via %(explanation)s

		detail

		a plain-text message customization that is not subject
to environment or header substitutions; accessible in
the template via %(detail)s

		body_template

		a content fragment (in HTML) used for environment and
header substitution; the default template includes both
the explanation and further detail provided in the
message

Parameters:

		detail

		a plain-text override of the default detail

		headers

		a list of (k,v) header pairs

		comment

		a plain-text additional information which is
usually stripped/hidden for end-users

		body_template

		a string.Template object containing a content fragment in HTML
that frames the explanation and further detail

To override the template (which is HTML content) or the plain-text
explanation, one must subclass the given exception; or customize it
after it has been created. This particular breakdown of a message
into explanation, detail and template allows both the creation of
plain-text and html messages for various clients as well as
error-free substitution of environment variables and headers.

The subclasses of _HTTPMove
(HTTPMultipleChoices, HTTPMovedPermanently,
HTTPFound, HTTPSeeOther, HTTPUseProxy and
HTTPTemporaryRedirect) are redirections that require a Location
field. Reflecting this, these subclasses have two additional keyword arguments:
location and add_slash.

Parameters:

		location

		to set the location immediately

		add_slash

		set to True to redirect to the same URL as the request, except with a
/ appended

Relative URLs in the location will be resolved to absolute.

References:

		[1]		http://www.python.org/peps/pep-0333.html#error-handling

		[2]		http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5

		
webob.exc.no_escape(value)

		

		
webob.exc.strip_tags(value)

		

		
class webob.exc.HTTPException(message, wsgi_response)

		

		
class webob.exc.WSGIHTTPException(detail=None, headers=None, comment=None, body_template=None, **kw)

		

		
class webob.exc.HTTPError(detail=None, headers=None, comment=None, body_template=None, **kw)

		base class for status codes in the 400’s and 500’s

This is an exception which indicates that an error has occurred,
and that any work in progress should not be committed. These are
typically results in the 400’s and 500’s.

		
class webob.exc.HTTPRedirection(detail=None, headers=None, comment=None, body_template=None, **kw)

		base class for 300’s status code (redirections)

This is an abstract base class for 3xx redirection. It indicates
that further action needs to be taken by the user agent in order
to fulfill the request. It does not necessarly signal an error
condition.

		
class webob.exc.HTTPOk(detail=None, headers=None, comment=None, body_template=None, **kw)

		Base class for the 200’s status code (successful responses)

code: 200, title: OK

		
class webob.exc.HTTPCreated(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPOk

This indicates that request has been fulfilled and resulted in a new
resource being created.

code: 201, title: Created

		
class webob.exc.HTTPAccepted(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPOk

This indicates that the request has been accepted for processing, but the
processing has not been completed.

code: 202, title: Accepted

		
class webob.exc.HTTPNonAuthoritativeInformation(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPOk

This indicates that the returned metainformation in the entity-header is
not the definitive set as available from the origin server, but is
gathered from a local or a third-party copy.

code: 203, title: Non-Authoritative Information

		
class webob.exc.HTTPNoContent(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPOk

This indicates that the server has fulfilled the request but does
not need to return an entity-body, and might want to return updated
metainformation.

code: 204, title: No Content

		
class webob.exc.HTTPResetContent(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPOk

This indicates that the the server has fulfilled the request and
the user agent SHOULD reset the document view which caused the
request to be sent.

code: 205, title: Reset Content

		
class webob.exc.HTTPPartialContent(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPOk

This indicates that the server has fulfilled the partial GET
request for the resource.

code: 206, title: Partial Content

		
class webob.exc.HTTPMultipleChoices(detail=None, headers=None, comment=None, body_template=None, location=None, add_slash=False)

		subclass of _HTTPMove

This indicates that the requested resource corresponds to any one
of a set of representations, each with its own specific location,
and agent-driven negotiation information is being provided so that
the user can select a preferred representation and redirect its
request to that location.

code: 300, title: Multiple Choices

		
class webob.exc.HTTPMovedPermanently(detail=None, headers=None, comment=None, body_template=None, location=None, add_slash=False)

		subclass of _HTTPMove

This indicates that the requested resource has been assigned a new
permanent URI and any future references to this resource SHOULD use
one of the returned URIs.

code: 301, title: Moved Permanently

		
class webob.exc.HTTPFound(detail=None, headers=None, comment=None, body_template=None, location=None, add_slash=False)

		subclass of _HTTPMove

This indicates that the requested resource resides temporarily under
a different URI.

code: 302, title: Found

		
class webob.exc.HTTPSeeOther(detail=None, headers=None, comment=None, body_template=None, location=None, add_slash=False)

		subclass of _HTTPMove

This indicates that the response to the request can be found under
a different URI and SHOULD be retrieved using a GET method on that
resource.

code: 303, title: See Other

		
class webob.exc.HTTPNotModified(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPRedirection

This indicates that if the client has performed a conditional GET
request and access is allowed, but the document has not been
modified, the server SHOULD respond with this status code.

code: 304, title: Not Modified

		
class webob.exc.HTTPUseProxy(detail=None, headers=None, comment=None, body_template=None, location=None, add_slash=False)

		subclass of _HTTPMove

This indicates that the requested resource MUST be accessed through
the proxy given by the Location field.

code: 305, title: Use Proxy

		
class webob.exc.HTTPTemporaryRedirect(detail=None, headers=None, comment=None, body_template=None, location=None, add_slash=False)

		subclass of _HTTPMove

This indicates that the requested resource resides temporarily
under a different URI.

code: 307, title: Temporary Redirect

		
class webob.exc.HTTPClientError(detail=None, headers=None, comment=None, body_template=None, **kw)

		base class for the 400’s, where the client is in error

This is an error condition in which the client is presumed to be
in-error. This is an expected problem, and thus is not considered
a bug. A server-side traceback is not warranted. Unless specialized,
this is a ‘400 Bad Request’

		
class webob.exc.HTTPBadRequest(detail=None, headers=None, comment=None, body_template=None, **kw)

		

		
class webob.exc.HTTPUnauthorized(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPClientError

This indicates that the request requires user authentication.

code: 401, title: Unauthorized

		
class webob.exc.HTTPPaymentRequired(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPClientError

code: 402, title: Payment Required

		
class webob.exc.HTTPForbidden(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPClientError

This indicates that the server understood the request, but is
refusing to fulfill it.

code: 403, title: Forbidden

		
class webob.exc.HTTPNotFound(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPClientError

This indicates that the server did not find anything matching the
Request-URI.

code: 404, title: Not Found

		
class webob.exc.HTTPMethodNotAllowed(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPClientError

This indicates that the method specified in the Request-Line is
not allowed for the resource identified by the Request-URI.

code: 405, title: Method Not Allowed

		
class webob.exc.HTTPNotAcceptable(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPClientError

This indicates the resource identified by the request is only
capable of generating response entities which have content
characteristics not acceptable according to the accept headers
sent in the request.

code: 406, title: Not Acceptable

		
class webob.exc.HTTPProxyAuthenticationRequired(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPClientError

This is similar to 401, but indicates that the client must first
authenticate itself with the proxy.

code: 407, title: Proxy Authentication Required

		
class webob.exc.HTTPRequestTimeout(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPClientError

This indicates that the client did not produce a request within
the time that the server was prepared to wait.

code: 408, title: Request Timeout

		
class webob.exc.HTTPConflict(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPClientError

This indicates that the request could not be completed due to a
conflict with the current state of the resource.

code: 409, title: Conflict

		
class webob.exc.HTTPGone(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPClientError

This indicates that the requested resource is no longer available
at the server and no forwarding address is known.

code: 410, title: Gone

		
class webob.exc.HTTPLengthRequired(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPClientError

This indicates that the the server refuses to accept the request
without a defined Content-Length.

code: 411, title: Length Required

		
class webob.exc.HTTPPreconditionFailed(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPClientError

This indicates that the precondition given in one or more of the
request-header fields evaluated to false when it was tested on the
server.

code: 412, title: Precondition Failed

		
class webob.exc.HTTPRequestEntityTooLarge(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPClientError

This indicates that the server is refusing to process a request
because the request entity is larger than the server is willing or
able to process.

code: 413, title: Request Entity Too Large

		
class webob.exc.HTTPRequestURITooLong(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPClientError

This indicates that the server is refusing to service the request
because the Request-URI is longer than the server is willing to
interpret.

code: 414, title: Request-URI Too Long

		
class webob.exc.HTTPUnsupportedMediaType(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPClientError

This indicates that the server is refusing to service the request
because the entity of the request is in a format not supported by
the requested resource for the requested method.

code: 415, title: Unsupported Media Type

		
class webob.exc.HTTPRequestRangeNotSatisfiable(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPClientError

The server SHOULD return a response with this status code if a
request included a Range request-header field, and none of the
range-specifier values in this field overlap the current extent
of the selected resource, and the request did not include an
If-Range request-header field.

code: 416, title: Request Range Not Satisfiable

		
class webob.exc.HTTPExpectationFailed(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPClientError

This indidcates that the expectation given in an Expect
request-header field could not be met by this server.

code: 417, title: Expectation Failed

		
class webob.exc.HTTPUnprocessableEntity(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPClientError

This indicates that the server is unable to process the contained
instructions. Only for WebDAV.

code: 422, title: Unprocessable Entity

		
class webob.exc.HTTPLocked(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPClientError

This indicates that the resource is locked. Only for WebDAV

code: 423, title: Locked

		
class webob.exc.HTTPFailedDependency(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPClientError

This indicates that the method could not be performed because the
requested action depended on another action and that action failed.
Only for WebDAV.

code: 424, title: Failed Dependency

		
class webob.exc.HTTPServerError(detail=None, headers=None, comment=None, body_template=None, **kw)

		base class for the 500’s, where the server is in-error

This is an error condition in which the server is presumed to be
in-error. This is usually unexpected, and thus requires a traceback;
ideally, opening a support ticket for the customer. Unless specialized,
this is a ‘500 Internal Server Error’

		
class webob.exc.HTTPInternalServerError(detail=None, headers=None, comment=None, body_template=None, **kw)

		

		
class webob.exc.HTTPNotImplemented(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPServerError

This indicates that the server does not support the functionality
required to fulfill the request.

code: 501, title: Not Implemented

		
class webob.exc.HTTPBadGateway(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPServerError

This indicates that the server, while acting as a gateway or proxy,
received an invalid response from the upstream server it accessed
in attempting to fulfill the request.

code: 502, title: Bad Gateway

		
class webob.exc.HTTPServiceUnavailable(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPServerError

This indicates that the server is currently unable to handle the
request due to a temporary overloading or maintenance of the server.

code: 503, title: Service Unavailable

		
class webob.exc.HTTPGatewayTimeout(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPServerError

This indicates that the server, while acting as a gateway or proxy,
did not receive a timely response from the upstream server specified
by the URI (e.g. HTTP, FTP, LDAP) or some other auxiliary server
(e.g. DNS) it needed to access in attempting to complete the request.

code: 504, title: Gateway Timeout

		
class webob.exc.HTTPVersionNotSupported(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPServerError

This indicates that the server does not support, or refuses to
support, the HTTP protocol version that was used in the request
message.

code: 505, title: HTTP Version Not Supported

		
class webob.exc.HTTPInsufficientStorage(detail=None, headers=None, comment=None, body_template=None, **kw)

		subclass of HTTPServerError

This indicates that the server does not have enough space to save
the resource.

code: 507, title: Insufficient Storage

		
class webob.exc.HTTPExceptionMiddleware(application)

		Middleware that catches exceptions in the sub-application. This
does not catch exceptions in the app_iter; only during the initial
calling of the application.

This should be put very close to applications that might raise
these exceptions. This should not be applied globally; letting
expected exceptions raise through the WSGI stack is dangerous.

webob.multidict

Gives a multi-value dictionary object (MultiDict) plus several wrappers

		
class webob.multidict.MultiDict(*args, **kw)

		An ordered dictionary that can have multiple values for each key.
Adds the methods getall, getone, mixed and extend and add to the normal
dictionary interface.

		
add(key, value)

		Add the key and value, not overwriting any previous value.

		
dict_of_lists()

		Returns a dictionary where each key is associated with a list of values.

		
classmethod from_fieldstorage(fs)

		Create a dict from a cgi.FieldStorage instance

		
getall(key)

		Return a list of all values matching the key (may be an empty list)

		
getone(key)

		Get one value matching the key, raising a KeyError if multiple
values were found.

		
mixed()

		Returns a dictionary where the values are either single
values, or a list of values when a key/value appears more than
once in this dictionary. This is similar to the kind of
dictionary often used to represent the variables in a web
request.

		
classmethod view_list(lst)

		Create a dict that is a view on the given list

		
class webob.multidict.UnicodeMultiDict(multi, encoding=None, errors='strict', decode_keys=False)

		A MultiDict wrapper that decodes returned values to unicode on the
fly. Decoding is not applied to assigned values.

The key/value contents are assumed to be str/strs or
str/FieldStorages (as is returned by the paste.request.parse_
functions).

Can optionally also decode keys when the decode_keys argument is
True.

FieldStorage instances are cloned, and the clone’s filename
variable is decoded. Its name variable is decoded when decode_keys
is enabled.

		
add(key, value)

		Add the key and value, not overwriting any previous value.

		
dict_of_lists()

		Returns a dictionary where each key is associated with a
list of values.

		
getall(key)

		Return a list of all values matching the key (may be an empty list)

		
getone(key)

		Get one value matching the key, raising a KeyError if multiple
values were found.

		
mixed()

		Returns a dictionary where the values are either single
values, or a list of values when a key/value appears more than
once in this dictionary. This is similar to the kind of
dictionary often used to represent the variables in a web
request.

		
class webob.multidict.NestedMultiDict(*dicts)

		Wraps several MultiDict objects, treating it as one large MultiDict

		
class webob.multidict.NoVars(reason=None)

		Represents no variables; used when no variables
are applicable.

This is read-only

webob.request

		
class webob.request.FakeCGIBody(vars, content_type)

		

		
webob.request._cgi_FieldStorage__repr__patch(self)

		monkey patch for FieldStorage.__repr__

Unbelievably, the default __repr__ on FieldStorage reads
the entire file content instead of being sane about it.
This is a simple replacement that doesn’t do that

webob.response

		
class webob.response.ResponseBodyFile(response)

		
		
encoding

		The encoding of the file (inherited from response.charset)

		
class webob.response.AppIterRange(app_iter, start, stop)

		Wraps an app_iter, returning just a range of bytes

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/attrs.png
P @ 03 oot s080 ot new

R8O
)

Welcome to TurboGears 2

. The Python web metaframework

Create New Movie
Tite

Description

Release Date 2050007

Genre

Directors

tona Ttz

deprecated/ToscaWidgets/Cookbook/JQueryTreeView.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

JQuery TreeView Widget Tutorial

Installation

easy_install tw.jquery

Usage

The TreeView widget supports the following optional parameters:

Parameters:

		
		treeDiv The id of the div element which contains the unordered

		list to be rendered as a tree. (Default: treeDiv = tree)

For example the widget is instantiated as:

from tw.jquery import TreeView

myTree = TreeView(treeDiv='navTree')

This tree is served up to the user via a controller method like this:

@expose('mypackage.templates.navtree')
def navtree(self, **kw):
 pylons.c.w.tree = myTree
 return dict()

And your template would display the tree like this:

${tmpl_context.w.tree()}

The template should have a div with id navTree containing an unordered
list as:

<div id="navTree">

 <li class="open">TurboGears2

 Documentation
 API Reference
 Bug Tracker
 Mailing List

 <li class="closed">Pylons

 Documentation
 FAQ
 Bug Tracker
 Mailing List

 <li class="closed">SQLAlchemy

 Documentation
 FAQ
 Bug Tracker
 Mailing List

</div>

Note that some items have class=”closed”. These would show up as collapsed nodes.

Here is the resulting field when viewed from a browser:

[image: example TreeView]

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

modules/pylons/decorators_secure.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Modules »

pylons.decorators.secure – Secure Decorators

Security related decorators

Module Contents

		
pylons.decorators.secure.authenticate_form(func)

		Decorator for authenticating a form

This decorator uses an authorization token stored in the client’s
session for prevention of certain Cross-site request forgery (CSRF)
attacks (See
http://en.wikipedia.org/wiki/Cross-site_request_forgery for more
information).

For use with the webhelpers.html.secure_form helper functions.

		
pylons.decorators.secure.https(url_or_callable=None)

		Decorator to redirect to the SSL version of a page if not
currently using HTTPS. Apply this decorator to controller methods
(actions).

Takes a url argument: either a string url, or a callable returning a
string url. The callable will be called with no arguments when the
decorated method is called. The url’s scheme will be rewritten to
https if necessary.

Non-HTTPS POST requests are aborted (405 response code) by this
decorator.

Example:

redirect to HTTPS /pylons
@https('/pylons')
def index(self):
 do_secure()

redirect to HTTPS /auth/login, delaying the url() call until
later (as the url object may not be functional when the
decorator/method are defined)
@https(lambda: url(controller='auth', action='login'))
def login(self):
 do_secure()

redirect to HTTPS version of myself
@https()
def get(self):
 do_secure()

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Deployment/Alternate.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		Deployment »

Alternate Deployment Patterns

This document attempts to discuss alternate patterns for deploying
TurboGears 2.2.2. It is written with the assumption that you
have at least read the Standard Deployment Pattern, as most documents
will simply discuss the differences from a standard deployment.

Note

New developers should likely use the Standard Deployment Pattern (if possible).
The choices involved in alternate installations can be daunting if you
aren’t yet familiar with the various components.

Web-Server Choice

The web-server, which actually receives and processes HTTP requests
from clients and converts them to WSGI requests for your TurboGears
project, can significantly impact the performance and scalability of
your site.

		Apache Mod-WSGI – the standard way to deploy on Apache

		Running TurboGears 2.2.2 behind Apache with Mod Proxy – runs Apache as a front-end with
a Paste web-server running on a local port. Allows you to run
the Paste server as any user

		FastCGI/WSGI – Running TurboGears 2.2.2 behind Apache – runs Apache as a front-end with a FastCGI
process using Mod-Rewrite to make the CGI appear at the correct
point in the server’s URL-space.

		paster serve production.ini – while not recommended for large
or high-traffic sites, Paste’s web-server can often serve for small
internal sites with few users. See Deploying as a Service/Daemon for a
discussion of how to keep your server running.

		NGINX Web Server – an alternative asynchronous high-performance web-server
which can reverse-proxy TurboGears

		Light HTTPD – has built-in FastCGI support, so can
be used to reverse-proxy TurboGears

		Twisted Web2 [http://blog.vrplumber.com/index.php?/archives/2421-TurboGears-as-a-Twisted-WSGI-Application-in-125-seconds.html] – likely only of interest if you are already using
Twisted for your application and simply want to host a TurboGears
application within it. Twisted’s WSGI implementation is not
heavily optimized, so should not be used for high-performance sites.

		MS-IIS users may want to experiment with the WSGI support from the
ISAPI-WSGI [http://code.google.com/p/isapi-wsgi/] project.

Todo

document use of isapi-wsgi [http://code.google.com/p/isapi-wsgi/] with TurboGears

Todo

Difficulty: Hard. Document use of IIS with TurboGears thru a proxy.

Database Choice

If you are using SQLAlchemy (the default ORM for TurboGears 2.2.2),
then by-and-large your choice of database back-end is a matter of preference.

		PostgreSQL – is a robust, mature, well documented
free database server which meets or exceeds most new user’s needs.

		MySQL – allows you to trade robustness (ACID compliance, for instance)
for raw speed and some exotic features that are add-ons for PostgreSQL

		Oracle – if your site is an Oracle shop with specialized Oracle admins
it may be appropriate to use an Oracle DB for your TurboGears application

		SQLite – can be used for extremely small sites (e.g. a local web-server
intended solely to be used by a single user). It is extremely easy to
set up and comes with later versions of Python.

		MSSQL – if you are already using MSSQL for your site, and have admins who
maintain the servers, it may be appropriate to use MSSQL for your TurboGears
application.

Todo

Add section on “repeatable deployment options”

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/pullrequest.png
i bitbucket Home Reposiories + Account (inbox Plans Help Log out Gedesen) |7 1

Overview | Downloads (0) Source | Changesets Wiki Issues (0) » Followers (34) | Forks/Queues (5)

& branches » ¢ tags » RSS) Aom A fork & patchquee @ following | § getsource »

Scotty / hg-git

Hg-Git bidirectional bridge plugin for Mercurial. Warming - this may be deleted and repushed from time to time because of Hg not
allowing lossy pushes. Sorry.

Clone this repository (size: 301.2 KB): HTTPS / ss#

5 hg clone https://pedersengbitbucket .org/Scotty /hg-git/

Shortog (showing r177:88ftich23294e (ip) — r153:4e7c5018b60a) B —
Age Author Hessage Anm <
6 weeks B scotty only look for renames if the file has changed 01 0
6 weeks B scotty fix to previously written tree hash calculation 01 0

e te B centin T e o P

_static/header.png
TURBOLZEARS

the rapid web development megaframework:
youve been looking for.

modules/pylons/commands.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Modules »

pylons.commands – Command line functions

Paster Commands, for use with paster in your project

The following commands are made available via paster utilizing
setuptools points discovery. These can be used from the command line
when the directory is the Pylons project.

Commands available:

		controller

		Create a Controller and accompanying functional test

		restcontroller

		Create a REST Controller and accompanying functional test

		shell

		Open an interactive shell with the Pylons app loaded

Example usage:

~/sample$ paster controller account
Creating /Users/ben/sample/sample/controllers/account.py
Creating /Users/ben/sample/sample/tests/functional/test_account.py
~/sample$

How it Works

paster is a command line script (from the PasteScript
package) that allows the creation of context sensitive commands.
paster looks in the current directory for a
.egg-info directory, then loads the paster_plugins.txt
file.

Using setuptools entry points, paster looks for
functions registered with setuptools as
paste.paster_command(). These are defined in the entry_points
block in each packages setup.py module.

This same system is used when running paster create to
determine what templates are available when creating new projects.

Module Contents

		
class pylons.commands.ControllerCommand(name)

		Create a Controller and accompanying functional test

The Controller command will create the standard controller template
file and associated functional test to speed creation of
controllers.

Example usage:

yourproj% paster controller comments
Creating yourproj/yourproj/controllers/comments.py
Creating yourproj/yourproj/tests/functional/test_comments.py

If you’d like to have controllers underneath a directory, just
include the path as the controller name and the necessary
directories will be created for you:

yourproj% paster controller admin/trackback
Creating yourproj/controllers/admin
Creating yourproj/yourproj/controllers/admin/trackback.py
Creating yourproj/yourproj/tests/functional/test_admin_trackback.py

		
class pylons.commands.RestControllerCommand(name)

		Create a REST Controller and accompanying functional test

The RestController command will create a REST-based Controller file
for use with the resource()
REST-based dispatching. This template includes the methods that
resource() dispatches to in
addition to doc strings for clarification on when the methods will
be called.

The first argument should be the singular form of the REST
resource. The second argument is the plural form of the word. If
its a nested controller, put the directory information in front as
shown in the second example below.

Example usage:

yourproj% paster restcontroller comment comments
Creating yourproj/yourproj/controllers/comments.py
Creating yourproj/yourproj/tests/functional/test_comments.py

If you’d like to have controllers underneath a directory, just
include the path as the controller name and the necessary
directories will be created for you:

yourproj% paster restcontroller admin/tracback admin/trackbacks
Creating yourproj/controllers/admin
Creating yourproj/yourproj/controllers/admin/trackbacks.py
Creating yourproj/yourproj/tests/functional/test_admin_trackbacks.py

		
class pylons.commands.ShellCommand(name)

		Open an interactive shell with the Pylons app loaded

The optional CONFIG_FILE argument specifies the config file to use for
the interactive shell. CONFIG_FILE defaults to ‘development.ini’.

This allows you to test your mapper, models, and simulate web requests
using paste.fixture.

Example:

$ paster shell my-development.ini

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/movie_form_4.png
New Movie

Movie Title

Please enter the ful 6t of the mavie
Year

main/DataGrid/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Getting Started »

DataGrid Tutorial

DataGrid is a quick way to present data in tabular form.

The columns to put inside the table are specified with the fields constructor argument in a list.
Each entry of the list can be an accessor (attribute name or function), a tuple (title, accessor) or a tw2.forms.datagrid.Column instance.

Preparing Application

This tutorial will show an addressbook with a set of people each with a name, surname and phone number.
Model used will be:

from sqlalchemy import Table, ForeignKey, Column
from sqlalchemy.types import Unicode, Integer, DateTime

class Person(DeclarativeBase):
 __tablename__ = 'person'

 uid = Column(Integer, autoincrement=True, primary_key=True)
 name = Column(Unicode(255))
 surname = Column(Unicode(255))
 phone = Column(Unicode(64))

and we will populate with this data:

for i in [['John', 'Doe', '3413122314'],
 ['Lucas', 'Darkstone', '378321322'],
 ['Dorian', 'Gray', '31337433'],
 ['Whatever', 'Person', '3294432321'],
 ['Aaliyah', 'Byron', '676763432'],
 ['Caesar', 'Ezra', '9943243243'],
 ['Fahd', 'Gwyneth', '322313232'],
 ['Last', 'Guy', '23132321']]:
 DBSession.add(Person(name=i[0], surname=i[1], phone=i[2]))

Basic DataGrid

With a model and some data set up, we can now start declaring our DataGrid and the fields it has to show:

from tw2.forms import DataGrid

addressbook_grid = DataGrid(fields=[
 ('Name', 'name'),
 ('Surname', 'surname'),
 ('Phone', 'phone')
])

After declaring the grid itself we will need to fetch the data to show inside the grid from our controller.
For this example we will do it inside the RootController.index method:

@expose('dgridt.templates.index')
def index(self):
 data = DBSession.query(Person)
 return dict(page='index', grid=addressbook_grid, data=data)

Now the grid can be displayed in the template like this:

Template code necessary to show the grid in templates/index.html:

<div>${grid(value=data)}</div>

Paginating DataGrid

Now that the grid can be displayed next probable improvement would be to paginate it.
Displaying 10 results is fine, but when results start to grow it might cause performance problems and make results harder to view.

The same things explained in the Pagination Quickstart For Turbogears2 tutorial apply here.
First of all it is needed to adapt the controller method to support pagination:

from tg.decorators import paginate

@expose('dgridt.templates.index')
@paginate("data", items_per_page=3)
def index(self):
 data = DBSession.query(Person)
 return dict(page='index', grid=addressbook_grid, data=data)

If you run the application now you will see only 3 results as they get paginated three by three and we are still missing a way to change page.
What is needed now is a way to switch pages and this can be easilly done as the paginate decorator adds to the template context a paginators variable
where all the paginators currently available are gathered. Rendering the “data” paginator somewhere inside the template is simply enough to have
a working pagination for our datagrid.

Template in templates/index.html would become:

<div>${grid(value=data)}</div>
<div>${tmpl_context.paginators.data.pager()}</div>

Now the page should render with both the datagrid and the pages under the grid itself, making possible to switch between the pages.

Sorting Columns

DataGrid itself does not provide a way to implement columns sorting, but it can be easilly achieved by inheriting
from tw2.forms.datagrid.Column to add a link that can provide sorting.

First of all we need to declare or SortableColumn class that will return the link with the sorting request as the title for our DataGrid:

from sqlalchemy import asc, desc
from tw2.forms.datagrid import Column
import genshi

class SortableColumn(Column):
 def __init__(self, title, name):
 super(SortableColumn, self).__init__(name)
 self._title_ = title

 def set_title(self, title):
 self._title_ = title

 def get_title(self):
 current_ordering = request.GET.get('ordercol')
 if current_ordering and current_ordering[1:] == self.name:
 current_ordering = '-' if current_ordering[0] == '+' else '+'
 else:
 current_ordering = '+'
 current_ordering += self.name

 new_params = dict(request.GET)
 new_params['ordercol'] = current_ordering

 new_url = url(request.path_url, params=new_params)
 return genshi.Markup('%(title)s' % dict(page_url=new_url, title=self._title_))

 title = property(get_title, set_title)

It is also needed to tell to the DataGrid that it has to use the SortableColumn for its fields:

addressbook_grid = DataGrid(fields=[
 SortableColumn('Name', 'name'),
 SortableColumn('Surname', 'surname'),
 SortableColumn('Phone', 'phone')
])

Now if we reload the page we should see the clickable links inside the headers of the table, but if we click one the application
will crash because of an unexpected argument. We are now passing the ordercol argument to our constructor to tell it
for which column we want the data to be ordered and with which ordering.

To handle the new parameter the controller must be modified to accept it and perform the ordering:

@expose('dgridt.templates.index')
@paginate("data", items_per_page=3)
def index(self, *args, **kw):
 data = DBSession.query(Person)
 ordering = kw.get('ordercol')
 if ordering and ordering[0] == '+':
 data = data.order_by(asc(ordering[1:]))
 elif ordering and ordering[0] == '-':
 data = data.order_by(desc(ordering[1:]))
 return dict(page='index', grid=addressbook_grid, data=data)

Now the ordering should work and clicking two times on a column should invert the ordering.

Edit Column Button

DataGrid also permits to pass functions in the fields parameter to build the row content. This makes possible for example to add
and Actions column where to put an edit button to edit the entry on the row.

To perform this it is just required to add another field with the name and the function that will return the edit link.
In this example addressbook_grid would become:

addressbook_grid = DataGrid(fields=[
 SortableColumn('Name', 'name'),
 SortableColumn('Surname', 'surname'),
 SortableColumn('Phone', 'phone'),
 ('Action', lambda obj:genshi.Markup('Edit' % url('/edit', params=dict(item_id=obj.uid))))
])

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

modules/pylons/util.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Modules »

pylons.util – Paste Template and Pylons utility functions

Paste Template and Pylons utility functions

PylonsTemplate is a Paste Template sub-class that configures the source
directory and default plug-ins for a new Pylons project. The minimal
template a more minimal template with less additional directories and
layout.

Module Contents

		
class pylons.util.PylonsContext

		Pylons context object

All the Pylons Stacked Object Proxies are also stored here, for use
in generators and async based operation where the globals can’t be
used.

This object is attached in
WSGIController instances as
_py_object. For example:

class MyController(WSGIController):
 def index(self):
 pyobj = self._py_object
 return "Environ is %s" % pyobj.request.environ

		
class pylons.util.ContextObj

		The tmpl_context object, with strict attribute access
(raises an Exception when the attribute does not exist)

		
class pylons.util.AttribSafeContextObj

		The tmpl_context object, with lax attribute access (
returns ‘’ when the attribute does not exist)

		tmpl_context

		The template context object, a place to store all the data for
use in a template. This includes form data, user identity, and
the like.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/new.png
Welcome to TurboGears 2
& ‘The Python web metaframework

Gewe (o

Oiscors

_images/flot2.png
Different graph types

modules/thirdparty/webhelpers.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Third-party components »

WebHelpers

WebHelpers is a package designed to ease common tasks developers need
that are usually done for formatting or displaying data in templates.

Helpers available by module:

Date

		
webhelpers.date.distance_of_time_in_words(from_time, to_time=0, granularity='second', round=False)

		Return the absolute time-distance string for two datetime objects,
ints or any combination you can dream of.

If times are integers, they are interpreted as seconds from now.

granularity dictates where the string calculation is stopped.
If set to seconds (default) you will receive the full string. If
another accuracy is supplied you will receive an approximation.
Available granularities are:
‘century’, ‘decade’, ‘year’, ‘month’, ‘day’, ‘hour’, ‘minute’,
‘second’

Setting round to true will increase the result by 1 if the fractional
value is greater than 50% of the granularity unit.

Examples:

>>> distance_of_time_in_words(86399, round=True, granularity='day')
'1 day'
>>> distance_of_time_in_words(86399, granularity='day')
'less than 1 day'
>>> distance_of_time_in_words(86399)
'23 hours, 59 minutes and 59 seconds'
>>> distance_of_time_in_words(datetime(2008,3,21, 16,34),
... datetime(2008,2,6,9,45))
'1 month, 15 days, 6 hours and 49 minutes'
>>> distance_of_time_in_words(datetime(2008,3,21, 16,34),
... datetime(2008,2,6,9,45), granularity='decade')
'less than 1 decade'
>>> distance_of_time_in_words(datetime(2008,3,21, 16,34),
... datetime(2008,2,6,9,45), granularity='second')
'1 month, 15 days, 6 hours and 49 minutes'

		
webhelpers.date.time_ago_in_words(from_time, granularity='second', round=False)

		Return approximate-time-distance string for from_time till now.

Same as distance_of_time_in_words but the endpoint is now.

Converters

Functions that convert from text markup languages to HTML

		
webhelpers.html.converters.markdown(text, markdown=None, **kwargs)

		Format the text to HTML with Markdown formatting.

Markdown is a wiki-like text markup language, originally written by
John Gruber for Perl. The helper converts Markdown text to HTML.

There are at least two Python implementations of Markdown.
Markdown <http://www.freewisdom.org/projects/python-markdown/>`_is the
original port, and version 2.x contains extensions for footnotes, RSS, etc.
Markdown2 [http://code.google.com/p/python-markdown2/] is another port
which claims to be faster and to handle edge cases better.

You can pass the desired Markdown module as the markdown
argument, or the helper will try to import markdown. If neither is
available, it will fall back to webhelpers.markdown, which is
Freewisdom’s Markdown 1.7 without extensions.

IMPORTANT:
If your source text is untrusted and may contain malicious HTML markup,
pass safe_mode="escape" to escape it, safe_mode="replace" to
replace it with a scolding message, or safe_mode="remove" to strip it.

		
webhelpers.html.converters.textilize(text, sanitize=False)

		Format the text to HTML with Textile formatting.

This function uses the PyTextile library [http://dealmeida.net/]
which is included with WebHelpers.

Additionally, the output can be sanitized which will fix tags like
,
 and <hr /> for proper XHTML output.

Tags

Helpers that produce simple HTML tags.

Most helpers have an **attrs argument to specify additional HTML
attributes. A trailing underscore in the name will be deleted; this is
especially important for attributes that are identical to Python keywords;
e.g., class_. Some helpers handle certain keywords specially; these are
noted in the helpers’ docstrings.

To create your own custom tags, see webhelpers.html.builder.

A set of CSS styles complementing these helpers is in
webhelpers/public/stylesheets/webhelpers.css.

Form Tags

		
webhelpers.html.tags.checkbox(name, value='1', checked=False, label=None, id=<class 'webhelpers.misc.NotGiven'>, **attrs)

		Create a check box.

Arguments:
name – the widget’s name.

value – the value to return to the application if the box is checked.

checked – true if the box should be initially checked.

label – a text label to display to the right of the box.

id is the HTML ID attribute, and should be passed as a keyword
argument. By default the ID is the same as the name filtered through
_make_safe_id_component(). Pass None to suppress the
ID attribute entirely.

The following HTML attributes may be set by keyword argument:

		disabled - If true, checkbox will be grayed out.

		readonly - If true, the user will not be able to modify the checkbox.

To arrange multiple checkboxes in a group, see
webhelpers.containers.distribute().

Example:

>>> checkbox("hi")
literal(u'<input id="hi" name="hi" type="checkbox" value="1" />')

		
webhelpers.html.tags.end_form()

		Output “</form>”.

Example:

>>> end_form()
literal(u'</form>')

		
webhelpers.html.tags.file(name, value=None, id=<class 'webhelpers.misc.NotGiven'>, **attrs)

		Create a file upload field.

If you are using file uploads then you will also need to set the
multipart option for the form.

Example:

>>> file('myfile')
literal(u'<input id="myfile" name="myfile" type="file" />')

		
webhelpers.html.tags.form(url, method='post', multipart=False, hidden_fields=None, **attrs)

		An open tag for a form that will submit to url.

You must close the form yourself by calling end_form() or outputting
</form>.

Options:

		method

		The method to use when submitting the form, usually either
“GET” or “POST”. If “PUT”, “DELETE”, or another verb is used, a
hidden input with name _method is added to simulate the verb
over POST.

		multipart

		If set to True, the enctype is set to “multipart/form-data”.
You must set it to true when uploading files, or the browser will
submit the filename rather than the file.

		hidden_fields

		Additional hidden fields to add to the beginning of the form. It may
be a dict or an iterable of key-value tuples. This is implemented by
calling the object’s .items() method if it has one, or just
iterating the object. (This will successfuly get multiple values for
the same key in WebOb MultiDict objects.)

Because input tags must be placed in a block tag rather than directly
inside the form, all hidden fields will be put in a
‘<div style=”display:none”>’. The style prevents the <div> from being
displayed or affecting the layout.

Examples:

>>> form("/submit")
literal(u'<form action="/submit" method="post">')
>>> form("/submit", method="get")
literal(u'<form action="/submit" method="get">')
>>> form("/submit", method="put")
literal(u'<form action="/submit" method="post"><div style="display:none">\n<input name="_method" type="hidden" value="put" />\n</div>\n')
>>> form("/submit", "post", multipart=True)
literal(u'<form action="/submit" enctype="multipart/form-data" method="post">')

Changed in WebHelpers 1.0b2: add <div> and hidden_fields arg.

Changed in WebHelpers 1.2: don’t add an “id” attribute to hidden tags
generated by this helper; they clash if there are multiple forms on the
page.

		
webhelpers.html.tags.hidden(name, value=None, id=<class 'webhelpers.misc.NotGiven'>, **attrs)

		Create a hidden field.

		
webhelpers.html.tags.password(name, value=None, id=<class 'webhelpers.misc.NotGiven'>, **attrs)

		Create a password field.

Takes the same options as text().

		
webhelpers.html.tags.radio(name, value, checked=False, label=None, **attrs)

		Create a radio button.

Arguments:
name – the field’s name.

value – the value returned to the application if the button is
pressed.

checked – true if the button should be initially pressed.

label – a text label to display to the right of the button.

The id of the radio button will be set to the name + ‘_’ + value to
ensure its uniqueness. An id keyword arg overrides this. (Note
that this behavior is unique to the radio() helper.)

To arrange multiple radio buttons in a group, see
webhelpers.containers.distribute().

		
webhelpers.html.tags.select(name, selected_values, options, id=<class 'webhelpers.misc.NotGiven'>, **attrs)

		Create a dropdown selection box.

		name – the name of this control.

		selected_values – a string or list of strings or integers giving
the value(s) that should be preselected.

		options – an Options object or iterable of (value, label)
pairs. The label will be shown on the form; the option will be returned
to the application if that option is chosen. If you pass a string or int
instead of a 2-tuple, it will be used for both the value and the label.
If the value is a tuple or a list, it will be added as an optgroup,
with label as label.

id is the HTML ID attribute, and should be passed as a keyword
argument. By default the ID is the same as the name. filtered through
_make_safe_id_component(). Pass None to suppress the
ID attribute entirely.

CAUTION: the old rails helper options_for_select had the label first.
The order was reversed because most real-life collections have the value
first, including dicts of the form {value: label}. For those dicts
you can simply pass D.items() as this argument.

HINT: You can sort options alphabetically by label via:
sorted(my_options, key=lambda x: x[1])

The following options may only be keyword arguments:

		
		multiple – if true, this control will allow multiple

		selections.

		prompt – if specified, an extra option will be prepended to the
list: (“”, prompt). This is intended for those “Please choose ...”
pseudo-options. Its value is “”, equivalent to not making a selection.

Any other keyword args will become HTML attributes for the <select>.

Examples (call, result):

>>> select("currency", "$", [["$", "Dollar"], ["DKK", "Kroner"]])
literal(u'<select id="currency" name="currency">\n<option selected="selected" value="$">Dollar</option>\n<option value="DKK">Kroner</option>\n</select>')
>>> select("cc", "MasterCard", ["VISA", "MasterCard"], id="cc", class_="blue")
literal(u'<select class="blue" id="cc" name="cc">\n<option value="VISA">VISA</option>\n<option selected="selected" value="MasterCard">MasterCard</option>\n</select>')
>>> select("cc", ["VISA", "Discover"], ["VISA", "MasterCard", "Discover"])
literal(u'<select id="cc" name="cc">\n<option selected="selected" value="VISA">VISA</option>\n<option value="MasterCard">MasterCard</option>\n<option selected="selected" value="Discover">Discover</option>\n</select>')
>>> select("currency", None, [["$", "Dollar"], ["DKK", "Kroner"]], prompt="Please choose ...")
literal(u'<select id="currency" name="currency">\n<option selected="selected" value="">Please choose ...</option>\n<option value="$">Dollar</option>\n<option value="DKK">Kroner</option>\n</select>')
>>> select("privacy", 3L, [(1, "Private"), (2, "Semi-public"), (3, "Public")])
literal(u'<select id="privacy" name="privacy">\n<option value="1">Private</option>\n<option value="2">Semi-public</option>\n<option selected="selected" value="3">Public</option>\n</select>')
>>> select("recipients", None, [([("u1", "User1"), ("u2", "User2")], "Users"), ([("g1", "Group1"), ("g2", "Group2")], "Groups")])
literal(u'<select id="recipients" name="recipients">\n<optgroup label="Users">\n<option value="u1">User1</option>\n<option value="u2">User2</option>\n</optgroup>\n<optgroup label="Groups">\n<option value="g1">Group1</option>\n<option value="g2">Group2</option>\n</optgroup>\n</select>')

		
webhelpers.html.tags.submit(name, value, id=<class 'webhelpers.misc.NotGiven'>, **attrs)

		Create a submit button with the text value as the caption.

		
webhelpers.html.tags.text(name, value=None, id=<class 'webhelpers.misc.NotGiven'>, type='text', **attrs)

		Create a standard text field.

value is a string, the content of the text field.

id is the HTML ID attribute, and should be passed as a keyword
argument. By default the ID is the same as the name filtered through
_make_safe_id_component(). Pass None to suppress the
ID attribute entirely.

type is the input field type, normally “text”. You can override it
for HTML 5 input fields that don’t have their own helper; e.g.,
“search”, “email”, “date”.

Options:

		
		disabled - If set to True, the user will not be able to use

		this input.

		
		size - The number of visible characters that will fit in the

		input.

		
		maxlength - The maximum number of characters that the browser

		will allow the user to enter.

The remaining keyword args will be standard HTML attributes for the tag.

Example, a text input field:

>>> text("address")
literal(u'<input id="address" name="address" type="text" />')

HTML 5 example, a color picker:

>>> text("color", type="color")
literal(u'<input id="color" name="color" type="color" />')

		
webhelpers.html.tags.textarea(name, content='', id=<class 'webhelpers.misc.NotGiven'>, **attrs)

		Create a text input area.

Example:

>>> textarea("body", "", cols=25, rows=10)
literal(u'<textarea cols="25" id="body" name="body" rows="10"></textarea>')

		
class webhelpers.html.tags.ModelTags(record, use_keys=False, date_format='%m/%d/%Y', id_format=None)

		A nice way to build a form for a database record.

ModelTags allows you to build a create/update form easily. (This is the
C and U in CRUD.) The constructor takes a database record, which can be
a SQLAlchemy mapped class, or any object with attributes or keys for the
field values. Its methods shadow the the form field helpers, but it
automatically fills in the value attribute based on the current value in
the record. (It also knows about the ‘checked’ and ‘selected’ attributes
for certain tags.)

You can also use the same form to input a new record. Pass None or
"" instead of a record, and it will set all the current values to a
default value, which is either the default keyword arg to the method, or
“” if not specified.

(Hint: in Pylons you can put mt = ModelTags(c.record) in your template,
and then if the record doesn’t exist you can either set c.record = None
or not set it at all. That’s because nonexistent c attributes resolve
to “” unless you’ve set config["pylons.strict_c"] = True. However,
having a c attribute that’s sometimes set and sometimes not is
arguably bad programming style.)

		
__init__(record, use_keys=False, date_format='%m/%d/%Y', id_format=None)

		Create a ModelTags object.

record is the database record to lookup values in. It may be
any object with attributes or keys, including a SQLAlchemy mapped
instance. It may also be None or "" to indicate that a new
record is being created. (The class attribute undefined_values
tells which values indicate a new record.)

If use_keys is true, values will be looked up by key. If false
(default), values will be looked up by attribute.

date_format is a strftime-compatible string used by the .date
method. The default is American format (MM/DD/YYYY), which is
most often seen in text fields paired with popup calendars.
European format (DD/MM/YYYY) is “%d/%m/%Y”. ISO format (YYYY-MM-DD)
is “%Y-%m-%d”.

id_format is a formatting-operator format for the HTML ‘id’ attribute.
It should contain one “%s” where the tag’s name will be embedded.

		
checkbox(name, value='1', label=None, **kw)

		Build a checkbox field.

The box will be initially checked if the value of the corresponding
database field is true.

The submitted form value will be “1” if the box was checked. If the
box is unchecked, no value will be submitted. (This is a downside of
the standard checkbox tag.)

To display multiple checkboxes in a group, see
webhelper.containers.distribute().

		
date(name, **kw)

		Same as text but format a date value into a date string.

The value can be a datetime.date, datetime.datetime, None,
or “”. The former two are converted to a string using the
date format passed to the constructor. The latter two are converted
to “”.

If there’s no database record, consult keyword arg default. It it’s
the string “today”, use todays’s date. Otherwise it can be any of the
values allowed above. If no default is specified, the text field is
initialized to “”.

Hint: you may wish to attach a Javascript calendar to the field.

		
file(name, **kw)

		Build a file upload field.

User agents may or may not respect the contents of the ‘value’ attribute.

		
hidden(name, **kw)

		Build a hidden HTML field.

		
password(name, **kw)

		Build a password field.

This is the same as a text box but the value will not be shown on the
screen as the user types.

		
radio(name, checked_value, label=None, **kw)

		Build a radio button.

The radio button will initially be selected if the database value
equals checked_value. On form submission the value will be
checked_value if the button was selected, or "" otherwise.

In case of a ModelTags object that is created from scratch
(e.g. new_employee=ModelTags(None)) the option that should
be checked can be set by the ‘default’ parameter. As in:
new_employee.radio('status', checked_value=7, default=7)

The control’s ‘id’ attribute will be modified as follows:

		If not specified but an ‘id_format’ was given to the constructor,
generate an ID based on the format.

		If an ID was passed in or was generated by step (1), append an
underscore and the checked value. Before appending the checked
value, lowercase it, change any spaces to "_", and remove any
non-alphanumeric characters except underscores and hyphens.

		If no ID was passed or generated by step (1), the radio button
will not have an ‘id’ attribute.

To display multiple radio buttons in a group, see
webhelper.containers.distribute().

		
select(name, options, **kw)

		Build a dropdown select box or list box.

See the select() function for the meaning of the arguments.

If the corresponding database value is not a list or tuple, it’s
wrapped in a one-element list. But if it’s “” or None, an empty
list is substituted. This is to accommodate multiselect lists, which
may have multiple values selected.

		
text(name, **kw)

		Build a text box.

		
textarea(name, **kw)

		Build a rectangular text area.

Hyperlinks

		
webhelpers.html.tags.link_to(label, url='', **attrs)

		Create a hyperlink with the given text pointing to the URL.

If the label is None or empty, the URL will be used as the label.

This function does not modify the URL in any way. The label will be
escaped if it contains HTML markup. To prevent escaping, wrap the label
in a webhelpers.html.literal().

		
webhelpers.html.tags.link_to_if(condition, label, url='', **attrs)

		Same as link_to but return just the label if the condition is false.

This is useful in a menu when you don’t want the current option to be a
link. The condition will be something like:
actual_value != value_of_this_menu_item.

		
webhelpers.html.tags.link_to_unless(condition, label, url='', **attrs)

		The opposite of link_to. Return just the label if the condition is
true.

Other Tags

		
webhelpers.html.tags.image(url, alt, width=None, height=None, path=None, use_pil=False, **attrs)

		Return an image tag for the specified source.

		url

		The URL of the image. (This must be the exact URL desired. A
previous version of this helper added magic prefixes; this is
no longer the case.)

		alt

		The img’s alt tag. Non-graphical browsers and screen readers will
output this instead of the image. If the image is pure decoration
and uninteresting to non-graphical users, pass “”. To omit the
alt tag completely, pass None.

		width

		The width of the image, default is not included.

		height

		The height of the image, default is not included.

		path

		Calculate the width and height based on the image file at path if
possible. May not be specified if width or height is
specified. The results are also written to the debug log for
troubleshooting.

		use_pil

		If true, calcuate the image dimensions using the Python Imaging
Library, which must be installed. Otherwise use a pure Python
algorithm which understands fewer image formats and may be less
accurate. This flag controls whether
webhelpers.media.get_dimensions_pil or
webhelpers.media.get_dimensions is called. It has no effect if
path is not specified.

Examples:

>>> image('/images/rss.png', 'rss syndication')
literal(u'')

>>> image('/images/xml.png', "")
literal(u'')

>>> image("/images/icon.png", height=16, width=10, alt="Edit Entry")
literal(u'')

>>> image("/icons/icon.gif", alt="Icon", width=16, height=16)
literal(u'')

>>> image("/icons/icon.gif", None, width=16)
literal(u'')

Head Tags

		
webhelpers.html.tags.auto_discovery_link(url, feed_type='rss', **attrs)

		Return a link tag allowing auto-detecting of RSS or ATOM feed.

The auto-detection of feed for the current page is only for
browsers and news readers that support it.

		url

		The URL of the feed. (This should be the exact URLs desired. A
previous version of this helper added magic prefixes; this is no longer
the case.)

		feed_type

		The type of feed. Specifying ‘rss’ or ‘atom’ automatically
translates to a type of ‘application/rss+xml’ or
‘application/atom+xml’, respectively. Otherwise the type is
used as specified. Defaults to ‘rss’.

Examples:

>>> auto_discovery_link('http://feed.com/feed.xml')
literal(u'<link href="http://feed.com/feed.xml" rel="alternate" title="RSS" type="application/rss+xml" />')

>>> auto_discovery_link('http://feed.com/feed.xml', feed_type='atom')
literal(u'<link href="http://feed.com/feed.xml" rel="alternate" title="ATOM" type="application/atom+xml" />')

>>> auto_discovery_link('app.rss', feed_type='atom', title='atom feed')
literal(u'<link href="app.rss" rel="alternate" title="atom feed" type="application/atom+xml" />')

>>> auto_discovery_link('/app.html', feed_type='text/html')
literal(u'<link href="/app.html" rel="alternate" title="" type="text/html" />')

		
webhelpers.html.tags.javascript_link(*urls, **attrs)

		Return script include tags for the specified javascript URLs.

urls should be the exact URLs desired. A previous version of this
helper added magic prefixes; this is no longer the case.

Specify the keyword argument defer=True to enable the script
defer attribute.

Examples:

>>> print javascript_link('/javascripts/prototype.js', '/other-javascripts/util.js')
<script src="/javascripts/prototype.js" type="text/javascript"></script>
<script src="/other-javascripts/util.js" type="text/javascript"></script>

>>> print javascript_link('/app.js', '/test/test.1.js')
<script src="/app.js" type="text/javascript"></script>
<script src="/test/test.1.js" type="text/javascript"></script>

		
webhelpers.html.tags.stylesheet_link(*urls, **attrs)

		Return CSS link tags for the specified stylesheet URLs.

urls should be the exact URLs desired. A previous version of this
helper added magic prefixes; this is no longer the case.

Examples:

>>> stylesheet_link('/stylesheets/style.css')
literal(u'<link href="/stylesheets/style.css" media="screen" rel="stylesheet" type="text/css" />')

>>> stylesheet_link('/stylesheets/dir/file.css', media='all')
literal(u'<link href="/stylesheets/dir/file.css" media="all" rel="stylesheet" type="text/css" />')

Utility

		
webhelpers.html.tags.convert_boolean_attrs(attrs, bool_attrs)

		Convert boolean values into proper HTML attributes.

attrs is a dict of HTML attributes, which will be modified in
place.

bool_attrs is a list of attribute names.

For every element in bool_attrs, I look for a corresponding key in
attrs. If its value is true, I change the value to match the key.
For example, I convert selected=True into selected="selected". If
the value is false, I delete the key.

Tools

Powerful HTML helpers that produce more than just simple tags.

		
webhelpers.html.tools.auto_link(text, link='all', **href_attrs)

		Turn all urls and email addresses into clickable links.

		link

		Used to determine what to link. Options are “all”,
“email_addresses”, or “urls”

		href_attrs

		Additional attributes for generated <a> tags.

Example:

>>> auto_link("Go to http://www.planetpython.com and say hello to guido@python.org")
literal(u'Go to http://www.planetpython.com and say hello to guido@python.org')

		
webhelpers.html.tools.button_to(name, url='', **html_attrs)

		Generate a form containing a sole button that submits to
url.

Use this method instead of link_to for actions that do not have
the safe HTTP GET semantics implied by using a hypertext link.

The parameters are the same as for link_to. Any
html_attrs that you pass will be applied to the inner
input element. In particular, pass

disabled = True/False

as part of html_attrs to control whether the button is
disabled. The generated form element is given the class
‘button-to’, to which you can attach CSS styles for display
purposes.

The submit button itself will be displayed as an image if you
provide both type and src as followed:

type=’image’, src=’icon_delete.gif’

The src path should be the exact URL desired. A previous version of
this helper added magical prefixes but this is no longer the case.

Example 1:

inside of controller for "feeds"
>> button_to("Edit", url(action='edit', id=3))
<form method="post" action="/feeds/edit/3" class="button-to">
<div><input value="Edit" type="submit" /></div>
</form>

Example 2:

>> button_to("Destroy", url(action='destroy', id=3),
.. method='DELETE')
<form method="POST" action="/feeds/destroy/3"
 class="button-to">
<div>
 <input type="hidden" name="_method" value="DELETE" />
 <input value="Destroy" type="submit" />
</div>
</form>

Example 3:

Button as an image.
>> button_to("Edit", url(action='edit', id=3), type='image',
.. src='icon_delete.gif')
<form method="POST" action="/feeds/edit/3" class="button-to">
<div><input alt="Edit" src="/images/icon_delete.gif"
 type="image" value="Edit" /></div>
</form>

Note

This method generates HTML code that represents a form. Forms
are “block” content, which means that you should not try to
insert them into your HTML where only inline content is
expected. For example, you can legally insert a form inside of
a div or td element or in between p elements, but
not in the middle of a run of text, nor can you place a form
within another form.
(Bottom line: Always validate your HTML before going public.)

Changed in WebHelpers 1.2: Preserve case of “method” arg for XHTML
compatibility. E.g., “POST” or “PUT” causes method=”POST”; “post” or
“put” causes method=”post”.

		
webhelpers.html.tools.highlight(text, phrase, highlighter=None, case_sensitive=False, class_='highlight', **attrs)

		Highlight all occurrences of phrase in text.

This inserts “<strong class=”highlight”>...” around every
occurrence.

Arguments:

		text:

		The full text.

		phrase:

		A phrase to find in the text. This may be a string, a list of strings,
or a compiled regular expression. If a string, it’s regex-escaped and
compiled. If a list, all of the strings will be highlighted. This is
done by regex-escaping all elements and then joining them using the
regex “|” token.

		highlighter:

		Deprecated. A replacement expression for the regex substitution.
This was deprecated because it bypasses the HTML builder and creates
tags via string mangling. The previous default was ‘<strong
class=”highlight”>1’, which mimics the normal behavior of
this function. phrase must be a string if highlighter is
specified. Overrides class_ and attrs_ arguments.

		case_sensitive:

		If false (default), the phrases are searched in a case-insensitive
manner. No effect if phrase is a regex object.

		class_:

		CSS class for the tag.

		**attrs:

		Additional HTML attributes for the tag.

Changed in WebHelpers 1.0b2: new implementation using HTML builder.
Allow phrase to be list or regex. Deprecate highlighter and
change its default value to None. Add case_sensitive, class_,
and **attrs arguments.

		
webhelpers.html.tools.mail_to(email_address, name=None, cc=None, bcc=None, subject=None, body=None, replace_at=None, replace_dot=None, encode=None, **html_attrs)

		Create a link tag for starting an email to the specified
email_address.

This email_address is also used as the name of the link unless
name is specified. Additional HTML options, such as class or
id, can be passed in the html_attrs hash.

You can also make it difficult for spiders to harvest email address
by obfuscating them.

Examples:

>>> mail_to("me@domain.com", "My email", encode = "javascript")
literal(u'<script type="text/javascript">\n//<![CDATA[\neval(unescape(\'%64%6f%63%75%6d%65%6e%74%2e%77%72%69%74%65%28%27%3c%61%20%68%72%65%66%3d%22%6d%61%69%6c%74%6f%3a%6d%65%40%64%6f%6d%61%69%6e%2e%63%6f%6d%22%3e%4d%79%20%65%6d%61%69%6c%3c%2f%61%3e%27%29%3b\'))\n//]]>\n</script>')

>>> mail_to("me@domain.com", "My email", encode = "hex")
literal(u'My email')

You can also specify the cc address, bcc address, subject, and body
parts of the message header to create a complex e-mail using the
corresponding cc, bcc, subject, and body keyword
arguments. Each of these options are URI escaped and then appended
to the email_address before being output. Be aware that
javascript keywords will not be escaped and may break this feature
when encoding with javascript.

Examples:

>>> mail_to("me@domain.com", "My email", cc="ccaddress@domain.com", bcc="bccaddress@domain.com", subject="This is an example email", body= "This is the body of the message.")
literal(u'My email')

		
webhelpers.html.tools.strip_links(text)

		Strip link tags from text leaving just the link label.

Example:

>>> strip_links('else')
'else'

MIMEType Helper

The MIMEType helper assists in delivering appropriate content types
for a single action in a controller, based on several requirements:

		Does the URL end in a specific extension? (.html, .xml, etc.)

		Can the client accept HTML?

		What Accept headers did the client send?

If the URL ends in an extension, the mime-type associated with that is
given the highest preference. Since some browsers fail to properly set
their Accept headers to indicate they should be served HTML, the next
check looks to see if its at least in the list. This way those
browsers will still get the HTML they are expecting.

Finally, if the client didn’t include an extension, and doesn’t have
HTML in the list of Accept headers, than the desired mime-type is
returned if the server can send it.

		
class webhelpers.mimehelper.MIMETypes(environ)

		MIMETypes registration mapping

The MIMETypes object class provides a single point to hold onto all
the registered mimetypes, and their association extensions. It’s
used by the mimetypes method to determine the appropriate content
type to return to a client.

		
classmethod add_alias(alias, mimetype)

		Create a MIMEType alias to a full mimetype.

Examples:

		add_alias('html', 'text/html')

		add_alias('xml', 'application/xml')

An alias may not contain the / character.

		
classmethod init()

		Loads a default mapping of extensions and mimetypes

These are suitable for most web applications by default.
Additional types can be added by using the mimetypes module.

		
mimetype(content_type)

		Check the PATH_INFO of the current request and client’s HTTP Accept
to attempt to use the appropriate mime-type.

If a content-type is matched, return the appropriate response
content type, and if running under Pylons, set the response content
type directly. If a content-type is not matched, return False.

This works best with URLs that end in extensions that differentiate
content-type. Examples: http://example.com/example,
http://example.com/example.xml, http://example.com/example.csv

Since browsers generally allow for any content-type, but should be
sent HTML when possible, the html mimetype check should always come
first, as shown in the example below.

Example:

some code likely in environment.py
MIMETypes.init()
MIMETypes.add_alias('html', 'text/html')
MIMETypes.add_alias('xml', 'application/xml')
MIMETypes.add_alias('csv', 'text/csv')

code in a Pylons controller
def someaction(self):
 # prepare a bunch of data
 #

 # prepare MIMETypes object
 m = MIMETypes(request.environ)

 if m.mimetype('html'):
 return render('/some/template.html')
 elif m.mimetype('atom'):
 return render('/some/xml_template.xml')
 elif m.mimetype('csv'):
 # write the data to a csv file
 return csvfile
 else:
 abort(404)

Code in a non-Pylons controller.
m = MIMETypes(environ)
response_type = m.mimetype('html')
``response_type`` is a MIME type or ``False``.

Number

Number formatting and calculation helpers.

		
webhelpers.number.format_number(n, thousands=', ', decimal='.')

		Format a number with a thousands separator and decimal delimiter.

n may be an int, long, float, or numeric string.
thousands is a separator to put after each thousand.
decimal is the delimiter to put before the fractional portion if any.

The default style has a thousands comma and decimal point per American
usage:

>>> format_number(1234567.89)
'1,234,567.89'
>>> format_number(123456)
'123,456'
>>> format_number(-123)
'-123'

Various European and international styles are also possible:

>>> format_number(1234567.89, " ")
'1 234 567.89'
>>> format_number(1234567.89, " ", ",")
'1 234 567,89'
>>> format_number(1234567.89, ".", ",")
'1.234.567,89'

		
webhelpers.number.mean(r)

		Return the mean (i.e., average) of a sequence of numbers.

>>> mean([5, 10])
7.5

		
webhelpers.number.median(r)

		Return the median of an iterable of numbers.

The median is the point at which half the numbers are lower than it and
half the numbers are higher. This gives a better sense of the majority
level than the mean (average) does, because the mean can be skewed by a few
extreme numbers at either end. For instance, say you want to calculate
the typical household income in a community and you’ve sampled four
households:

>>> incomes = [18000] # Fast food crew
>>> incomes.append(24000) # Janitor
>>> incomes.append(32000) # Journeyman
>>> incomes.append(44000) # Experienced journeyman
>>> incomes.append(67000) # Manager
>>> incomes.append(9999999) # Bill Gates
>>> median(incomes)
49500.0
>>> mean(incomes)
1697499.8333333333

The median here is somewhat close to the majority of incomes, while the
mean is far from anybody’s income.

This implementation makes a temporary list of all numbers in memory.

		
webhelpers.number.percent_of(part, whole)

		What percent of whole is part?

>>> percent_of(5, 100)
5.0
>>> percent_of(13, 26)
50.0

		
webhelpers.number.standard_deviation(r, sample=True)

		Standard deviation.

From the Python Cookbook [http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/442412].
Population mode contributed by Lorenzo Catucci.

Standard deviation shows the variability within a sequence of numbers.
A small standard deviation means the numbers are close to each other. A
large standard deviation shows they are widely different. In fact it
shows how far the numbers tend to deviate from the average. This can be
used to detect whether the average has been skewed by a few extremely high
or extremely low values.

Most natural and random phenomena follow the normal distribution (aka the
bell curve), which says that most values are close to average but a few are
extreme. E.g., most people are close to 5‘9” tall but a few are very tall
or very short. If the data does follow the bell curve, 68% of the values
will be within 1 standard deviation (stdev) of the average, and 95% will be
within 2 standard deviations. So a university professor grading exams on a
curve might give a “C” (mediocre) grade to students within 1 stdev of the
average score, “B” (better than average) to those within 2 stdevs above,
and “A” (perfect) to the 0.25% higher than 2 stdevs. Those between 1 and 2
stdevs below get a “D” (poor), and those below 2 stdevs... we won’t talk
about them.

By default the helper computes the unbiased estimate
for the population standard deviation, by applying an unbiasing
factor of sqrt(N/(N-1)).

If you’d rather have the function compute the population standard
deviation, pass sample=False.

The following examples are taken from Wikipedia.
http://en.wikipedia.org/wiki/Standard_deviation

>>> standard_deviation([0, 0, 14, 14])
8.082903768654761...
>>> standard_deviation([0, 6, 8, 14])
5.773502691896258...
>>> standard_deviation([6, 6, 8, 8])
1.1547005383792515
>>> standard_deviation([0, 0, 14, 14], sample=False)
7.0
>>> standard_deviation([0, 6, 8, 14], sample=False)
5.0
>>> standard_deviation([6, 6, 8, 8], sample=False)
1.0

(The results reported in Wikipedia are those expected for whole
population statistics and therefore are equal to the ones we get
by setting sample=False in the later tests.)

Fictitious average monthly temperatures in Southern California.
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
>>> standard_deviation([70, 70, 70, 75, 80, 85, 90, 95, 90, 80, 75, 70])
9.003366373785...
>>> standard_deviation([70, 70, 70, 75, 80, 85, 90, 95, 90, 80, 75, 70], sample=False)
8.620067027323...

Fictitious average monthly temperatures in Montana.
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
>>> standard_deviation([-32, -10, 20, 30, 60, 90, 100, 80, 60, 30, 10, -32])
45.1378360405574...
>>> standard_deviation([-32, -10, 20, 30, 60, 90, 100, 80, 60, 30, 10, -32], sample=False)
43.2161878106906...

		
class webhelpers.number.Stats

		A container for data and statistics.

This class extends SimpleStats by calculating additional statistics,
and by storing all data seen. All values must be numeric (int,
long, and/or float), and you must call .finish() to generate
the additional statistics. That’s because the statistics here cannot be
calculated incrementally, but only after all data is known.

>>> stats = Stats()
>>> stats.extend([5, 10, 10])
>>> stats.count
3
>>> stats.finish()
>>> stats.mean
8.33333333333333...
>>> stats.median
10
>>> stats.standard_deviation
2.8867513459481287

All data is stored in a list and a set for later use:

>>> stats.list
[5, 10, 10]

>> stats.set
set([5, 10])

(The double prompt “>>” is used to hide the example from doctest.)

The stat attributes are None until you call .finish(). It’s
permissible – though not recommended – to add data after calling
.finish() and then call .finish() again. This recalculates the
stats over the entire data set.

In addition to the hook methods provided by SimpleStats, subclasses
can override ._finish-stats to provide additional statistics.

		
class webhelpers.number.SimpleStats(numeric=False)

		Calculate a few simple statistics on data.

This class calculates the minimum, maximum, and count of all the values
given to it. The values are not saved in the object. Usage:

>>> stats = SimpleStats()
>>> stats(2) # Add one data value.
>>> stats.extend([6, 4]) # Add several data values at once.

The statistics are available as instance attributes:

>>> stats.count
3
>>> stats.min
2
>>> stats.max
6

Non-numeric data is also allowed:

>>> stats2 = SimpleStats()
>>> stats2("foo")
>>> stats2("bar")
>>> stats2.count
2
>>> stats2.min
'bar'
>>> stats2.max
'foo'

.min and .max are None until the first data value is
registered.

Subclasses can override ._init_stats and ._update_stats to add
additional statistics.

The constructor accepts one optional argument, numeric. If true, the
instance accepts only values that are int, long, or float.
The default is false, which accepts any value. This is meant for instances
or subclasses that don’t want non-numeric values.

Misc

Helpers that are neither text, numeric, container, or date.

		
webhelpers.misc.all(seq, pred=None)

		Is pred(elm) true for all elements?

With the default predicate, this is the same as Python 2.5’s all()
function; i.e., it returns true if all elements are true.

>>> all(["A", "B"])
True
>>> all(["A", ""])
False
>>> all(["", ""])
False
>>> all(["A", "B", "C"], lambda x: x <= "C")
True
>>> all(["A", "B", "C"], lambda x: x < "C")
False

From recipe in itertools docs.

		
webhelpers.misc.any(seq, pred=None)

		Is pred(elm) is true for any element?

With the default predicate, this is the same as Python 2.5’s any()
function; i.e., it returns true if any element is true.

>>> any(["A", "B"])
True
>>> any(["A", ""])
True
>>> any(["", ""])
False
>>> any(["A", "B", "C"], lambda x: x <= "C")
True
>>> any(["A", "B", "C"], lambda x: x < "C")
True

From recipe in itertools docs.

		
webhelpers.misc.no(seq, pred=None)

		Is pred(elm) false for all elements?

With the default predicate, this returns true if all elements are false.

>>> no(["A", "B"])
False
>>> no(["A", ""])
False
>>> no(["", ""])
True
>>> no(["A", "B", "C"], lambda x: x <= "C")
False
>>> no(["X", "Y", "Z"], lambda x: x <="C")
True

From recipe in itertools docs.

		
webhelpers.misc.count_true(seq, pred=<function <lambda> at 0x400a050>)

		How many elements is pred(elm) true for?

With the default predicate, this counts the number of true elements.

>>> count_true([1, 2, 0, "A", ""])
3
>>> count_true([1, "A", 2], lambda x: isinstance(x, int))
2

This is equivalent to the itertools.quantify recipe, which I couldn’t
get to work.

		
webhelpers.misc.convert_or_none(value, type_)

		Return the value converted to the type, or None if error.

type_ may be a Python type or any function taking one argument.

>>> print convert_or_none("5", int)
5
>>> print convert_or_none("A", int)
None

Pylons-specific

		
class webhelpers.pylonslib.Flash(session_key='flash', categories=None, default_category=None)

		Accumulate a list of messages to show at the next page request.

		
__init__(session_key='flash', categories=None, default_category=None)

		Instantiate a Flash object.

session_key is the key to save the messages under in the user’s
session.

categories is an optional list which overrides the default list
of categories.

default_category overrides the default category used for messages
when none is specified.

		
__call__(message, category=None, ignore_duplicate=False)

		Add a message to the session.

message is the message text.

category is the message’s category. If not specified, the default
category will be used. Raise ValueError if the category is not
in the list of allowed categories.

If ignore_duplicate is true, don’t add the message if another
message with identical text has already been added. If the new
message has a different category than the original message, change the
original message to the new category.

		
pop_messages()

		Return all accumulated messages and delete them from the session.

The return value is a list of Message objects.

Text

Functions that output text (not HTML).

Helpers for filtering, formatting, and transforming strings.

		
webhelpers.text.chop_at(s, sub, inclusive=False)

		Truncate string s at the first occurrence of sub.

If inclusive is true, truncate just after sub rather than at it.

>>> chop_at("plutocratic brats", "rat")
'plutoc'
>>> chop_at("plutocratic brats", "rat", True)
'plutocrat'

		
webhelpers.text.excerpt(text, phrase, radius=100, excerpt_string='...')

		Extract an excerpt from the text, or ‘’ if the phrase isn’t
found.

		phrase

		Phrase to excerpt from text

		radius

		How many surrounding characters to include

		excerpt_string

		Characters surrounding entire excerpt

Example:

>>> excerpt("hello my world", "my", 3)
'...lo my wo...'

		
webhelpers.text.lchop(s, sub)

		Chop sub off the front of s if present.

>>> lchop("##This is a comment.##", "##")
'This is a comment.##'

The difference between lchop and s.lstrip is that lchop strips
only the exact prefix, while s.lstrip treats the argument as a set of
leading characters to delete regardless of order.

		
webhelpers.text.plural(n, singular, plural, with_number=True)

		Return the singular or plural form of a word, according to the number.

If with_number is true (default), the return value will be the number
followed by the word. Otherwise the word alone will be returned.

Usage:

>>> plural(2, "ox", "oxen")
'2 oxen'
>>> plural(2, "ox", "oxen", False)
'oxen'

		
webhelpers.text.rchop(s, sub)

		Chop sub off the end of s if present.

>>> rchop("##This is a comment.##", "##")
'##This is a comment.'

The difference between rchop and s.rstrip is that rchop strips
only the exact suffix, while s.rstrip treats the argument as a set of
trailing characters to delete regardless of order.

		
webhelpers.text.strip_leading_whitespace(s)

		Strip the leading whitespace in all lines in s.

This deletes all leading whitespace. textwrap.dedent deletes only
the whitespace common to all lines.

		
webhelpers.text.truncate(text, length=30, indicator='...', whole_word=False)

		Truncate text with replacement characters.

		length

		The maximum length of text before replacement

		indicator

		If text exceeds the length, this string will replace
the end of the string

		whole_word

		If true, shorten the string further to avoid breaking a word in the
middle. A word is defined as any string not containing whitespace.
If the entire text before the break is a single word, it will have to
be broken.

Example:

>>> truncate('Once upon a time in a world far far away', 14)
'Once upon a...'

		
webhelpers.text.wrap_paragraphs(text, width=72)

		Wrap all paragraphs in a text string to the specified width.

width may be an int or a textwrap.TextWrapper instance.
The latter allows you to set other options besides the width, and is more
efficient when wrapping many texts.

Submodules

		webhelpers – helper functions for web applications

		Generating RSS and Atom Feeds

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Internationalization.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Handling Internationalization And Localization

		Status:		Work in progress

Table of Contents

		Handling Internationalization And Localization
		Language Auto-Select

		Making your code international

		An i18n Quick Start

		Commands

Turbogears2 relies on Babel for i18n and l10n support. So
if this document is not enough you will want to check their respective
documentation:

		Babel’s UserGuide [http://babel.edgewall.org/wiki/Documentation/index.html]

A quickstarted project comes fully i18n enabled so you should get
started quickly.

If you’re lucky enough you’ll even see “Your application is now
running” message in your language.

Language Auto-Select

Turbogears2 contains the logic (hardwired in the TurboGearsController
class at the moment) to setup request’s language based on browser’s
preferences(*).

[*] - Every modern browser sends a special header along with every web
request which tells the server which language it would prefer to see
in a response.

Making your code international

Whenever you write a message that has to displayed you must let
TurboGears know that it has to be translated.

Even though TurboGears is able to automatically detect content
inside tags and mark them for translation all the strings inside
controllers must be explicitly marked as translated.

This can be achieved with the tg.i18n.ugettext and tg.i18n.lazy_ugettext
calls which are usually imported with _ and l_ names:

from tg.i18n import ugettext as _

class RootController(BaseController):
 @expose('myproj.templates.index')
 def index(self):
 return dict(msg=_('Hello World'))

In the previous example the ‘Hello World’ string will be detect by
TurboGears when collecting translatable text and will display in the
browser language if a translation for that language is available.

While ugettext works perfectly to translate strings inside a request
it does not allow translating strings outside a request. This is
due to the fact that TurboGears won’t know the browser language when
there isn’t a running request. To translate global variables, parameters
default values or any other string which is created outside a controller
method the lazy_ugettext method must be used:

from tg.i18n import lazy_ugettext as l_

class RootController(BaseController):
 @expose('myproj.templates.index')
 def index(self, msg=l_('Hello World')):
 return dict(msg=msg)

In this case the msg parameter is translated using lazy_ugettext
as it is constructed at controller import time when no request is available.
This will create an object that will translate the given string only when
the string itself is displayed or evaluated.

Keep in mind that as the lazy string object built by lazy_ugetted is
translated whenever the string is evaluated joining strings or editing it
will force the translation. So the resulting object must still be evaluated
only inside a request or it will always be translated to the default project
language only.

An i18n Quick Start

After quickstarting your project, you will notice that the setup.py
file contains the following section:

message_extractors = {'yourapp': [
 ('**.py', 'python', None),
 ('templates/**.mako', 'mako', None),
 ('templates/**.html', 'genshi', None),
 ('public/**', 'ignore', None)]},

This is an extraction method mapping that indicates to distutils which
files should be searched for strings to be translated. TurboGears2
uses Babel to extract messages to a .pot file in your project’s i18n
directory. Don’t forget to add it to your revision control system if
you use one.

1. Extract all the translatable strings from your project’s files by
using the following command:

python setup.py extract_messages

This command will generate a “pot” file in the i18n folder of your
application. This pot file is the reference file that serves for all
the different translations.

2. Create a translation catalog for your language, let’s take ‘zh_tw’
for example:

python setup.py init_catalog -l zh_tw

3. Edit your language in i18n/[country
code]/LC_MESSAGES/[project-name].po

If you’re not an expert in i18n or if you would like to give the files
to someone else so that he helps you we recommend that you use the
really nice poedit program. This program works nicely on GNU/Linux and
Windows and provides a nice user-interface to edit po files.

[image: ../_images/poedit.png]

		Compile your lang:

python setup.py compile_catalog

		Config development.ini:

[app:main]
use = egg: my-project
full_stack = true
lang = zh_tw

		Start server:

paster serve --reload development.ini

And see the local message show on the screen.

Commands

To fresh start a translation, you could use the following command to
handle your locales:

init_catalog

You can extract all messages from the project with the following
command:

python setup.py init_catalog -l [country code]

The country code could be es(Spanish), fr(France), zh_tw(Taiwan),
jp(JAPAN), ru(Russian), or any other country code.

Compile Catalog

You can extract all messages from the project with the following command:

python setup.py compile_catalog

Update Catalog

You can update the catalog with the following command:

python setup.py update_catalog

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Extensions/Geo/commands.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Extensions and Tools »

 		tgext.geo: Geographic Extensions for TurboGears »

tgext.geo.commands – tgext.geo Commands

Module Contents

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/RoutesIntegration.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Routes Integration in TG2

TurboGears2 does URL dispatch with a combination of TG1 style object
dispatch, and built in Routes integration. By default you don’t need
to think about Routes at all, because the framework sets up a default
route to your RootController, which sees that the action is route, and
does object dispatch in the same way that TurboGears 1 did.

But if you want to create special routes that override Object
Dispatch, you can easily do that, just by providing your own function
to set up the routes map. You can update the routes defaults by
overriding the setup_routes method of the base_config object in
app_cfg.py.

The standard setup_routes method looks like this:

def setup_routes(self):
 """Setup the default TG2 routes

 Override this and set up your own routes maps if you want to use routes.
 """
 map = Mapper(directory=config['pylons.paths']['controllers'],
 always_scan=config['debug'])
 # Setup a default route for the root of object dispatch
 map.connect('*url', controller='root', action='routes_placeholder')

 config['routes.map'] = map

The key to the default TG2 setup is the one map.connect() call which
sets up a default route for all urls (via the * wildcard) and sticks
the rest of the path on in the url param, and sends that info to
the application’s RootController in the root.py file in your project’s
controllers folder.

When TurboGears loads the environment for your app, it will use this
setup_routes method to do it.

So, to create your own routes, all you need to do is create another
map.connect call above the *url call that maps everything
to the root controller. This can send you to a regular pylons
controller, or to a DecoratedController. You can even break up your
app into separate object trees and map to each of them them explicitly
to go to various different ObjectDispatchController's
``routes_placeholder actions.

Warning

Due to the way ObjectDispatchController overides the standard pylons
controller call mechanisms, you cannot explicitly route to
individual actions/methods on an ObjectDispatch controller.

If you want to start object dispatch from a different root than ‘/’
all you need to do is change the ‘*url’ line to mount something
somewhere else.

If you have a very large app, and you want to break down the object
dispatch tree for performance reasons, you can do that by defining
routes to objects further down the tree.

For more information about how to write routes, you might want to read:

http://routes.groovie.org/manual.html

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

extensions.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

Extensions and Tools

TG2 has some extensions which offer built-in functionality you can add
to your application. This is somewhat different from installing a
WSGI application in your stack because the extensions are intended to
be more tightly integrated with the components that make up a
TurboGears application.

This is a list of core TurboGears extensions and tutorials that involve optional packages.

		TurboGears Automatic CRUD Generation

		TurboGears Administration System

		Pluggable Applications with TurboGears

		TGExt.Command

		Scheduling Tasks

		tgext.geo: Geographic Extensions for TurboGears

		Using Authorize.net in a TurboGears Form

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Config/Routes.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		TurboGears 2 Configuration »

Routes Config Settings

		Status:		Official

Table of Contents

		Routes Config Settings
		AppConfig Method Overrides

If you are coming over from Pylons, or merging
an existing Pylons application into a TG application,
you might want to use your own routing scheme. This is perfectly allowable,
TurboGears just sets up a very simple routing to kick off it’s
Object Dispatch mechanism, but this can be augmented hower you desire.
One thing to note, if you plan on mounting TurboGears controllers
without using class instantiation, they must subclass a TurboGears
Controller, complete with Dispatcher. Examples of classes like this are:
TGController, WSGIAppController, and RestController.

AppConfig Method Overrides

		
AppConfig.setup_routes()

		Setup the default TG2 routes

Override this and setup your own routes maps if you want to use
custom routes.

It is recommended that you keep the existing application routing in
tact, and just add new connections to the mapper above the routes_placeholder
connection. Lets say you want to add a tg controller SamplesController,
inside the controllers/samples.py file of your application. You would
augment the app_cfg.py in the following way:

from routes import Mapper
from tg.configuration import AppConfig

class MyAppConfig(AppConfig):
 def setup_routes(self):
 map = Mapper(directory=config['paths']['controllers'],
 always_scan=config['debug'])

 # Add a Samples route
 map.connect('/samples/', controller='samples', action=index)

 # Setup a default route for the root of object dispatch
 map.connect('*url', controller='root', action='routes_placeholder')

 config['routes.map'] = map

base_config = MyAppConfig()

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/movie_form_7.png
New Movie

Movie Title

Year

Release Date 11/28/2009 Choose
Genre [(Action & Adventure ¢
Description

Picture Filename

Save Movie

main/Templates/Mako.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Why Mako?

Mako provides another template rendering solution for TurboGears, it has a
couple of advantages:

		Is very fast! (as fast as some C engines).

		Mako is supported by Jython (and therefore TG projects utilizing Mako will run on Jython).

		Mako uses inheritance instead of matching to combine page tempates. This is often easier for developers to understand and see where problems lie.

		Mako provides namespaces that behaves just like regular python code.

		Mako syntax is much closer to standard python than many XML-based languages like TAL or Genshi.

		Mako contains callable blocks.

		Mako can be be used to generate non-html markup as neither the template or the output needs to be valid html.

		Mako is the default in Pylons, so Pylons users will feel at home with it’s use.

For more information see http://www.makotemplates.org

However it has one major tradeoff. The main reason for it’s speed gain over genshi is the lack of “(x)html” validation. Some see this as
an advantage some as a disavantage. This tradeoff can be mitigated with the use of a validator during development.

TurboGears mako Support

All major components of TurboGears now support mako, including the admin
and CrudRestController. This means that if you prefer the speed that mako
offers right now over the possible speedups Genshi will offer in the future.
Additionally, you may choose to quickstart your TurboGears application with
mako and you will then get a master template that is compatible with the
tgext.admin template.

Using Mako in TG2

TurboGears allows you to setup and use Mako templates by simply adding it to
the list of renderers to prepare in base_config:

base_config.renderers.append('mako')

You can also set it as the default renderer by setting:

base_config.default_renderer = "mako"

You do not need to set the default renderer to mako, but if your
project will be using mako primarily, it is a good idea to do so.

Dotted Lookup Support

Since TurboGears relies on dotted template support for it’s standard, this
standard also applies to Mako. Therefore, all templates are referenced using
a dotted name, instead of slashes, and this applies to inherited/imported templates
within your template as well.

Local Support

Mako support also includes support for local: in your template name. What this
allows you to do is to tell TurboGears to look for the referenced template in the
locally executing namespace, as apposed to a fully-dotted name. This allows you to
write extensions that can “plug in” to an existing TurboGears project by providing
direct access to a project’s master template. tgext.admin takes advantage of this; most
templates have the following code at the beginning of their files:

<%inherit file="local:templates.master"/>

Exposing a mako template

If you have your project’s default set to genshi, don’t fret, you may still use
mako within your app. Simply preface your template name with mako, producing
an expose decorator that might look like this:

@expose('mako:mytgapp.templates.my_awesome_mako_template')
def my_awesome_controller_method(self, **kw):
 ...

References

The Mako docs [http://www.makotemplates.org/docs/syntax.html] cover template
syntax very well, so we’ll not repeat it. Instead, we refer you to their site.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Auth/Authorization.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		Authentication and Authorization in TurboGears 2 »

Authorization in TurboGears 2 applications

		Status:		Official

Overview

This document describes how authentication is integrated into TurboGears
and how you may get started with it.

How authentication and authorization is set up by default

If you enabled authentication and authorization in your project when it was
generated by TurboGears, then it’s been set up to store your users, groups and
permissions in SQLAlchemy-managed tables or Ming collections.

Your users’ table is used by repoze.who to authenticate them.
When the authentication has success TurboGears uses the TGAuthMetadata
instance declared in config.base_config.sa_auth.authmetadata to
retrieve the informations about your user which are required for authorization.

You are free to change the authmetadata object as you wish, usually if your
authentication model changes, your authmetadata object will change accordingly.

You can even get rid of authorization based on groups and permissions and use
other authorization patterns (e.g., roles, based on network components) or
simply use a mix of patterns. To do this you can set authmetadata to None
and register your own metadata providers for repoze.who.

Restricting access with tg.predicates

tg.predicates allows you to define access rules based on so-called
“predicate checkers”. It is a customized version of the repoze.what
module which has been merged into TurboGears itself to make easier
to support different authentication backends.

A predicate is the condition that must be met for the user to be able to
access the requested source. Such a predicate, or condition, may be made
up of more predicates – those are called compound predicates. Action
controllers, or controllers, may have only one predicate, be it single or
compound.

A predicate checker is a class that checks whether a predicate or
condition is met.

If a user is not logged in, or does not have the proper permissions, the
predicate checker throws a 401 (HTTP Unauthorized) which is caught by the
repoze.who middleware to display the login page allowing
the user to login, and redirecting the user back to the proper page when they
are done.

For example, if you have a predicate which is “grant access to any authenticated
user”, then you can use the following built-in predicate checker:

from tg.predicates import not_anonymous

p = not_anonymous(msg='Only logged in users can read this post')

Or if you have a predicate which is “allow access to root or anyone with the
‘manage’ permission”, then you may use the following built-in predicate
checker:

from tg.predicates import Any, is_user, has_permission

p = Any(is_user('root'), has_permission('manage'),
 msg='Only administrators can remove blog posts')

As you may have noticed, predicates receive the msg keyword argument to
use its value as the error message if the predicate is not met. It’s optional
and if you don’t define it, the built-in predicates will use the default
English message; you may take advantage of this functionality to make such
messages translatable.

Note

Good predicate messages don’t explain what went wrong; instead, they
describe the predicate in the current context (regardless of whether
the condition is met or not!). This is because such messages may be used in
places other than in a user-visible message (e.g., in the log file).

		Really bad: “Please login to access this area”.

		Bad: “You cannot delete an user account because you are not an
administrator”.

		OK: “You have to be an administrator to delete user accounts”.

		Perfect: “Only administrators can delete user accounts”.

Below are described the convenient utilities TurboGears provides to deal with
predicates in your applications.

Action-level authorization

You can control access on a per action basis by using the
tg.decorators.require() decorator on the actions in question. All you have
to do is pass the predicate to that decorator. For example:

...
from tg import require
from tg.predicates import Any, is_user, has_permission
...
class MyCoolController(BaseController):
 # ...
 @expose('yourproject.templates.start_vacations')
 @require(Any(is_user('root'), has_permission('manage'),
 msg='Only administrators can remove blog posts'))
 def only_for_admins():
 flash('Hello admin!')
 dict()
 # ...

Controller-level authorization

If you want that all the actions from a given controller meet a common
authorization criteria, then you may define the allow_only attribute of
your controller class:

from yourproject.lib.base import BaseController

class Admin(BaseController):
 allow_only = predicates.has_permission('manage')

 @expose('yourproject.templates.index')
 def index(self):
 flash(_("Secure controller here"))
 return dict(page='index')

 @expose('yourproject.templates.index')
 def some_where(self):
 """This is protected too.

 Only those with "manage" permissions may access.

 """
 return dict()

Warning

Do not use this feature if the login URL would be mapped to that controller,
as that would result in a cyclic redirect.

Built-in predicate checkers

These are the predicate checkers that are included with tg.predicates,
although the list below may not always be up-to-date:

Single predicate checkers

		
class tg.predicates.not_anonymous

		Check that the current user has been authenticated.

		
class tg.predicates.is_user(user_name)

		Check that the authenticated user’s user name is the specified one.

		Parameters:		user_name (str [http://docs.python.org/library/functions.html#str]) – The required user name.

		
class tg.predicates.in_group(group_name)

		Check that the user belongs to the specified group.

		Parameters:		group_name (str [http://docs.python.org/library/functions.html#str]) – The name of the group to which the user must belong.

		
class tg.predicates.in_all_groups(group1_name, group2_name[, group3_name ...])

		Check that the user belongs to all of the specified groups.

		Parameters:		
		group1_name – The name of the first group the user must belong to.

		group2_name – The name of the second group the user must belong to.

		... (group3_name) – The name of the other groups the user must belong to.

		
class tg.predicates.in_any_group(group1_name[, group2_name ...])

		Check that the user belongs to at least one of the specified groups.

		Parameters:		
		group1_name – The name of the one of the groups the user may belong to.

		... (group2_name) – The name of other groups the user may belong to.

		
class tg.predicates.has_permission(permission_name)

		Check that the current user has the specified permission.

		Parameters:		permission_name – The name of the permission that must be granted to
the user.

		
class tg.predicates.has_all_permissions(permission1_name, permission2_name[, permission3_name...])

		Check that the current user has been granted all of the specified
permissions.

		Parameters:		
		permission1_name – The name of the first permission that must be
granted to the user.

		permission2_name – The name of the second permission that must be
granted to the user.

		... (permission3_name) – The name of the other permissions that must be
granted to the user.

		
class tg.predicates.has_any_permission(permission1_name[, permission2_name ...])

		Check that the user has at least one of the specified permissions.

		Parameters:		
		permission1_name – The name of one of the permissions that may be
granted to the user.

		... (permission2_name) – The name of the other permissions that may be
granted to the user.

		
class tg.predicates.Not(predicate)

		Negate the specified predicate.

		Parameters:		predicate – The predicate to be negated.

Custom single predicate checkers

You may create your own predicate checkers if the built-in ones are not enough
to achieve a given task.

To do so, you should extend the tg.predicates.Predicate
class. For example, if your predicate is “Check that the current month is the
specified one”, your predicate checker may look like this:

from datetime import date
from tg.predicates import Predicate

class is_month(Predicate):
 message = 'The current month must be %(right_month)s'

 def __init__(self, right_month, **kwargs):
 self.right_month = right_month
 super(is_month, self).__init__(**kwargs)

 def evaluate(self, environ, credentials):
 if date.today().month != self.right_month:
 self.unmet()

Warning

When you create a predicate, don’t try to guess/assume the context in
which the predicate is evaluated when you write the predicate message
because such a predicate may be used in a different context.

		Bad: “The software can be released if it’s %(right_month)s”.

		Good: “The current month must be %(right_month)s”.

If you defined that class in, say, {yourproject}.lib.auth, you may use it
as in this example:

...
from spain_travels.lib.auth import is_month
...
class SummerVacations(BaseController):
 # ...
 @expose('spain_travels.templates.start_vacations')
 @require(is_month(7))
 def start_vacations():
 flash('Have fun!')
 dict()
 # ...

Built-in compound predicate checkers

You may create a compound predicate by aggregating single (or even compound)
predicate checkers with the functions below:

		
class tg.predicates.All(predicate1, predicate2[, predicate3 ...])

		Check that all of the specified predicates are met.

		Parameters:		
		predicate1 – The first predicate that must be met.

		predicate2 – The second predicate that must be met.

		... (predicate3) – The other predicates that must be met.

		
class tg.predicates.Any(predicate1[, predicate2 ...])

		Check that at least one of the specified predicates is met.

		Parameters:		
		predicate1 – One of the predicates that may be met.

		... (predicate2) – Other predicates that may be met.

But you can also nest compound predicates:

...
from yourproject.lib.auth import is_month
...
@authorize.require(authorize.All(
 Any(is_month(4), is_month(10)),
 predicates.has_permission('release')
))
def release_ubuntu(self, **kwargs):
 return dict()
...

Which translates as “Anyone granted the ‘release’ permission may release a
version of Ubuntu, if and only if it’s April or October”.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/basicmoves_oops.png
Traceback Extra Data Template Source
WebError Traceback:

~» UndefinedError: "hello" not defined

Viewas: Interactive | Text | XML (full)
URL: http://localhost:8080/

Module weberror.evalexception:431 in respond @ view

>> app._iter = self.application(environ, detect_start_response)
Module tg.configuration:643 in wrapper @ view

>> return app(environ, start_response)

Module tg.configuration:543 in remover @ view

>> return app(environ, start_response)

Module repoze.tm:19 in __call__ @ view

>>_result = seff.application(environ, save_status_and_headers)
Module repoze. who.middleware:107 in __call__ @ view
>> app._iter = app(environ, wrapper.wrap_start_response)
Module tw.core.middleware:36 in _call_ & view

>> return seff.wsgi_app(environ, start_response)

Module tw.core.middleware:59 in wsgi_app & _ view

>> resp = req.get_response(sel.application)

Module webob:1325 in get_response @ view
o

_static/down.png

deprecated/ToscaWidgets/Cookbook/PasswordValidation.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		ToscaWidgets Cookbook »

Creating A Password Verification Field

First lets take into consideration a very simple registration form:

from tw.forms import TableForm, PasswordField, TextField
from tw.api import WidgetsList

class RegistrationForm(TableForm):
 action = 'register'
 class fields(WidgetsList):
 username = TextField()
 password = PasswordField()
 verify = PasswordField()

Here is how the form is rendered:

[image: simple registration form]
Now we will add a validator to the form before it is passed into the
controller. The validator code looks like this:

from formencode import Schema
from formencode.validators import FieldsMatch

passwordValidator = Schema(chained_validators=(FieldsMatch('password',
 'verify',
 messages={'invalidNoMatch':
 "Passwords do not match"}),))

We pass the new validator into the form when it is instantiated:

registrationForm = RegistrationForm(validator=passwordValidator)

Finally, we pass the registration form to the controller in the normal
way:

@expose('genshi:mypackage.templates.register')
def registration(self, **kw):
 pylons.c.form = registrationForm
 return dict(value=kw)

Notice that **kw are sent into the controller method. This is so
that the user’s results can be passed back to the form when the
validation fails.

You need to display your widget in your template like this:

${tmpl_context.form(value=value)}

Finally, we direct the form to a “register” method so that you can add
the user entry to the database, or do other things associated with
registration:

@validate(registrationForm, error_handler=registration)
def registration(self, **kw):
 #this is where your user registration would write to the database
 flash(_('your registration has succeeded, please wait for your administrator to activate your account'), status="ok")
 raise redirect('/')

Notice the validate decorator, which makes a call-back to the
“registration” method.

When the validation fails, the result looks something like this:

[image: registration form with validation errors.]

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Deployment/DeployWithAnEgg.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		Deployment »

Deploying your TG application with an Egg and Easy Install

Contents

		Deploying your TG application with an Egg and Easy Install
		How to Build a .egg File for Your Project

		How to Install Your .egg
		Installing Dependencies

		Running Your Application
		The Production Configuration

		The Production Database

		Daemonizing your Application

		How to Make Your Project’s .egg Require Additional Packages

		How to Make Your Project Available on PyPI

		References

How to Build a .egg File for Your Project

An egg is Python’s new distribution format, comparable to a .jar in Java.
It’s basically a zip file with a particular directory structure containing the
code and a bit of metadata. You can get details on eggs directly from the
inventor at the PEAK Developers’ Center [http://peak.telecommunity.com/DevCenter/PythonEggs].

A freshly quickstarted project will have a setup.py file. This file allows
you to easily package your file for redistribution both for internal use and
for sharing on PyPI [http://pypi.python.org]. Creating an egg is as simple as
switching to your project directory and running:

python setup.py bdist_egg

This will produce an egg file for the current version of your project in the
./dist folder.

Note

Please note that your .egg file cannot be installed in a
.zip file, so you must always have “zip_safe=False” in your
setup.py file. It needs to be in your setup call, so make sure to
add it. If you don’t, and you install the egg, then your
application will fail in numerous ways, including an inability to
find templates, CSS files, JS files, everything. All you will see
are 404 error messages. So please make sure to include it for your
(and your users’) sakes. Thank you.

How to Install Your .egg

The simplest way to use an egg is to copy it over to your production machine
and do:

[sudo] easy_install *myapp*.egg

Note

If you do not have easy_install on the target machine, you need
to install the setuptools [http://peak.telecommunity.com/DevCenter/setuptools] package first to get it, either through your
operating system’s software package system or by downloading the
bootstrapping program ez_setup.py [http://peak.telecommunity.com/dist/ez_setup.py]. Conveniently, ez_setup.py also
takes the same arguments that easy_install takes, so python
ez_setup.py *myapp*.egg will do the full install. Be sure to switch
over to easy_install after the first run.

Installing Dependencies

As long as the setup.py lists TurboGears as a requirement (see the section
on adding requirements), it should be possible for somebody to install your
application with just the egg and easy_install or ez_setup.py including
the installation of TurboGears itself and all its dependencies.

Warning

This is a nice feature for application deployment, but be aware that
installing an egg can also upgrade TurboGears and other packages if the egg
requires a later version than the system provides. If long term system
stability is important to you, you may want to investigate solutions like
virtualenv.

Please be also aware that by default the setup.py file of a quickstarted
project will require a TurboGears version that is equal or newer than the
version which was used to run paster quickstart. This means if you
install your application and TurboGears is not installed or only an older
version than required, easy_install will fetch and install the newest
TurboGears version it can find. This includes beta versions and release
candidates of future TurboGears versions with a higher major version number.
If you want to ensure that your application will only install a known good
TurboGears version, you should add a more specific version constraint for
TurboGears in setup.py (again, see adding requirements on how to do this).

Running Your Application

TurboGears apps take advantage of the paster serve functionality by
providing a way to start the server as you would any other paste application

Once you have your application installed in the proper location simply
cd to that location and type the following command:

$ paster serve production.ini

where production.ini is your production configuration file, which is covered in the
next section.

The Production Configuration

To get everything up and running, you also need a production configuration file
(usually called production.ini by convention) and pass the name of this file as the
first and only argument to your start script.

The Production Database

Your production configuration should specify location and parameters for the
production database that your project will use.

This can be the same database as the one you created with paster setup-app
while developing your application. If you use a different database for production
(a wise decision) you will need to create the tables in the database, before using
it for the first time.

paster setup-app production.ini

will create the necessary tables using the database specified in the deployment
configuration file production.ini.

Daemonizing your Application

Once you are satisfied with the running of your server, it makes sense to run it in
a background mode so that you may log off, leaving your server running. Paste does this
with the –daemon argument. It looks something like this:

paster serve production.ini --daemon

To stop your application from running, simply type:

paster serve production.ini --stop-daemon

How to Make Your Project’s .egg Require Additional Packages

By specifying all your dependencies, not just TurboGears, easy_install can
completely automate your package setup. You specify dependencies by modifying
the requires argument in setup() in your setup.py file to include
the name of the package you need. Here is an example that adds the fictional
package FooBar as an installation requirement:

setup(
 name="test",
 version=0.1,
 zip_safe=False,
 install_requires = [
 "TurboGears >= 2.1",
 "FooBar"
],
 ...

If you need a specific version of the package you can use comparison operators
against the version name. You can see that happening in the above example, as
this project depends on “TurboGears version 2.1 or greater”. See the setuptools [http://peak.telecommunity.com/DevCenter/setuptools]
documentation for more information on declaring dependencies.

How to Make Your Project Available on PyPI

If you decide to share your creation with the world, the easiest way to do so
is by using the Python Package Index. Before you can upload your project
to PyPI, you will need an account. You can create one on the PyPI registration page [http://www.python.org/pypi?:action=register_form].

After you have created an account, you will need to tell setuptools your
account information for uploading the file. See the distutils documentation [http://docs.python.org/dist/package-index.html]
for details on this.

Now that you have your account configured and you’ve updated the metadata in
setup.py, you need to register a page for your application. setuptools
can do this for you automatically with the following command:

python setup.py register

Once you have everything configured, setuptools can upload your egg
automatically. Here is the command you need:

python setup.py bdist_egg upload

Any eggs you created in the process should also be available in the dist/
folder of your project.

You can also register projects and upload your eggs manually. This
setuptools tutorial [http://wiki.python.org/moin/CheeseShopTutorial] should be enough to get you going.

References

Take a look at Generating your own Private Python Package Index to see how to make your own personal PYPI
for distribution within a closed environment.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/License.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

TurboGears Licenses

		Status:		Official

Summary: There’s no GPL incompatible provisos sneaked into any of
these licenses, and all of TG2 and it’s underlying components are
not copy_left licensed, so you can include them in your projects,
even if they are proprietary

Note that the following paragraphs are not legal advice. They are
one person’s interpretations of the software licenses involved. If you
have any questions or concerns about the licenses, you should consult
a lawyer.

TurboGears is a megaframework that incorporates other open source
projects. Each project that is included in TurboGears allows for
closed source use, and the licenses are included here for
convenience. The primary requirement made by the licenses is that you
need to include the relevant copyright notices and licenses in your
software. Including this file should be sufficient.

Generally speaking, the parts of TurboGears allow you to not only
include them with your work, but to modify them at will.

TurboGears

TurboGears is covered by the MIT license:

Copyright (c) 2005 Kevin Dangoor, and others.

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_static/g_gear.png

deprecated/ToscaWidgets/Creation.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		ToscaWidgets »

Developing Toscawidgets

Widgets Are Stateless

ToscaWidgets use stateless widgets in order to maintain a low memory
footprint during execution. What this means is that all instances
of a widget reside in the same execution thread on the server. For
this reason, no modifications can be made to the widgets at runtime
because the results may be propogated across multiple requests
to the server, resulting in thread safety issues, along with potential
security risks. A simple way to say this is that widgets are stateless,
that is you may not change their attributes after their initial creation.

Role of data in your widget

Because widgets are stateless, data for their attributes must only be
provided at start time. However, that is not to say that widgets cannot
provide dynamic data. Display data may be passed into the widget’s
display() call such that it can provide dynamic data for the user.
The other way to moodify a widgets rendering data is to modify a widget’s
update_params() method, but that will be discussed later.

Parameters

Parameters are defined in a widget’s definition. These are variables
that can be passed into a widgets’s display() method at render time.
These parameters are then passed onto the widget’s display template
for use inrendering. Here is how you would define parameters for a
TextArea widget:

class TextArea(Widget):
 params = ['rows', 'cols']
 rows=10
 cols=30

It’s easy as that, rows and cols will now be added to your template’s
namespace upon rendering. It would be easy enough to create a new widget
with a call as follows:

my_text_area = TextArea(rows=38, cols=38)

This would override the defaults provided by the widget and set the row and
column values to 38.

Parameters are collected from a widget’s parameter, so that if you have
a parameter defined in one widget, widgets that subclass that widget will
automatically add the parameters to the parameter list. This makes mixins
fairly easy to create as in this example:

class MyField(Widget):
 params = ['css_class', 'name', 'value']
 css_class = 'my-field-class'
 name = None
 value = None

class MyTextArea(MyField)
 params = ['rows', 'cols']
 rows=10
 cols=30

Now MyTextArea widgets will have the default css_class value unless overridden,
and also obtain the name and value parameters. Now you can instantiate the widget
with name and value parameters and they will be made available to the widget’s
template at render time.

Update Params

As mentioned earlier, update_params gives the developer an oportunity to modify
parameters of the widget before it is rendered. For example, you may want to populate
the options of a select field from the database at runtime. Here is what the code
for that would look like:

from tw.forms import SingleSelectField
from myapp.model import User, DBSession

class UserSelectField(SingleSelectField)
 def update_params(self, d):
 options = [user.user_name, user.display_name for user in DBSession.query(User).all()]
 if self.nullable:
 options.append([None,"-----------"])
 if len(options) == 0:
 return d
 d['options']= options
 return d

update_params is called with a dictionary representing the values of the widget parameters.
It is here where you can modify them before final rendering.

JavaScript Callbacks

Todo

Difficulty: Medium. add section about the javascript callbacks

Typical Widget Components

		Template code

		Resources

		Server-side code

Template Code

		TW supports all the template engines supported by Buffet [http://projects.dowski.com/projects/buffet]

		Templates are usually kept in separate files, although it is
possible to inline in code.

		The variables available in the template are: parameters defined for
the widget (see below); TW built-in functions (args_for, value_for,
display_child, css_class) and any provided by the user-defined
functions update_params and get_extra_vars.

Resources

		Once a resource is defined, the TW middleware serves that as a
static directory.

		Widgets specify their JS and CSS dependencies, and links are
automatically inserted into appropriate points in the document
(e.g. the HEAD section). There are two mechanisms for doing this:

		Widgets are detected in variables passed from the controller to
templates, and the resource requirements are collected. The
site-wide master template includes code to render the
requirements appropriately.

		There is an experimental mode to rewrite the output document
with links; this avoids the widgets needing to be passed to the
template.

Server-side code

		Defines widget parameters, and default values for parameters.

		Can run code at hook points; the main one is update_params, called
just before display.

		Having the template code call Python functions is discouraged; such
code is better included in update_params.

Compound Widgets

All ToscaWidgets are in fact compound widgets. This means that every
widget can contain child widgets which get rendered at the same time
as the parent widget, without explicit instruction to do so. This
gives ToscaWidgets the following functionality:

		Parent / child relationships

		Repeating widgets

		Generation of compound IDs

		Decoding nested dictionaries for values and parameters

		Utility functions, e.g. ichildren_hidden

Compound IDs are generated by going through the tree from root to the
node, joining all the names (and numbers for repeaters) into a
globally unique name. The generated IDs need to match the validation
schema.

A compound widget takes a dictionary as it’s value when display() is
called, and passes individual values to child widgets. A similar system
works for parameters, but you have to do .child_args.

Todo

Difficulty: Easy. check this (.child_args), it’s been a while

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/explorequickstart.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Getting Started »

Explore A Quickstarted Project

Note

You will need to quick-start an
application to follow along with this introduction.

Once you’ve got a quickstarted app going it’s probably a good time to
take a look around the files that are generated by quickstart so you
know where things go.

[image: ../_images/tg2_files.jpg]
As you can see there are quite a few files generated. If you look
inside them you’ll discover that many of them are just stubs so that
you’ll have a standard place to put code as you build your project.

Controllers

Controllers are what gets called when a browser (or other http client) makes
a request to your application.

In the my_intranet/controllers folder you will find several controller files.

root.py is the first one you should look at, as it is “special” because the
RootController in root.py is setup by default to get all requests, lookup
what method should be called, and calls it. You can change this default by
setting up custom Routes, but in most cases that’s not required.

Writing controller methods

The nerve center of your app is the controller. It
ultimately handles all user actions, because every HTTP request arrives here
first. The controller acts on the request and can call upon other TurboGears
components (the template engines, database layers, etc.) as its logic directs.

When the TurboGears server receives an HTTP request, the requested URL is mapped
as a call to your controller code located in controllers.py. Page names map
to functions within the controller class.

For example:

		URL
		Maps to

		http://localhost:8080/index
		Root.index()

		http://localhost:8080/mypage
		Root.mypage()

Quick Example

Here’s a simple example of the TG2.

Suppose using paster quickstart you generate a TurboGears project
named “HelloWorld”. Your default controller code would be created in the
file HelloWorld/helloworld/controllers/root.py.

Modify the default controllers.py to read as follows:

"""Main Controller"""
from helloworld.lib.base import BaseController
from tg import expose, flash
from tg.i18n import ugettext as _
#from tg import redirect, validate
#from helloworld.model import DBSession

class RootController(BaseController):

 @expose()
 def index(self):
 return "<h1>Hello World</h1>"

 @expose()
 def _default(self, *args, **kw):
 return "This page is not ready"

When you load the root URL http://localhost:8080/index in your web
browser, you’ll see a page with the message “Hello World” on it.

root.py

Let’s take a look at the RootController:

class RootController(BaseController):
 """
 The root controller for the my-intranet application.

 All the other controllers and WSGI applications should be mounted on this
 controller. For example::

 panel = ControlPanelController()
 another_app = AnotherWSGIApplication()

 Keep in mind that WSGI applications shouldn't be mounted directly: They
 must be wrapped around with :class:`tg.controllers.WSGIAppController`.

 """
 secc = SecureController()
 admin = AdminController(model, DBSession, config_type=TGAdminConfig)
 error = ErrorController()

 @expose('my_intranet.templates.index')
 def index(self):
 """Handle the front-page."""
 return dict(page='index')

 @expose('my_intranet.templates.about')
 def about(self):
 """Handle the 'about' page."""
 return dict(page='about')

 @expose('my_intranet.templates.authentication')
 def auth(self):
 """Display some information about auth* on this application."""
 return dict(page='auth')

 @expose('my_intranet.templates.index')
 @require(predicates.has_permission('manage', msg=l_('Only for managers')))
 def manage_permission_only(self, **kw):
 """Illustrate how a page for managers only works."""
 return dict(page='managers stuff')

 @expose('my_intranet.templates.index')
 @require(predicates.is_user('editor', msg=l_('Only for the editor')))
 def editor_user_only(self, **kw):
 """Illustrate how a page exclusive for the editor works."""
 return dict(page='editor stuff')

 @expose('my_intranet.templates.login')
 def login(self, came_from=url('/')):
 """Start the user login."""
 login_counter = request.environ['repoze.who.logins']
 if login_counter > 0:
 flash(_('Wrong credentials'), 'warning')
 return dict(page='login', login_counter=str(login_counter),
 came_from=came_from)

 @expose()
 def post_login(self, came_from=url('/')):
 """
 Redirect the user to the initially requested page on successful
 authentication or redirect her back to the login page if login failed.

 """
 if not request.identity:
 login_counter = request.environ['repoze.who.logins'] + 1
 redirect(url('/login', came_from=came_from, __logins=login_counter))
 userid = request.identity['repoze.who.userid']
 flash(_('Welcome back, %s!') % userid)
 redirect(came_from)

 @expose()
 def post_logout(self, came_from=url('/')):
 """
 Redirect the user to the initially requested page on logout and say
 goodbye as well.

 """
 flash(_('We hope to see you soon!'))
 redirect(came_from)

There are a couple obvious differences from the simplistic example above:

		Most of the expose() calls point to a specific template file.

		We mount the SecureController, AdminController, etc in secc, admin, by
instantiating them in RootController

Templates

As we just noticed in root.py TG like almost all web frameworks helps you
create templates for HTML and other kinds of responses. We also support
returning multiple kinds of response from the same controller method so you
can have a JSON, or XML API from the same controller methods as your main
html app.

TG2 uses the Genshi templating system by default, and we’ll cover the
details of genshi in a bit. But let’s dive right in with another quick
example, followed by a deeper look at what’s already there in the
quickstarted project.

Expose + Template == Good

To enable a cleaner solution, data from your TurboGears controller can be
returned as strings, or as a dictionary.

With @expose(), a dictionary can be passed from the controller
to a template which fills in its placeholder keys with the dictionary
values and then returns the filled template output to the browser.

Template Example

A simple template file called sample could be made like
this:

<html>
 <head>
<title>TurboGears Templating Example</title>
 </head>
 <body>
 <h2>I just want to say that ${person} should be the next
 ${office} of the United States.</h2>
 </body>
</html>

The ${param} syntax in the template indicates some undetermined values
to be filled.

We provide them by adding a method to the controller like this ...

@expose("helloworld.templates.sample")
def example(self):
 mydata = {'person':'Tony Blair','office':'President'}
 return mydata

... then the following is made possible:

		The web user goes to http://localhost:8080/example.

		The example method is called.

		The method example returns a Python dict.

		@expose processes the dict through the template file named
sample.html.

		The dict values are substituted into the final HTML response.

Quickstarted Project Templates

Each projects gets quickstarted with a Master template and a bunch of templates for
the pages provided by the RootController. Taking a look at the index template it should
look something like this:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:py="http://genshi.edgewall.org/"
 xmlns:xi="http://www.w3.org/2001/XInclude">

 <xi:include href="master.html" />

<head>
 <title>Welcome to TurboGears 2.2, standing on the shoulders of giants, since 2007</title>
</head>

<body>
 <div class="row">
 <div class="span8 hidden-phone hidden-tablet">
 <div class="hero-unit">
 <h1>Welcome to TurboGears 2.2</h1>
 <p>If you see this page it means your installation was successful!</p>
 <p>TurboGears 2 is rapid web application development toolkit designed to make your life easier.</p>
 <p>

 ${h.icon('book', True)} Learn more

 </p>
 </div>
 </div>
 </div>

 [...]

</body>
</html>

Let’s pay attention to a couple of important lines:

<xi:include href="master.html" />

the xi:include statement pulls in master.html, and includes it in this template’s namespace.
This makes possible to have a template where the global layout and look of the site is defined
while the other templates can just implement the different content
allowing you to break your template files into reusable components.

 ${h.icon('book', True)} Learn more

Perhaps the most used feature of genshi is the ${} syntax,
which means that genshi should insert the value of the python expression inside into the template
at that point in the page.
In this case it renders the icon of a book using the icon helper.

Genshi also provides a number of special processing attributes that allow you to
conditionally display something the most standard of which is py:if that
just displays the tag if the result is true.

You can find a full list and explanation of the genshi tags here:

http://genshi.edgewall.org/wiki/Documentation/xml-templates.html

Public (Static Files)

The public folder just contains simple files that will be served up by tg2
as part of your app. These aren’t stored in a /public url, but are just
served up by your app if they exist at the url requested.

So an index.html file in the root of public would respond to index requests
BEFORE they get to your app. So, be careful what you put in here ;)

The up side of this is that favicon.ico and and other static files can
easily be placed anywhere in your url hierarchy that you want.

Warning

Before you go too crazy with this if you’ need to maximize the
requests your app can serve on some hardware, you will want to setup
apache, iis, or even something as high performance as nginx to serve these
files up for you.

If your static files are spread out too much, configuring this will be
more work than you want.

Models

The whole point of a TG2 is to make dynamic applications possible, not
to serve up static sites, so the models sit at the heart of your app, and
everything flows out from there.

SQLAlchemy in quickstart

model/__init__.py

Without the comments, here’s the package initialization for the models:

-*- coding: utf-8 -*-
"""The application's model objects"""

from zope.sqlalchemy import ZopeTransactionExtension
from sqlalchemy.orm import scoped_session, sessionmaker
from sqlalchemy.ext.declarative import declarative_base

maker = sessionmaker(autoflush=True, autocommit=False,
 extension=ZopeTransactionExtension())
DBSession = scoped_session(maker)

DeclarativeBase = declarative_base()

metadata = DeclarativeBase.metadata

def init_model(engine):
 """Must be called before using any model tables or classes."""

 DBSession.configure(bind=engine)
 # t_reflected = Table("Reflected", metadata,
 # autoload=True, autoload_with=engine)

 # mapper(Reflected, t_reflected)

from my_intranet.model.objects import User, Group, Permission

User, Group, and Permissions Models

This is by far the most complex piece of code in the quickstart template.
It defines several SQLAlchemy tables, and associated model object with all
the methods and functions you might need.

The reason this is in quickstart is that it is very common to need to add
fields to the user table, or otherwise customize it a bit. Let’s walk
quickly through it at this point, knowing that we’ll have to come back to
some of these things as we have more SQLAlchemy background.

-*- coding: utf-8 -*-
"""
Auth* related model.

This is where the models used by :mod:`repoze.who` and :mod:`repoze.what` are
defined.

It's perfectly fine to re-use this definition in the my-intranet application,
though.

"""
import os
from datetime import datetime
import sys
from hashlib import sha1
from sqlalchemy import Table, ForeignKey, Column
from sqlalchemy.types import Date, DateTime, Integer, Unicode
from sqlalchemy.orm import relation, synonym, backref

from my_intranet.model import DeclarativeBase, metadata, DBSession

__all__ = ['User', 'Group', 'Permission']

Lots of imports, but the __all__ assures objects.py file only exports the
final mapped SQLAlchemy User, Group, and Permission objects.

Here are the explicit table definitions for the asssociation tables:

group_permission_table = Table('tg_group_permission', metadata,
 Column('group_id', Integer, ForeignKey('tg_group.group_id',
 onupdate="CASCADE", ondelete="CASCADE")),
 Column('permission_id', Integer, ForeignKey('tg_permission.permission_id',
 onupdate="CASCADE", ondelete="CASCADE"))
)

user_group_table = Table('tg_user_group', metadata,
 Column('user_id', Integer, ForeignKey('tg_user.user_id',
 onupdate="CASCADE", ondelete="CASCADE")),
 Column('group_id', Integer, ForeignKey('tg_group.group_id',
 onupdate="CASCADE", ondelete="CASCADE"))
)

These are not exported, but are used by the mapped Group, User and Permission objects.

And then the Group definition:

class Group(DeclarativeBase):
 """
 Group definition for :mod:`repoze.what`.
 Only the ``group_name`` column is required by :mod:`repoze.what`.
 """
 __tablename__ = 'tg_group'

 group_id = Column(Integer, autoincrement=True, primary_key=True)
 group_name = Column(Unicode(16), unique=True, nullable=False)
 display_name = Column(Unicode(255))
 created = Column(DateTime, default=datetime.now)
 users = relation('User', secondary=user_group_table, backref='groups')

 def __repr__(self):
 return (u'<Group: name=%s>' % self.group_name).encode('utf-8')

 def __unicode__(self):
 return self.group_name

There is a relation, which is new to us at this point, and we’ll skip the
details for now, except to say that it creates a users attribute on every
Group object that’s is a list of Users in that group. The
backref parameter says to put a matching groups attribute on every
User instance.

Next, let’s take a look at the user object definition, but we’ll split this
one into a couple of pieces.

class User(DeclarativeBase):
 """User definition.
 This is the user definition used by :mod:`repoze.who`, which requires at
 least the ``user_name`` column."""

 __tablename__ = 'tg_user'

 user_id = Column(Integer, autoincrement=True, primary_key=True)
 user_name = Column(Unicode(16), unique=True, nullable=False)
 email_address = Column(Unicode(255), unique=True, nullable=False)
 display_name = Column(Unicode(255))
 _password = Column('password', Unicode(80))
 created = Column(DateTime, default=datetime.now)

The _password column is used to store the password, but it’s going to
be encrypted, so in a second we’ll make a property for password so that
it can be set with encryption, and checked against the encrypted version
more easily.

def __repr__(self):
 return (u'<User: email="%s", display name="%s">' % (
 self.email_address, self.display_name)).encode('utf-8')

def __unicode__(self):
 return self.display_name or self.user_name

Just some standard python stuff to make working with the object easier.

@property
def permissions(self):
 """Return a set of strings for the permissions granted."""
 perms = set()
 for g in self.groups:
 perms = perms | set(g.permissions)
 return perms

@classmethod
def by_email_address(cls, email):
 """Return the user object whose email address is ``email``."""
 return DBSession.query(cls).filter(cls.email_address==email).first()

Here’s a couple of helper methods. Notice this line:

DBSession.query(cls).filter(cls.email_address==email).first()

It is inside a class method, where the class is cls, and it’s the
first SQLAlchemy query we’ve seen. Let’s deconstruct if for a second.

		
		DBSession is both a store for in memory database objects, and a

		connection to the database.

		The query method is being called with a User class (letting
SA know we want a User object back) and it’s being further refined with a
filter that returns only those User objects with
cls.email_address==email.

		The filter call returns a new query, which is then further refined
by a call to first() which limits the results to just the first user
object retrieved.

Note

Extra credit for whoever can tell me why it’s not a problem that we’re not sorting, or otherwise assuring that we always get the same User object back for an e-mail address.

Extra, extra credit for whoever can guess why the .first() call is used.

Extra, extra, extra credit for knowing what might be a better query filtering method to use in this case.

		
		This class method means you can can do

		User.by_email_address(“foo@foogoo.com”) and get a nice result.

Next we have another simple class method:

@classmethod
def by_user_name(cls, username):
 """Return the user object whose user name is ``username``."""
 return DBSession.query(cls).filter(cls.user_name==username).first()

And then we have the setter and getter for password methods that do the encryption.

def _set_password(self, password):
 """Hash ``password`` on the fly and store its hashed version."""
 hashed_password = password

 if isinstance(password, unicode):
 password_8bit = password.encode('UTF-8')
 else:
 password_8bit = password

 salt = sha1()
 salt.update(os.urandom(60))
 hash = sha1()
 hash.update(password_8bit + salt.hexdigest())
 hashed_password = salt.hexdigest() + hash.hexdigest()

 if not isinstance(hashed_password, unicode):
 hashed_password = hashed_password.decode('UTF-8')

 self._password = hashed_password

def _get_password(self):
 """Return the hashed version of the password."""
 return self._password

password = synonym('_password', descriptor=property(_get_password,
 _set_password))

These are standard python methodsm, except for the call to
SQLAlchemy’s synonym function. We’re probably getting ahead of
ourselves, with explaining synonym at this point, but you can guess what
it does from this. It sets up _password as a property with getters
and setters, backed by the password column in the database, and
using the _get_password and _set_password methods as getters and
setters.

This kind of trickery is only needed when you don’t want to store the
user-visible values in the database or otherwise need some python
indirection in the middle. Some ORM’s make this harder than it needs to be,
but SQLAlchemy is designed to make easy things easy, and hard things not
just possible, but also easier.

def validate_password(self, password):
 hashed_pass = sha1()
 hashed_pass.update(password + self.password[:40])
 return self.password[40:] == hashed_pass.hexdigest()

Validate password pretty much rounds out the User object, and is pretty
simple to understand. And that brings us to the end of our file:

class Permission(DeclarativeBase):
 __tablename__ = 'tg_permission'

 permission_id = Column(Integer, autoincrement=True, primary_key=True)
 permission_name = Column(Unicode(16), unique=True, nullable=False)
 description = Column(Unicode(255))

 groups = relation(Group, secondary=group_permission_table,
 backref='permissions')

 def __repr__(self):
 return (u'<Permission: name=%s>' % self.permission_name).encode('utf-8')
 def __unicode__(self):
 return self.permission_name

All of this should be pretty standard stuff at this point. One thing to
note is the relation function, and the reaperance of backref which sets
up a relationship between Permissions and Groups.

Lib

TG2 provides a lib module for you to use to store the various libraries
that you might need in your application. And we pre-populate it with a
couple of very useful hooks and helpers.

base.py

base.py exists to setup a BaseController for your app, but allows for
you to create multiple BaseControllers, or to create custom subcontrollers
that you re-use throughout your app.

from tg import TGController, tmpl_context
from tg.render import render
from tg import request
import my_intranet.model as model

__all__ = ['BaseController']

class BaseController(TGController):

 def __call__(self, environ, start_response):
 """Invoke the Controller"""

 request.identity = request.environ.get('repoze.who.identity')
 tmpl_context.identity = request.identity
 return TGController.__call__(self, environ, start_response)

The key thing to know is that the __call__ method should be called on
every single request that reaches your app. So you can easily use it to
do app wide things (it arleady sets up the identity attribute on the
request with information about the user pulled from the WSGI environ.)

This provides also a valid example of the tmpl_context object which
can be used to keep around variables that need to be passed to the view
from somewhere that doesn’t have direct access to the view itself.

The tmpl_context object is always available inside the view itself
with the same name.

helpers.py

The helpers.py file has a slightly different purpose than base.py
in that it is the location from which you should import html and other
helpers. TG does you a favor and makes everything in this module
automatically available in your genshi templates under the name helpers.

And we pre-populate helpers with just a few of the useful helpers in the
webhelpers package:

-*- coding: utf-8 -*-

"""WebHelpers used in my-intranet."""

from webhelpers import date, feedgenerator, html, number, misc, text

But you should feel free to create some of your own application specific
template helpers and stick them here.

globals.py

Every app may have some global settings or information that’s shared across all requests, but it’s very possible that you may want to run two TG2 apps in the same process, or even two instances of the same app in a single process.
If so, app_globals.py provides a simple mechanism for storing application specific globals which don’t clober on other instances of the same app.

class Globals(object):
 """Container for objects available throughout the life of the application.

 One instance of Globals is created during application initialization and
 is available during requests via the 'app_globals' variable.

 """

 def __init__(self):
 """Do nothing, by default."""
 pass

The app_globals and helpers stuff is pre-loaded up into the tg
environment for you by the config system. Which is what we will
look into next.

The globals will then by available using tg.app_globals anywhere inside
your application:

from tg import app_globals

class RootController(BaseController):
 @expose()
 def somewhere(self):
 return str(app_globals.somevalue)

Config

TG2 inverts your normal relationship with a web framework.
Normal web frameworks tell you where to put your code and how the
framework will set up the context in which that code is called by the
framework. TG2 does it the other way round, where the web framework
is setup and configured by your application in conjunction with paste deploy.

Paste deploy is what gets called to interperet the paster serve
development.ini command

development.ini

The development.ini file is a simple ini file that is used by paste deploy to
load up a wsgi app. There’s nothing that’s TG specific about it, except
that tg2 expects a few values to be there by default.

A TurboGears quickstarted project will contain a couple of .ini files which
are used to define what WSGI app ought to be run, and to store end-user
created configuration values, which is just another way of saying that the
.ini files should contain deployment specific options.

By default TurboGears provides a development.ini, test.ini, files.
These are standard ini file formats. There’s aslo a paster command to create
a production ini file when you need. it.

These files are standard INI files, as used by PasteDeploy. The individual
sections are marked off with []‘s.

See also

Configuration file format and options are described in great
detail in the Paste Deploy documentation [http://pythonpaste.org/deploy/].

Here’s a copy of the standard development.ini file with all the
comments removed:

[DEFAULT]
debug = true
Uncomment and replace with the address which should receive any error reports
#email_to = you@yourdomain.com
smtp_server = localhost
error_email_from = paste@localhost

The default section sets a couple important things. debug = true is critical
to turn off in production since it allows the interactive debugger. Don’t
worry though, if you setup the smtp_server and error e-mail stuff you’ll get
tracebacks mailed to you whenever they happen on your production server.

Information about the server and what IP address and port to use. Any
paste deploy enabled server will work here. The default is the
paste.httpserver which is very solid, but perhaps not as high-performance
as some o of the alternatives.

[server:main]
use = egg:Paste#http
host = 127.0.0.1
port = 8080

Information about this particular app and app specific settings:

[app:main]
use = egg:my-intranet
full_stack = true
#lang = ru
cache_dir = %(here)s/data
beaker.session.key = my_intranet
beaker.session.secret = somesecret

sqlalchemy.url = sqlite:///%(here)s/devdata.db
sqlalchemy.echo = false
sqlalchemy.echo_pool = false
sqlalchemy.pool_recycle = 3600

templating.mako.reloadfromdisk = true

WARNING: *THE LINE BELOW MUST BE UNCOMMENTED ON A PRODUCTION ENVIRONMENT*
Debug mode will enable the interactive debugging tool, allowing ANYONE to
execute malicious code after an exception is raised.
#set debug = false

Setup the loggers:

[loggers]
keys = root, my_intranet, sqlalchemy, auth

[handlers]
keys = console

[formatters]
keys = generic

If you create additional loggers, add them as a key to [loggers]
[logger_root]
level = INFO
handlers = console

[logger_my_intranet]
level = DEBUG
handlers =
qualname = my_intranet

[logger_sqlalchemy]
level = INFO
handlers =
qualname = sqlalchemy.engine
"level = INFO" logs SQL queries.
"level = DEBUG" logs SQL queries and results.
"level = WARN" logs neither. (Recommended for production systems.)

A logger for authentication, identification and authorization -- this is
repoze.who and repoze.what:
[logger_auth]
level = WARN
handlers =
qualname = auth

If you create additional handlers, add them as a key to [handlers]
[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

If you create additional formatters, add them as a key to [formatters]
[formatter_generic]
format = %(asctime)s,%(msecs)03d %(levelname)-5.5s [%(name)s] %(message)s
datefmt = %H:%M:%S

test.ini

The test.ini file is used to overide whatever settings need to be overridden
in your tests. Out of the box the text.ini file looks like this:

[DEFAULT]
debug = true
email_to = you@yourdomain.com
smtp_server = localhost
error_email_from = paste@localhost

[server:main]
use = egg:Paste#http
host = 0.0.0.0
port = 5000

[app:main]
sqlalchemy.url = sqlite:///:memory:
use = config:development.ini

[app:main_without_authn]
use = main
skip_authentication = True

Add additional test specific configuration options as necessary.

There are a couple important changes, no real server is started up and all
the tests that talk to your app do so in-process. And by default an
sqlite in memory database is used to back your tests.

Also by default websetup.py’s bootstrap data is pre-loaded for tests, so you
can easily get a base of data from which to run both development instances
and tests by adding it to websetup.py.

config module

In addition to the config files, there’s a config module inside my_intranet
which is designed to configure and run the tg framework. This puts
application developers in the drivers seat, and the framework firmly
in it’s place as something that’s there to help you when you need it
and get out of your way when you don’t.

Our hope is that 90% of applications don’t need to edit any of the config module
files, but for those who do, the most common file to change is
app_config.py

-*- coding: utf-8 -*-
"""
Global configuration file for TG2-specific settings in my-intranet.

This file complements development/deployment.ini.

Please note that **all the argument values are strings**. If you want to
convert them into boolean, for example, you should use the
:func:`paste.deploy.converters.asbool` function, as in::

 from paste.deploy.converters import asbool
 setting = asbool(global_conf.get('the_setting'))

"""

from tg.configuration import AppConfig

import my_intranet
from my_intranet import model
from my_intranet.lib import app_globals, helpers

base_config = AppConfig()
base_config.renderers = []

base_config.package = my_intranet

#Set the default renderer
base_config.default_renderer = 'genshi'
base_config.renderers.append('genshi')
if you want raw speed and have installed chameleon.genshi
you should try to use this renderer instead.
warning: for the moment chameleon does not handle i18n translations
#base_config.renderers.append('chameleon_genshi')

#Configure the base SQLALchemy Setup
base_config.use_sqlalchemy = True
base_config.model = my_intranet.model
base_config.DBSession = my_intranet.model.DBSession

Configure the authentication backend
base_config.auth_backend = 'sqlalchemy'
base_config.sa_auth.dbsession = model.DBSession
what is the class you want to use to search for users in the database
base_config.sa_auth.user_class = model.User
what is the class you want to use to search for groups in the database
base_config.sa_auth.group_class = model.Group
what is the class you want to use to search for permissions in the database
base_config.sa_auth.permission_class = model.Permission

override this if you would like to provide a different who plugin for
managing login and logout of your application
base_config.sa_auth.form_plugin = None

You may optionally define a page where you want users to be redirected to
on login:
base_config.sa_auth.post_login_url = '/post_login'

You may optionally define a page where you want users to be redirected to
on logout:
base_config.sa_auth.post_logout_url = '/post_logout'

app_cfg.py exists primarily so that middleware.py and environment.py
can import and use the base_config object.

The base_config object is an AppConfig() instance which allows you to
access its attributes like a normal object, or like a standard python
dictionary.

One of the reasons for this is that AppConfig() provides some defaults
in its __init__. But equally important it provides us with several methods
that work on the config values to produce the two functions that set up
your TurboGears app.

If the standard config options we provide don’t
do what you need, you can subclass and overide specific methods on
AppConfig to get exactly the configuration you want.

The base_config object that is created in app_cfg.py should be used
to set whatever configuration values that belong to the application itself
and are required for all instances of this app, as distinct from the
configuration values that you set in the development.ini or
deployment.ini files that are intended to be editable by those who
deploy the app.

As part of the app loading process the base_config object will
be merged in with the config values from the .ini file you’re using
to launch your app, and placed in tg.config.

Tests

The next section for us to look through is the tests. TG2 quickstarts your
app with two different kind of tests. And all the setup for the tests:

		Functional tests

		Model Unit tests

Functional tests

Let’s dive right in and look at the functional tests:

-*- coding: utf-8 -*-
"""
Functional test suite for the root controller.

This is an example of how functional tests can be written for controllers.

As opposed to a unit-test, which test a small unit of functionality,
functional tests exercise the whole application and its WSGI stack.

Please read http://pythonpaste.org/webtest/ for more information.

"""
from nose.tools import assert_true

from my_intranet.tests import TestController

class TestRootController(TestController):
 def test_index(self):
 response = self.app.get('/')
 msg = 'TurboGears 2 is rapid web application development toolkit '\
 'designed to make your life easier.'
 # You can look for specific strings:
 assert_true(msg in response)

 #if you install it you can also use BeautifulSoup HTML lookups
 #links = response.html.findAll('a')
 #assert_true(links, "Mummy, there are no links here!")

WebTest provides a simple to use way to grab the response from calling a
wsgi app with a specific url. You can then test that specific strings
are in the response. Or you can install beautiful soup, parse the response
and make more specific assertions (like the above which assterts that there
will be links on the front page.)

def test_secc_with_manager(self):
 """Only the manager can access the secure controller"""
 # Note how authentication is forged:
 environ = {'REMOTE_USER': 'manager'}
 resp = self.app.get('/secc', extra_environ=environ, status=200)
 assert 'Secure Controller here' in resp.body, resp.body

You can also tell WebTest what kind of response you expect (status=200)
and you can pass extra information into the controller through the
extra_environ param. This is most useful for setting up a user
in REMOTE_USER so that you can test access to parts of your app that
require login.

def test_secc_with_editor(self):
 """The editor shouldn't access the secure controller"""
 environ = {'REMOTE_USER': 'editor'}
 self.app.get('/secc', extra_environ=environ, status=403)
 # It's enough to know that authorization was denied with a 403 status

Here we check to make sure that we got a 403 http status code (which indicates
that access was denied to an authenticated user.) We could also check the response body to make sure
that it’s what we expect.

def test_secc_with_anonymous(self):
 """Anonymous users must not access the secure controller"""
 self.app.get('/secc', status=401)
 # It's enough to know that authorization was denied with a 401 status

401 indicates access denied because the user is not yet logged in.

Websetup

This folder contains all of the code you will need to get
your application running from a startup data standpoint.

schema.py

This file demonstrates how to create all of code
needed to generate your tables. This would be a good
place to modify the code if you needed to add some
unusual database setup commands.

bootstrap.py

This is where the default data is defined and loaded
into your application’s database. Also, this data is
used when setting up your database for testing. Here is
an excerpt from that file:

u = model.User()
u.user_name = u'manager'
u.display_name = u'Example manager'
u.email_address = u'manager@somedomain.com'
u.password = u'managepass'

model.DBSession.add(u)

g = model.Group()
g.group_name = u'managers'
g.display_name = u'Managers Group'

g.users.append(u)

model.DBSession.add(g)

Here, a default manager user is being added to the system,
along with a manager group. The user is then assigned to
the manager group, and the group is added to the session.

At the bottom of the file, the entire session is committed
to the database.:

 transaction.commit()
except IntegrityError:
 print 'Warning, there was a problem adding your auth data, it may have already been added:'
 import traceback
 print traceback.format_exc()
 transaction.abort()
 print 'Continuing with bootstrapping...'

You may have noticed that the entire data entry portion
is wrapped within a try-except block. This is done this
way so that we can provide a transactional commit to the
database, and also to allow you to re-do the schema of a
database without re-loading the data. If the data is already
there, nothing will be added to the database.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/jsunit2.png
http// localhost:8080/itemselectortest Run

Trace level no tracing ~| [Close old trace window on new run

Status: Done (7.793 seconds)
Progress: [

Runs: 13 Errors: 0 Failures: 0

Errors and failures:

Show selected Show all

_static/navigation.png

main/AltInstall.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Alternate Installation Process

This document provides instructions on how to install TurboGears in
ways which are not necessarily recommended for the new developer.
TurboGears 2.2.2 Standard Installation describes the recommended new-developer
installation environment. This document also includes commonly
necessary tasks such as installing database drivers and upgrading
an existing TurboGears install.

This includes the following non-standard environments:

		32-bit Windows

		Mac OSX Install

		Linux Root Install

		Python 2.4 Installation

		Install Via PIP

		Source Install (Development Version)

32-bit Windows

Note

While Windows is a supported platform for TurboGears, it is not commonly
used for deployments. You may wish to consider setting up a virtual
machine with a Debian or RPM-based Linux distribution so that your development
environment is closer to your deployment environment.

Install Python (download and run an executable or MSI installer):

		Python [http://www.python.org/download/releases/] – choose version 2.6 or 2.5 for best results

Download http://peak.telecommunity.com/dist/ez_setup.py and then run it from the
command line with Python. Note that you must install a specific version
of SetupTools.

c:\working>c:\Python26\python.exe ez_setup.py "setuptools==0.6c9"

Once you have run the SetupTools installer, you can add the
c:\Python26 and c:\Python26\Scripts
directories to your system path (in Control Panel/System/Advanced)
so that you can run Python and easy_install from the command line.

c:\working>c:\Python26\Scripts\easy_install.exe virtualenv
c:\working>c:\Python26\Scripts\virtualenv.exe example
c:\working>cd example
c:\working\example>Scripts\activate.bat
(example) C:\working\example>easy_install.exe -i http://tg.gy/current tg.devtools
(example) C:\working\example>paster quickstart example
(example) C:\working\example>cd example
(example) C:\working\example\example>python setup.py develop
(example) C:\working\example\example>paster setup-app development.ini
(example) C:\working\example\example>paster serve development.ini

You should now be able to view http://localhost:8080 in a web browser. You
can hit CTRL-C on the command-line to stop the server.

Mac OSX Install

OS-X development is normally done with “stock” Python installed via the
python.org “one-button installer” (a .dmg file). It is not normally
recommended that you use the “system” Python for TurboGears development.

http://python.org/download/

Once Python is installed, you need to install the SetupTools and VirtualEnv
packages into the new Python installation. To do so:

$ curl -O http://peak.telecommunity.com/dist/ez_setup.py
$ sudo python ez_setup.py "setuptools==0.6c9"
$ sudo easy_install virtualenv

At this point, you can continue with the TurboGears 2.2.2 Standard Installation as if you
were using a Linux machine.

Linux Root Install

Note

You are strongly encouraged to use a virtualenv-based environment for
TurboGears, as this allows you to easily manage your TurboGears installation
independent of your platform’s release schedule. Most Linux distributions
package only extremely old versions of TurboGears.

On RedHat Enterprise Linux (RHEL) 5, you can install TurboGears from official
RPM packages via:

$ yum install TurboGears2 python-tg-devtools

Python 2.4 Installation

Python 2.4 is missing a number of packages that TurboGears requires. To
install these packages, you can use easy_install in your virtualenv. While
Python 2.5 or 2.6 is recommended, some distributions, such as RHEL 5, use
Python 2.4 by default. These instructions describe how to install TurboGears
as a non-root virtualenv, if you are using RHEL 5 and wish to install from
RPM see Linux Root Install above:

$ virtualenv --no-site-packages tg2env
$ cd tg2env/
$ source bin/activate
(tg2env)$ easy_install hashlib pysqlite uuid functools

Warning

For Python 2.4, you must make sure to install Beaker 1.4 or higher.
Though it should be automatic, you may need to run this command to get it:

(tg2env)$ easy_install -U beaker

You can continue to follow TurboGears 2.2.2 Standard Installation from this point forward.

Install Via PIP

pip [http://pypi.python.org/pypi/pip] (or pip installs packages) is an experimental easy_install
replacement. It provides many improvements over it’s predecessor and
aims to be a full replacement.

Warning

pip is not supported under windows!

To install, use pip with the same index URL (the “-i” argument) as
for a standard installation via setuptools/easy_install and specify
the “-E” argument to provide the name of the VirtualEnv to create.

$ pip install -E tg2env -i http://www.turbogears.org/2.1/downloads/current/index tg.devtools

Which will create a tg2env VirtualEnv and install TurboGears into it.
From this point, switch to the VirtualEnv, activate it and continue
with the TurboGears 2.2.2 Standard Installation. PIP can also be used to perform
a source install using Mercurial, see Source Install (Development Version) for details.

Source Install (Development Version)

Generally you should not need to install a development version of TurboGears
unless you wish to contribute to the project (which is strongly encouraged).
TurboGears uses the Mercurial Distributed Version Control system hosted on
the BitBucket site. For a detailed discussion of how to use Mercurial and
BitBucket see Using BitBucket’s Mercurial Service with TurboGears.

Getting Mercurial

		All major Linux distributions have this software packaged. The package
is normally named mercurial

		On windows you can download the TortoiseHG installer [http://mercurial.selenic.com/wiki/TortoiseHg]

		On other platforms you may install the HG command line utility with an easy_install command:

(tg2dev)$ easy_install mercurial

Getting The Source

Check out the latest code from the subversion repositories:

(tg2dev)$ hg clone http://hg.turbogears.org/tgdevtools-dev/ tgdevtools
(tg2dev)$ hg clone http://hg.turbogears.org/tg-dev/ tg

For hacking on the Administrative UI and the CRUD controller:

(tg2dev)$ hg clone https://tgext-crud.tgtools.googlecode.com/hg/ tgtools-tgext-crud
(tg2dev)$ hg clone https://tgext-admin.tgtools.googlecode.com/hg/ tgtools-tgext-admin

Installing The Sources

Tell setuptools to use these versions that you have just checked out
via Mercurial:

		TurboGears 2 :

(tg2dev)$ cd tg
(tg2dev)$ python setup.py develop -i http://www.turbogears.org/2.1/downloads/current/index

		TurboGears 2 developer tools:

(tg2dev)$ cd ../tgdevtools
(tg2dev)$ python setup.py develop -i http://www.turbogears.org/2.1/downloads/current/index

Source Install Via Pip

This command tells PIP to install the two “trunk” distributions for the TurboGears
project as “editable” versions using the Mercurial URLs provided.

$ easy_install pip sqlalchemy
$ pip install -i http://www.turbogears.org/2.1/downloads/current/index -E tg2env \
 -e 'hg+http://bitbucket.org/turbogears/tg-dev/#egg=TurboGears2' \
 -e 'hg+http://bitbucket.org/turbogears/tgdevtools-dev/#egg=tg.devtools'

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_static/tg2_files.jpg
The default paste ini

used for starting up

your TurboGears 2
Server.

Static files used in
your site go here.

be found in thi
folder.

Tests and
Configuration

[development.ini
(0 ez_sewp
(& helloworld
_init_py
(& config
init.py
app_cfg.py
[) deployment.ini
environment.py
middleware.py
(& controllers
init.py
13 controller.template
error.py
root.py
secure.py
template.py
@ i18n
& 1ib
_init_py
app_globals.py
base.py
helpers.py
(&3 model
(3 public
(3 templates
(0 tests
(33 websetup
_lnit__.py
bootstrap.py
schema.py
(& helloworld.egg-info
"] MANIFEST.in
README.txt
setup.cfg

ase initializat
data creation code.

you want you
schema to be.
created.

eyl setup.py and
@ setup.pyc setup.clg define how
[} testini to install your
package

_images/require.png
D (@ 03 v caost0801moves T Giloors Q) @0

Welcome to TurboGears 2

The Python web metaframework

Create New Movie

st T

_images/basicmoves_flash.png
7 Hello World

deprecated/Wiki20/wiki20.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Getting Started »

The TurboGears 2 Wiki Tutorial

Welcome! This tutorial will show you how to create a simple wiki with
TurboGears 2. It is designed to be your first experience with
TurboGears 2.

If you’re not familiar with the concept of a wiki you might want to
check out the Wikipedia entry [http://en.wikipedia.org/wiki/Wiki].
Basically, a wiki is an easily-editable collaborative web content
system that makes it trivial to link to pages and create new pages.
Like other wiki systems, we are going to use CamelCase words to
designate links to pages.

If you have trouble with this tutorial ask for help on the TurboGears
discussion list [http://groups.google.com/group/turbogears], or on the IRC channel #turbogears. We’re a
friendly bunch and, depending what time of day you post, you’ll get
your answer in a few minutes to a few hours. If you search the mailing
list or the web in general you’ll probably get your answer even
faster. Please don’t post your problem reports as comments on this
or any of the following pages of the tutorial. Comments are for
suggestions for improvement of the docs, not for seeking support.

If you want to see the final version you can download a copy of the
wiki code.

Setup

To go through this tutorial, you’ll need:

		Python [http://www.python.org/download/] 2.4, 2.5 or 2.6. Note that Mac OSX 10.5 (Leopard)
comes with Python 2.5 pre-installed; for 10.4 and
before, follow Macintosh in the above link.

		TurboGears 2.2.2 Standard Installation

		docutils [http://cheeseshop.python.org/pypi/docutils] 0.4 or later,
which is used for the wiki’s formatting. docutils is not a required
part of TurboGears, but is needed for this tutorial. Install it with:

$ easy_install docutils

When using easy_install it doesn’t matter what directory you’re in.
If you don’t have easy_install you only need to run
http://peak.telecommunity.com/dist/ez_setup.py from any directory.

		A web browser.

		Your favorite editor.

		Two command line windows
(you only need one, but two is nicer).

		A database. Python 2.5 comes with sqlite, so if you have
Python 2.5, don’t do anything (though you will need sqlite3.0+ if
you want to browse the database from the command line). If you’re
running Python 2.4, your best bet is sqlite 3.2+ with pysqlite [http://cheeseshop.python.org/pypi/pysqlite] 2.0+. Install it
with:

$ easy_install pysqlite

		Optional: If you’re not aware of it, you may also find the
ipython shell [http://ipython.scipy.org/] to be helpful. It supports attribute tab completion for
many objects (which can help you find the method you’re searching for)
and can display contextual help if you append a question mark onto the
end of an object or method. You can do the same in the standard shell
with the dir() and help() functions, but ipython is more
convenient. ipython has a number of other convenient features, like
dropping into the debugger on an error; take a look at the ipython docs [http://ipython.scipy.org/moin/Documentation]
for more information. You can install it with:

$ easy_install ipython

This tutorial doesn’t cover Python at all. Check the Python
Documentation [http://www.python.org/doc] page for more coverage of Python.

Quickstart

TurboGears provides a suite of tools for working with projects by
adding several commands to the Python command line tool paster. A
few will be touched upon in this tutorial. (Check the Command
Line Reference for a full listing.) The first
tool you’ll need is quickstart, which initializes a TurboGears
project. Go to a command line window and run the following command:

$ paster quickstart

You’ll be prompted for the name of the project (this is the pretty
name that human beings would appreciate), and the name of the package
(this is the less-pretty name that Python will like). Here’s what our
choices for this tutorial look like:

$ paster quickstart
Enter project name: Wiki 20
Enter package name [wiki20]: wiki20
Do you need authentication and authorization in this project? [yes] no

We recommend you use the names given here: this documentation looks
for files in directories based on these names.

Now paster will spit out a bunch of stuff:

Selected and implied templates:
 tg.devtools#turbogears2 TurboGears 2.1 Standard Quickstart Template

...etc...

reading manifest file 'Wiki_20.egg-info/SOURCES.txt'
reading manifest template 'MANIFEST.in'
writing manifest file 'Wiki_20.egg-info/SOURCES.txt'

This creates a few files in a directory tree just below your current
directory. You will notice that the quickstart created a directory
without spaces for convenience: project name “Wiki 20” resulted in the
directory name “Wiki-20”. Go in there and take a look around:

$ cd Wiki-20

Now to be able to run the project you will need to install it and
its dependencies. This can be quickly achieved by running from
inside the Wiki-20 directory:

$ python setup.py develop

Then paster provides a simple mechanism for running a TurboGears
project. Again from the Wiki-20 directory, run this command:

$ paster serve --reload development.ini

The --reload flag means that changes that you make in the project
will automatically cause the server to restart itself. This way you
immediately see the results.

Point your browser to http://localhost:8080, and you’ll see a nice
welcome page. You now have a working project! And you can access the
project from within the python/ipython shell by typing:

$ paster shell development.ini

If ipython is installed within your virtual environment, it will be the
default shell. Right now, we’re not going to do much with the shell, but
you may find other tutorials which use it to add data to the database.

Controller And View

If you take a look at the code that quickstart created, you’ll see
everything necessary to get up and running. Here, we’ll look at the
two files directly involved in displaying this welcome page.

TurboGears follows the Model-View-Controller paradigm [http://en.wikipedia.org/wiki/Model-view-controller]
(a.k.a. “MVC”), as do most modern web frameworks like Rails, Django,
Struts, etc.

		
		Model: For a web application, the “model” refers to the way the

		data is stored. In theory, any object can be your model. In
practice, since we’re in a database-driven world, your model will
be based on a relational database. By default TurboGears 2 uses
the powerful, flexible, and relatively easy-to-use SQLAlchemy
object relational mapper to build your model and to talk to your
database. We’ll look at this in a later section.

		
		View: To minimize duplication of effort web frameworks use

		templating engines which allow you to create “template”
files. These specify how a page will always look, with hooks
where the templating engine can substitute information provided
by your web application. TurboGears 2’s default templating
engine is Genshi [http://genshi.edgewall.org/wiki/Documentation/xml-templates.html], although several other engines are supported
out of the box and can be configured in your config/app_cfg.py
file (see Templating Options)

		
		Controller: The controller is the way that you tell your web

		application how to respond to events that arrive on the server. In
a web application, an “event” usually means “visiting a page” or
“pressing a submit button” and the response to an event usually
consists of executing some code and displaying a new page.

Controller Code

Wiki-20/wiki20/controllers/root.py is the code that causes the
welcome page to be produced. After the imports the first line of code
creates our main controller class by inheriting from TurboGears’
BaseController:

class RootController(BaseController):

The TurboGears 2 controller is a simple object publishing system; you
write controller methods and @expose() them to the web. In our
case, there’s a single controller method called index. As you
might guess, this name is not accidental; this becomes the default
page you’ll get if you go to this URL without specifying a particular
destination, just like you’ll end up at index.html on an ordinary
web server if you don’t give a specific file name. You’ll also go to
this page if you explicitly name it, with
http://localhost:8080/index. We’ll see other controller methods
later in the tutorial so this naming system will become clear.

The @expose() decorator tells TurboGears which template to use to
render the page. Our @expose() specifies:

@expose('wiki20.templates.index')

This gives TurboGears the template to use, including the path
information (the .html extension is implied). We’ll look at this
file shortly.

Each controller method returns a dictionary, as you can see at the end
of the index method. TG takes the key:value pairs in this
dictionary and turns them into local variables that can be used in the
template.

Displaying The Page

Wiki-20/wiki20/templates/index.html is the template specified by the
@expose() decorator, so it formats what you view on the welcome
screen. Look at the file; you’ll see that it’s standard XHTML with
some simple namespaced attributes. This makes it very
designer-friendly, and well-behaved design tools will respect all the
Genshi [http://genshi.edgewall.org/wiki/Documentation/xml-templates.html] attributes and tags. You can even open it directly in your
browser.

Genshi directives are elements and/or attributes in the template that
are usually prefixed with py:. They can affect how the template is
rendered in a number of ways: Genshi provides directives for
conditionals and looping, among others. We’ll see some simple Genshi
directives in the sections on Editing pages and
Adding views.

Next, we’ll set up our data model, and create a database.

Wiki Model and Database

quickstart produced a directory for our model in
Wiki-20/wiki20/model/. This directory contains an __init__.py
file, which makes that directory name into a python module (so you can
use import model).

Since a wiki is basically a linked collection of pages, we’ll define a
Page class as the name of our model. Create a new file called
page.py in the Wiki-20/wiki20/model/ directory:

from sqlalchemy import *
from sqlalchemy.orm import mapper
from wiki20.model import metadata

Database table definition
See: http://www.sqlalchemy.org/docs/04/sqlexpression.html

pages_table = Table("pages", metadata,
 Column("id", Integer, primary_key=True),
 Column("pagename", Text, unique=True),
 Column("data", Text)
)

Python class definition
class Page(object):
 def __init__(self, pagename, data):
 self.pagename = pagename
 self.data = data

Mapper
See: http://www.sqlalchemy.org/docs/04/mappers.html
page_mapper = mapper(Page, pages_table)

In order to easily use our model within the application, modify the
Wiki-20/wiki20/model/__init__.py file to add Page and
pages_table to the module. Add the following line at the end of
the file:.

from wiki20.model.page import Page, pages_table

Warning

It’s very important that this line is at the end because
pages_table requires the rest of the model to be initialized
before it can be imported:

Let’s investigate our model a little more. The MetaData object is
automatically created by the paste command inside the
__init__.py file. It’s a “single point of truth” that keeps all
the information necessary to connect to and use the database. It
includes the location of the database, connection information and the
tables that are in that database. When you pass the metadata object to
the various objects in your project they initialize themselves using
that metadata.

In this case, the metadata object configures itself using the
development.ini file, which we’ll look at in the next
section.

The SQLAlchemy Table object defines what a single table looks like
in the database, and adds any necessary constraints (so, for example,
even if your database doesn’t enforce uniqueness, SQLAlchemy will
attempt to do so). The first argument in the Table constructor is
the name of that table inside the database. Next is the aforementioned
metadata object followed by the definitions for each Column
object. As you can see, Column objects are defined in the same way that you
define them within a database: name, type, and constraints.

The Table object provides the representation of a database table,
but we want to just work with objects, so we create an extremely
simple class to represent our objects within TurboGears. The above
idiom is quite common: you create a very simple class like Page
with nothing in it, and add all the interesting stuff using
mapper(), which attaches the Table object to our class.

Note that it’s also possible to start with an existing database, but
that’s a more advanced topic that we won’t cover in this tutorial. If you
would like more information on how to do that, check out AutoGenerating Model Code with SQLAutocode.

Database Configuration

By default, projects created with quickstart are configured to use
a very simple SQLite database (however, TurboGears 2 supports most
popular databases). This configuration is controlled by the
development.ini file in the root directory (Wiki-20, for our
project).

Search down until you find the [app:main] section in
development.ini, and then look for sqlalchemy.url. You should
see this:

sqlalchemy.url = sqlite:///%(here)s/devdata.db

Turbogears will automatically replace the %(here)s variable with
the parent directory of this file, so for our example it will produce
sqlite:///Wiki-20/devdata.db. You won’t see the devdata.db file
now because we haven’t yet initialized the database.

Initializing The Tables

Before you can use your database, you need to initialize it and add
some data. There’s built in support for this in TurboGears using
paster setup-app. The quickstart template gives you a basic
template database setup inside the websetup/boostrap.py file
which by default creates two users, one manager group and one
manage permission:

We need to update the file to create our FrontPage data just before
the DBSession.flush() command by adding:

page = model.Page("FrontPage", "initial data")
model.DBSession.add(page)

The resulting boostrap file will look like:

-*- coding: utf-8 -*-
"""Setup the wiki20 application"""

import logging
from tg import config
from wiki20 import model

import transaction

def bootstrap(command, conf, vars):
 """Place any commands to setup wiki20 here"""

 # <websetup.bootstrap.before.auth
 from sqlalchemy.exc import IntegrityError
 try:
 u = model.User()
 u.user_name = u'manager'
 u.display_name = u'Example manager'
 u.email_address = u'manager@somedomain.com'
 u.password = u'managepass'

 model.DBSession.add(u)

 g = model.Group()
 g.group_name = u'managers'
 g.display_name = u'Managers Group'

 g.users.append(u)

 model.DBSession.add(g)

 p = model.Permission()
 p.permission_name = u'manage'
 p.description = u'This permission give an administrative right to the bearer'
 p.groups.append(g)

 model.DBSession.add(p)

 u1 = model.User()
 u1.user_name = u'editor'
 u1.display_name = u'Example editor'
 u1.email_address = u'editor@somedomain.com'
 u1.password = u'editpass'

 model.DBSession.add(u1)

 page = model.Page("FrontPage", "initial data")
 model.DBSession.add(page)

 model.DBSession.flush()
 transaction.commit()
 except IntegrityError:
 print 'Warning, there was a problem adding your auth data, it may have already been added:'
 import traceback
 print traceback.format_exc()
 transaction.abort()
 print 'Continuing with bootstrapping...'

 # <websetup.bootstrap.after.auth>

If you’re familiar with SQLAlchemy this should look pretty standard to
you. One thing to note is that we use:

transaction.commit()

Where you’re used to seeing DBSession.commit() we use
transaction.commit(). This calls the transaction manager which
helps us to support cross database transactions, as well as
transactions in non relational databases, but ultimately in the case
of SQLAlchemy it calls DBSession.commit() just like you might if
you were doing it directly.

Now run the paster setup-app command:

$ paster setup-app development.ini

You’ll see output, but you should not see error messages. At this
point your database is created and has some initial data in it, which
you can verify by looking at Wiki-20/devdata.db. The file should
exist and have a nonzero size.

That takes care of the “M” in MVC. Next is the “C”: controllers.

Adding Controllers

Controllers are the code that figures out which page to display, what
data to grab from the model, how to process it, and finally hands off
that processed data to a template.

quickstart has already created some basic controller code for us
at Wiki-20/wiki20/controllers/root.py. Here’s what it looks like
now:

-*- coding: utf-8 -*-
"""Main Controller"""

from tg import expose, flash, require, url, request, redirect
from tg.i18n import ugettext as _, lazy_ugettext as l_

from wiki20.lib.base import BaseController
from wiki20.model import DBSession, metadata
from wiki20.controllers.error import ErrorController
from wiki20.model import Page

__all__ = ['RootController']

class RootController(BaseController):
 """
 The root controller for the Wiki-20 application.

 All the other controllers and WSGI applications should be mounted on this
 controller. For example::

 panel = ControlPanelController()
 another_app = AnotherWSGIApplication()

 Keep in mind that WSGI applications shouldn't be mounted directly: They
 must be wrapped around with :class:`tg.controllers.WSGIAppController`.

 """

 error = ErrorController()

 @expose('wiki20.templates.index')
 def index(self):
 """Handle the front-page."""
 return dict(page='index')

 @expose('wiki20.templates.about')
 def about(self):
 """Handle the 'about' page."""
 return dict(page='about')

The first thing we need to do is uncomment the line that imports
DBSession.

Next we must import the Page class from our model. At the end of
the import block, add this line:

from wiki20.model.page import Page

Now we will change the template used to present the data, by changing
the @expose('wiki20.templates.index') line to:

@expose('wiki20.templates.page')

This requires us to create a new template named page.html in the
wiki20/templates directory; we’ll do this in the next section.

Now we must specify which page we want to see. To do this, add a
parameter to the index() method. Change the line after the
@expose decorator to:

def index(self, pagename="FrontPage"):

This tells the index() method to accept a parameter called
pagename, with a default value of "FrontPage".

Now let’s get that page from our data model. Put this line in the
body of index:

page = DBSession.query(Page).filter_by(pagename=pagename).one()

This line asks the SQLAlchemy database session object to run a query
for records with a pagename column equal to the value of the
pagename parameter passed to our controller method. The
.one() method assures that there is only one returned result;
normally a .query call returns a list of matching objects. We only
want one page, so we use .one().

Finally, we need to return a dictionary containing the page we
just looked up. When we say:

return dict(wikipage=page)

The returned dict will create a template variable called
wikipage that will evaluate to the page object that we looked
it up.

Here’s the whole file after incorporating the above modifications:

-*- coding: utf-8 -*-
"""Main Controller"""

from tg import expose, flash, require, url, request, redirect
from tg.i18n import ugettext as _, lazy_ugettext as l_

from wiki20.lib.base import BaseController
from wiki20.model import DBSession, metadata
from wiki20.controllers.error import ErrorController
from wiki20.model import Page

__all__ = ['RootController']

class RootController(BaseController):
 """
 The root controller for the Wiki-20 application.

 All the other controllers and WSGI applications should be mounted on this
 controller. For example::

 panel = ControlPanelController()
 another_app = AnotherWSGIApplication()

 Keep in mind that WSGI applications shouldn't be mounted directly: They
 must be wrapped around with :class:`tg.controllers.WSGIAppController`.

 """

 error = ErrorController()

 @expose('wiki20.templates.page')
 def index(self, pagename="FrontPage"):
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 return dict(wikipage=page)

 @expose('wiki20.templates.about')
 def about(self):
 """Handle the 'about' page."""
 return dict(page='about')

Now our index() method fetches a record from the database
(creating an instance of our mapped Page class along the way), and
returns it to the template within a dictionary.

Adding Views (Templates)

quickstart also created some templates for us in the
Wiki-20/wiki20/templates directory: master.html and index.html.
Back in our simple controller, we used @expose() to hand off a
dictionary of data to a template called 'wiki20.templates.index',
which corresponds to Wiki-20/wiki20/templates/index.html.

Take a look at the following line in index.html:

<xi:include href="master.html" />

This tells the index template to include the master
template. Using includes lets you easily maintain a cohesive look and
feel throughout your site by having each page include a common master
template.

Similarly the lines:

<xi:include href="header.html" />
<xi:include href="footer.html" />

Tell Genshi to pull in the headers and footers for the page.

Copy the contents of index.html into a new file called page.html.
Now modify it for our purposes:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:py="http://genshi.edgewall.org/"
 xmlns:xi="http://www.w3.org/2001/XInclude">

 <xi:include href="master.html" />

<head>
 <meta content="text/html; charset=UTF-8" http-equiv="content-type" py:replace="''"/>
 <title>${wikipage.pagename} - The TurboGears 2 Wiki</title>
</head>

<body>

<div class="main_content">
<div style="float:right; width: 10em;"> Viewing
<!-- ##{PageName} -->
Page Name Goes Here
<!-- ## -->

You can return to the FrontPage.
</div>
<!-- ##{PageContent} -->
<div py:replace="wikipage.data">Page text goes here.</div>
<!-- ## -->
Edit this page
</div>

</body>
</html>

This is a basic XHTML page with three substitutions:

		In the <title> tag, we substitute the name of the page, using
the pagename value of page. (Remember, wikipage is an
instance of our mapped Page class, which was passed in a
dictionary by our controller.)

		In the second <div> element, we substitute the page name again
with Genshi’s py:replace:

Page Name Goes Here

		In the third <div>, we put in the contents of our``wikipage``:

<div py:replace="wikipage.data">Page text goes here.</div>

When you refresh the output web page you should see “initial data”
displayed on the page.

Note

py.replace [http://genshi.edgewall.org/wiki/Documentation/xml-templates.html#id8] replaces the entire tag (including start and
end tags) with the value of the variable provided.

For the curious...

Do you wonder what those html comments like ##{PageContent} are?
They do not matter for this tutorial and are only to help the
documentation (you’re soaking in it!) isolate certain lines of code
to display, like above.

Editing pages

One of the fundamental features of a wiki is the ability to edit the
page just by clicking “Edit This Page,” so we’ll create a template for
editing. First, make a copy of page.html:

cd wiki20/templates
cp page.html edit.html

We need to replace the content with an editing form and ensure people
know this is an editing page. Here are the changes for edit.html.

		Change the title in the header to reflect that we are editing the
page:

<head>
 <meta content="text/html; charset=UTF-8" http-equiv="content-type" py:replace="''"/>
 <title>Editing: ${wikipage.pagename}</title>
</head>

		Change the div that displays the page:

<div py:replace="wikipage.data">Page text goes here.</div>

with a div that contains a standard HTML form:

<div>
 <form action="/save" method="post">
 <input type="hidden" name="pagename" value="${wikipage.pagename}"/>
 <textarea name="data" py:content="wikipage.data" rows="10" cols="60"/>
 <input type="submit" name="submit" value="Save"/>
 </form>
</div>
</div>

Now that we have our view, we need to update our controller in order
to display the form and handle the form submission. For displaying the
form, we’ll add an edit method to our controller in
Wiki-20/wiki20/controllers/root.py. The new root.py file looks
like this:

-*- coding: utf-8 -*-
"""Main Controller"""

from tg import expose, flash, require, url, request, redirect
from tg.i18n import ugettext as _, lazy_ugettext as l_

from wiki20.lib.base import BaseController
from wiki20.model import DBSession, metadata
from wiki20.controllers.error import ErrorController
from wiki20.model import Page

__all__ = ['RootController']

class RootController(BaseController):
 """
 The root controller for the Wiki-20 application.

 All the other controllers and WSGI applications should be mounted on this
 controller. For example::

 panel = ControlPanelController()
 another_app = AnotherWSGIApplication()

 Keep in mind that WSGI applications shouldn't be mounted directly: They
 must be wrapped around with :class:`tg.controllers.WSGIAppController`.

 """

 error = ErrorController()

 @expose('wiki20.templates.page')
 def index(self, pagename="FrontPage"):
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 return dict(wikipage=page)

 @expose(template="wiki20.templates.edit")
 def edit(self, pagename):
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 return dict(wikipage=page)

 @expose('wiki20.templates.about')
 def about(self):
 """Handle the 'about' page."""
 return dict(page='about')

For now, the new method is identical to the index method; the only
difference is that the resulting dictionary is handed to the edit
template. To see it work, go to
http://localhost:8080/edit/FrontPage. However, this only works because
FrontPage already exists in our database; if you try to edit a new
page with a different name it will fail, which we’ll fix in a later
section.

Don’t click that save button yet! We still need to write that method.

Saving Our Edits

When we displayed our wiki’s edit form in the last section, the form’s
action was /save. So, we need to make a method called
save in the Root class of our controller.

However, we’re also going to make another important change. Our
index method is only called when you either go to / or
/index. If you change the index method to the special method
default, then default will be automatically called whenever
nothing else matches. default will take the rest of the URL and
turn it into positional parameters.

Here’s our new version of root.py which includes both default
and save:

-*- coding: utf-8 -*-
"""Main Controller"""

from tg import expose, flash, require, url, request, redirect
from tg.i18n import ugettext as _, lazy_ugettext as l_

from wiki20.lib.base import BaseController
from wiki20.model import DBSession, metadata
from wiki20.controllers.error import ErrorController
from wiki20.model import Page

__all__ = ['RootController']

class RootController(BaseController):
 """
 The root controller for the Wiki-20 application.

 All the other controllers and WSGI applications should be mounted on this
 controller. For example::

 panel = ControlPanelController()
 another_app = AnotherWSGIApplication()

 Keep in mind that WSGI applications shouldn't be mounted directly: They
 must be wrapped around with :class:`tg.controllers.WSGIAppController`.

 """

 error = ErrorController()

 @expose('wiki20.templates.page')
 def _default(self, pagename="FrontPage"):
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 return dict(wikipage=page)

 @expose(template="wiki20.templates.edit")
 def edit(self, pagename):
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 return dict(wikipage=page)

 @expose('wiki20.templates.about')
 def about(self):
 """Handle the 'about' page."""
 return dict(page='about')

 @expose()
 def save(self, pagename, data, submit):
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 page.data = data
 redirect("/" + pagename)

Unlike the previous methods we’ve made, save just uses a plain
@expose() without any template specified. That’s because we’re
only redirecting the user back to the viewing page.

Although the page.data = data statement tells SQLAlchemy that you
intend to store the page data in the database, nothing happens until
the DBSession.flush() method is called. This is commonly referred
to as the “unit of work” pattern, and it’s an important structure for
database developers because it allows SQLAlchemy to combine many
operations into a single database update (or a minimized number of
updates if some changes depend upon earlier changes) and thus be much
more efficient in the database resources used.

SQLAlchemy also provides a DBSession.commit() method which flushes
and commits any changes you’ve made in a transaction. TurboGears 2
provides a flexible transaction management system that automates this
process wrapping each web request in its own transaction and
automatically rolling back that transaction if you get a python
exception, or return an HTTP error code as your response.

You don’t have to do anything to use this transaction management
system, it should just work. So, you can now make changes and save the
page we were editing, just like a real wiki.

What About WikiWords?

Our wiki doesn’t yet have a way to link pages. A typical wiki will
automatically create links for WikiWords when it finds them
(WikiWords have also been described as WordsSmashedTogether). This
sounds like a job for a regular expression.

Here’s the new version of root.py, which will be explained
afterwards:

-*- coding: utf-8 -*-
"""Main Controller"""

from tg import expose, flash, require, url, request, redirect
from tg.i18n import ugettext as _, lazy_ugettext as l_

from wiki20.lib.base import BaseController
from wiki20.model import DBSession, metadata
from wiki20.controllers.error import ErrorController
from wiki20.model import Page
import re
from docutils.core import publish_parts

wikiwords = re.compile(r"\b([A-Z]\w+[A-Z]+\w+)")

__all__ = ['RootController']

class RootController(BaseController):
 """
 The root controller for the Wiki-20 application.

 All the other controllers and WSGI applications should be mounted on this
 controller. For example::

 panel = ControlPanelController()
 another_app = AnotherWSGIApplication()

 Keep in mind that WSGI applications shouldn't be mounted directly: They
 must be wrapped around with :class:`tg.controllers.WSGIAppController`.

 """

 error = ErrorController()

 @expose('wiki20.templates.page')
 def _default(self, pagename="FrontPage"):
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 content = publish_parts(page.data, writer_name="html")["html_body"]
 root = url('/')
 content = wikiwords.sub(r'\1' % root, content)
 return dict(content=content, wikipage=page)

 @expose(template="wiki20.templates.edit")
 def edit(self, pagename):
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 return dict(wikipage=page)

 @expose('wiki20.templates.about')
 def about(self):
 """Handle the 'about' page."""
 return dict(page='about')

 @expose()
 def save(self, pagename, data, submit):
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 page.data = data
 redirect("/" + pagename)

We need some additional imports, including re for regular
expressions and a method called publish_parts from docutils.

A WikiWord is a word that starts with an uppercase letter, has a
collection of lowercase letters and numbers followed by another
uppercase letter and more letters and numbers. The wikiwords
regular expression describes a WikiWord.

In default, the new lines begin with the use of publish_parts,
which is a utility that takes string input and returns a dictionary of
document parts after performing conversions; in our case, the
conversion is from Restructured Text to HTML. The input
(page.data) is in Restructured Text format, and the output format
(specified by writer_name="html") is in HTML. Selecting the
fragment part produces the document without the document title,
subtitle, docinfo, header, and footer.

You can configure TurboGears so that it doesn’t live at the root of a
site, so you can combine multiple TurboGears apps on a single
server. Using tg.url() creates relative links, so that your links
will continue to work regardless of how many apps you’re running.

The next line rewrites the content by finding any WikiWords and
substituting hyperlinks for those WikiWords. That way when you click
on a WikiWord, it will take you to that page. The r'string' means
‘raw string’, one that turns off escaping, which is mostly used in
regular expression strings to prevent you from having to double escape
slashes. The substitution may look a bit weird, but is more
understandable if you recognize that the %s gets substituted with
root, then the substitution is done which replaces the \1 with
the string matching the regex.

Note that default() is now returning a dict containing an
additional key-value pair: content=content. This will not break
wiki20.templates.page because that page is only looking for
page in the dictionary, however if we want to do something
interesting with the new key-value pair we’ll need to edit
wiki20.templates.page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:py="http://genshi.edgewall.org/"
 xmlns:xi="http://www.w3.org/2001/XInclude">

 <xi:include href="master.html" />

<head>
 <meta content="text/html; charset=UTF-8" http-equiv="content-type" py:replace="''"/>
 <title>${wikipage.pagename} - The TurboGears 2 Wiki</title>
</head>

<body>

<div class="main_content">
<div style="float:right; width: 10em;"> Viewing
<!-- ##{PageName} -->
Page Name Goes Here
<!-- ## -->

You can return to the FrontPage.
</div>
<div py:replace="XML(content)">Formatted content goes here.</div>
Edit this page
</div>

</body>
</html>

Since content comes through as XML, we can strip it off using the
XML() function to produce plain text (try removing the function
call to see what happens).

To test the new version of the system, edit the data in your front
page to include a WikiWord. When the page is displayed, you’ll see
that it’s now a link. You probably won’t be surprised to find that
clicking that link produces an error.

Hey, Where’s The Page?

What if a Wiki page doesn’t exist? We’ll take a simple approach: if
the page doesn’t exist, you get an edit page to use to create it.

In the default method, we’ll check to see if the page exists. If
it doesn’t, we’ll redirect to a new notfound method. We’ll add
this method after the index method and before the edit
method. Here are the changes we make to the controller:

-*- coding: utf-8 -*-
"""Main Controller"""

from tg import expose, flash, require, url, request, redirect
from tg.i18n import ugettext as _, lazy_ugettext as l_

from wiki20.lib.base import BaseController
from wiki20.model import DBSession, metadata
from wiki20.controllers.error import ErrorController
from wiki20.model import Page
import re
from docutils.core import publish_parts
from sqlalchemy.exceptions import InvalidRequestError

wikiwords = re.compile(r"\b([A-Z]\w+[A-Z]+\w+)")

__all__ = ['RootController']

class RootController(BaseController):
 """
 The root controller for the Wiki-20 application.

 All the other controllers and WSGI applications should be mounted on this
 controller. For example::

 panel = ControlPanelController()
 another_app = AnotherWSGIApplication()

 Keep in mind that WSGI applications shouldn't be mounted directly: They
 must be wrapped around with :class:`tg.controllers.WSGIAppController`.

 """

 error = ErrorController()

 @expose('wiki20.templates.page')
 def _default(self, pagename="FrontPage"):
 try:
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 except InvalidRequestError:
 raise redirect("notfound", pagename = pagename)
 content = publish_parts(page.data, writer_name="html")["html_body"]
 root = url('/')
 content = wikiwords.sub(r'\1' % root, content)
 return dict(content=content, wikipage=page)

 @expose(template="wiki20.templates.edit")
 def edit(self, pagename):
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 return dict(wikipage=page)

 @expose('wiki20.templates.about')
 def about(self):
 """Handle the 'about' page."""
 return dict(page='about')

 @expose()
 def save(self, pagename, data, submit):
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 page.data = data
 redirect("/" + pagename)

 @expose("wiki20.templates.edit")
 def notfound(self, pagename):
 page = Page(pagename=pagename, data="")
 DBSession.add(page)
 return dict(wikipage=page)

The default code changes illustrate the “better to beg forgiveness
than ask permission” pattern which is favored by most Pythonistas –
we first try to get the page and then deal with the exception by
redirecting to a method that will make a new page.

We’re also leaking a bit of our model into our controller. For a
larger project, we might create a facade in the model, but here we’ll
favor simplicity. Notice that we can use the redirect() to pass
parameters into the destination method.

As for the notfound method, the first two lines of the method add
a row to the page table. From there, the path is exactly the same it
would be for our edit method.

With these changes in place, we have a fully functional wiki. Give it
a try! You should be able to create new pages now.

Adding A Page List

Most wikis have a feature that lets you view an index of the pages. To
add one, we’ll start with a new template, pagelist.html. We’ll copy
page.html so that we don’t have to write the boilerplate.

cd wiki20/templates
cp page.html pagelist.html

After editing, our pagelist.html looks like:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:py="http://genshi.edgewall.org/"
 xmlns:xi="http://www.w3.org/2001/XInclude">

 <xi:include href="header.html" />
 <xi:include href="sidebars.html" />
 <xi:include href="footer.html" />
 <xi:include href="master.html" />

<head>
 <meta content="text/html; charset=UTF-8" http-equiv="content-type" py:replace="''"/>
 <title>Page Listing - The TurboGears 2 Wiki</title>
</head>

<body>

<div class="main_content">
<h1>All Pages</h1>

 <li py:for="pagename in pages">
 <a href="${tg.url('/' + pagename)}"
 py:content="pagename">Page Name Here.

Return to the FrontPage.

</div>

</body>
</html>

The section in bold represents the Genshi code of interest. You can
guess that the py:for is a python for loop, modified to fit
into Genshi’s XML. It iterates through each of the pages (which
we’ll send in via the controller, using a modification you’ll see
next). For each one, Page Name Here is replaced by pagename,
as is the URL. You can learn more about the Genshi templating
engine [http://genshi.edgewall.org/wiki/Documentation/templates.html] at their site.

We must also modify the controller to implement pagelist and to
create and pass pages to our template:

-*- coding: utf-8 -*-
"""Main Controller"""

from tg import expose, flash, require, url, request, redirect
from tg.i18n import ugettext as _, lazy_ugettext as l_

from wiki20.lib.base import BaseController
from wiki20.model import DBSession, metadata
from wiki20.controllers.error import ErrorController
from wiki20.model import Page
import re
from docutils.core import publish_parts
from sqlalchemy.exceptions import InvalidRequestError

wikiwords = re.compile(r"\b([A-Z]\w+[A-Z]+\w+)")

__all__ = ['RootController']

class RootController(BaseController):
 """
 The root controller for the Wiki-20 application.

 All the other controllers and WSGI applications should be mounted on this
 controller. For example::

 panel = ControlPanelController()
 another_app = AnotherWSGIApplication()

 Keep in mind that WSGI applications shouldn't be mounted directly: They
 must be wrapped around with :class:`tg.controllers.WSGIAppController`.

 """

 error = ErrorController()

 @expose('wiki20.templates.page')
 def _default(self, pagename="FrontPage"):
 try:
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 except InvalidRequestError:
 raise redirect("notfound", pagename = pagename)
 content = publish_parts(page.data, writer_name="html")["html_body"]
 root = url('/')
 content = wikiwords.sub(r'\1' % root, content)
 return dict(content=content, wikipage=page)

 @expose(template="wiki20.templates.edit")
 def edit(self, pagename):
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 return dict(wikipage=page)

 @expose('wiki20.templates.about')
 def about(self):
 """Handle the 'about' page."""
 return dict(page='about')

 @expose()
 def save(self, pagename, data, submit):
 page = DBSession.query(Page).filter_by(pagename=pagename).one()
 page.data = data
 redirect("/" + pagename)

 @expose("wiki20.templates.edit")
 def notfound(self, pagename):
 page = Page(pagename=pagename, data="")
 DBSession.add(page)
 return dict(wikipage=page)

 @expose("wiki20.templates.pagelist")
 def pagelist(self):
 pages = [page.pagename for page in DBSession.query(Page)]
 return dict(pages=pages)

Here, we select all of the Page objects from the database, and
order them by pagename.

We can also modify page.html so that the link to the page list is
available on every page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:py="http://genshi.edgewall.org/"
 xmlns:xi="http://www.w3.org/2001/XInclude">

 <xi:include href="master.html" />

<head>
 <meta content="text/html; charset=UTF-8" http-equiv="content-type" py:replace="''"/>
 <title>${wikipage.pagename} - The TurboGears 2 Wiki</title>
</head>

<body>

<div class="main_content">
<div style="float:right; width: 10em;"> Viewing
<!-- ##{PageName} -->
Page Name Goes Here
<!-- ## -->

You can return to the FrontPage.
</div>
<div py:replace="XML(content)">Formatted content goes here.</div>
Edit this page
View the page list
</div>

</body>
</html>

You can see your pagelist by clicking the link on a page or by going
directly to http://localhost:8080/pagelist.

Further Exploration

Now that you have a working Wiki, there are a number of further places
to explore:

		You can add JSON support via MochiKit (see Adding JSON with MochiKit to the wiki20)

		You can learn more about the Genshi templating engine [http://genshi.edgewall.org/wiki/Documentation/templates.html].

		You can learn more about the SQLAlchemy ORM [http://www.sqlalchemy.org/].

If you had any problems with this tutorial, or have ideas on how to
make it better, please let us know on the mailing list! Suggestions
are almost always incorporated.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_static/comment-bright.png

_images/class_diagram.png
This defines the entity which
connects your objects to your database.
DBSession

This defines how your project's objects
interact with the database.

This is a configurable object which
allows you to override any part of the

AdminController's inner workings.

Genshi, Mako,
project's models. AdminController

are used in the
rendering of pages and widgets.

This controller provides

Templates
ccess to each model
passed into the

AdminController

CrudRestController

TW is a widget library
which helps to make
forms and other bits of

content for a webpage.
Sprox makes creating

web content easier ToscaWidgets
selecting
intelligent defaults
directly from
database schema.

Dojo is a Javascript library
that helps with the ajax

component of the admin.

TURBOGEARS

ADMIN

main/Extensions/Admin/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Extensions and Tools »

TurboGears Administration System

The TurboGears Admin System is a great way to get started with your
database. Once your model is defined, this extension provides a set
of pages to help you create, view, delete, and edit your database
objects.

[image: ../../../_images/index_ss.png]

Overview

The TurboGears Admin is a powerful system to create automated CRUD for your application.
It provides a fully configurable interface and AJAX capabilities. The default admin
is configured to work with the paster quickstart template, but can be easily modified to fit
your application’s needs. Forms are automatically validated, and the URL structure
for all requests is based on HTTP verbs, also known as RESTful URLs. Here is a basic overview
of how the components that make up the TurboGears Admin interact with your application.

[image: ../../../_images/class_diagram.png]

Adding AdminController to your TG application

AdminController is like any other TGController, it can be added directly to any part of your
system simply by making it part of an existing Controller Class. Here is how you would add it to
the root controller:

from tgext.admin import AdminController
from myproject import model
from myproject.model import DBSession

class RootController(BaseController):
 admin = AdminController(model, DBSession)

Using Multiple Databases

AdminController gets tied to a particular database session and set of models. For this reason,
you need to create a new AdminController for each database you wish to express. Therefore, once
you have your database connections set up in your project’s model code, you might have a controller
that looks something like this:

from tgext.admin import AdminController
from myproject.model import model1
from myproject.model import model2

from myproject.model import DB1Session, DB2Session

class RootController(BaseController):
 db1admin = AdminController(db1model, DB1Session)
 db2admin = AdminController(db2model, DB2Session)

Limiting the Models Shown in your Admin

The first element of AdminController can either take a module that contains mapped model classes, or a list of model classes that
are mapped. For instance, if you wanted to limit the AdminController to just User and Group classes, you would
have code as follows:

from tgext.admin import AdminController
from myproject.model import User, Group, DBSession

class RootController(BaseController):
 admin = AdminController([User, Group], DBSession)

Securing your Admin

By default, AdminController is secured by limiting access only to users in the “managers” group.
You can subclass AdminController and provide whatever predicate you desire. For example, you could change
the permissions to allow anyone with the ‘manage’ permission access with the following code:

from repoze.what.predicates import has_permission
from tgext.admin import AdminController

class MyAdminController(AdminController):
 allow_only = has_permission('manage')

Please note that if you use a different config you will have to secure it.

For more information, please see repoze.what

Utilizing Translations from repoze.what

If you have an existing database format that you are retrofitting to TurboGears,
you can utilize your existing translation for identity with some additions for use in
the default AdminController.

Probably if you are here, you have already modified your app_cfg.py file to take into
account the translations from the standard TG names to those of your system. This might
look something like this:

base_config.sa_auth.translations = {"user_id":"userID",
 "user_name": "userName",
 "group_id":"groupID",
 }

You may also need to override other fields like permission_id and permission_name that
are not the same in the tg schema. These are also ok to add to the sa_auth.translation
configuration option in the base_config. You can now pass these translations into the
AdminController and have it render its forms as they pertain to your database schema:

from tgext.admin import AdminController
from myproject import model
from myproject.model import DBSession
from tg import config

class RootController(BaseController):
 admin = AdminController(model, DBSession, translations=config.sa_auth.translations)

Using AdminConfig

The TurboGears Admin comes configured out-of-the-box for use with the default quickstarted
template model, but your application may have different needs. TurboGears Admin is designed
to meet those needs head on, allowing you to leave most boiler-plate behind, while overriding
the components of your application that are unique to your needs.

Starting with a Blank Slate

The TGAdminConfig which is the default actually does quite a bit of overriding for you, so that
your forms and tables will look nice the first time you use it. We can set the AdminController
back to what Sprox uses for defaults, selecting form field information directly from the
database metadata. This is roughly equivalent to the view Catwalk provides, minus the
menu on the side:

from tgext.admin import AdminController, AdminConfig

class MyAdminConfig(AdminConfig):

class RootController(BaseController):
 admin = AdminController(model, DBSession, config_type=AdminConfig)

Notice that we send the AdminConfig class un-instantiated. By creating the Config instance at execution time,
the transaction manager can handle the sessions properly,
and the creation of forms can happen dynamically as the Classes in your Model are accessed. This translates to speed
and robustness.

[image: ../../../_images/index_ss.png]

Overriding the Index Template

Chances are, if your model is complex, an alphabetical list of Classes on the index page is not going
to suit your needs. Luckily, the default template can be replaced with one of your own making
without too much trouble.
Simply subclass AdminController, providing your own default template. It is a good idea to provide
the engine name explicitly in your template definition:

from tgext.admin import AdminController, AdminConfig

class MyAdminConfig(AdminConfig):
 default_index_template = "genshi:myproject.myadmintemplate"

class RootController(BaseController):
 admin = AdminController(model, DBSession, config_type=MyAdminConfig)

Modifying CRUD Controller Types

In a similar manner that Sprox treats Model Fields, AdminConfig treats a grouping of Models.
Each model has associated with it a CrudRestController. This is a controller that performs
all of the CRUD operations using RESTful URLs. The attributes of AdminController which are
not “index” define the models controller type within the context of AdminController. AdminController
performs a lookup to its AdminConfig to see what type of CrudRestController it should use
when a request has come in which matches one of its models. The url dispatch is set to
the model name in all lower case lettering. If no specific controller type is found for a
particular model, then the default controller is used.

[image: ../../../_images/editing_ss.png]

Overriding a Form

The classic example shows how to override the “new_form” of the User controller to match a common registration form,
complete with password verification:

from tgext.admin.config import AdminConfig, CrudRestControllerConfig
from sprox.formbase import AddRecordForm
from formencode import Schema
from formencode.validators import FieldsMatch
from tw2.forms import PasswordField, TextField

form_validator = FieldsMatch('password', 'verify_password',
 messages={'invalidNoMatch': 'Passwords do not match'})

class RegistrationForm(AddRecordForm):
 __model__ = User
 __require_fields__ = ['password', 'user_name', 'email_address']
 __omit_fields__ = ['_password', 'groups', 'created', 'user_id', 'town_id']
 __field_order__ = ['user_name', 'email_address', 'display_name', 'password', 'verify_password']
 __base_validator__ = form_validator
 email_address = TextField
 display_name = TextField
 verify_password = PasswordField('verify_password')

class UserCrudConfig(CrudRestControllerConfig):
 new_form_type = RegistrationForm

class MyAdminConfig(AdminConfig):
 user = UserCrudConfig

class RootController(BaseController):
 admin = AdminController(model, DBSession, config_type=MyAdminConfig)

Again, notice we override the “user” attribute of AdminConfig, which AdminController introspects to determine
how to create a controller for the User object.

[image: ../../../_images/listing_ss.png]

Overriding a Table

Often times you will want to hide some columns which are not very useful to the user, such as id keys that point
to relations within the object. The TGAdmin allows you to override these parts of the system using the Sprox Base
classes. Here is an example of how to create an AdminConfig which limits the User table to display_name and email_address:

from tgext.admin.config import AdminConfig, CrudRestControllerConfig
from sprox.tablebase import TableBase
from sprox.fillerbase import TableFiller

class MyAdminConfig(AdminConfig):
 class user(CrudRestControllerConfig):
 class table_type(TableBase):
 __entity__ = User
 __limit_fields__ = ['display_name', 'email_address']
 __url__ = '../user.json' #this just tidies up the URL a bit

 class table_filler_type(TableFiller):
 __entity__ = User
 __limit_fields__ = ['user_id', 'display_name', 'email_address']

class RootController(BaseController):
 admin = AdminController(model, DBSession, config_type=MyAdminConfig)

You may have noticed that the table_filler_type’s limit_fields includes ‘user_id’. This is because the
CrudRestController needs to have access to the primary keys in the model in order to perform it’s dispatch.

Um, where’d my Dojo go?

Now the tables aren’t being rendered by Dojo, so let’s add that back.
Simply replace your Sprox imports with:

from sprox.dojo.tablebase import DojoTableBase as TableBase
from sprox.dojo.fillerbase import DojoTableFiller as TableFiller

Overriding All Form types for the CRUD Controllers

Perhaps you have a CrudRestControllerConfig of your own design. You can make it the default for all of the
CrudController creation in your config.

class MyCrudRestControllerConfig(CrudRestControllerConfig):
 ...

class MyAdminConfig(AdminConfig):
 DefaultControllerConfig = MyCrudRestControllerConfig

Wait a minute, is this is _just_ an Admin tool?

You may have keyed in on something. TurboGears Admin can be utilized to support more than just Administrative tasks.
Since it is secured the same way the other TurboGears controllers on, you could use it for any user on your system.
The myriad of ways you can override different parts of the system mean that this tool could be an excellent resource
for rapid prototyping of a web application, or even as a provider of placeholder for future components.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Deployment/ModWSGI.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		Deployment »

Apache Mod-WSGI

The Apache Web Server module Mod-WSGI [http://code.google.com/p/modwsgi/] provides a high-performance
environment in which to run TurboGears 2.2.2. It is part of the
Standard Deployment Pattern which is recommended for new TurboGears users.

To install:

$ sudo apt-get install apache2 libapache2-mod-wsgi

Mod-WSGI with VirtualEnv

Mod-WSGI will create a new type of executable script and add a number
of Apache configuration directives which allow you to configure your
Mod-WSGI environment. While you could, technically, use these scripts
as simple CGI-like scripts, we recommend using a VirtualEnv
based deployment pattern to allow you to install different versions of
packages for different applications or sites.

Baseline VirtualEnv

The recommended pattern for using Mod-WSGI with a VirtualEnv
is to create a “baseline” VirtualEnv which contains no packages at
all. This “baseline” will be used to provide a “clean” environment
on top of which your application’s environment will be layered.
(This done with the Apache WSGIPythonHome directive).

$ sudo mkdir /usr/local/pythonenv
$ cd /usr/local/pythonenv
$ sudo virtualenv --no-site-packages BASELINE
$ sudo chown -R www-data:www-data BASELINE

Note

The “baseline” pattern works around limitations in the Mod-WSGI
module which have been fixed in later versions of the module.
However, the commonly-packaged versions of the module require
these work-arounds to work reliably, so for now, we recommend
this pattern for all new users.

Application-Specific VirtualEnv

Now you can create your application-specific VirtualEnv (normally
in the same pythonenv directory).

$ sudo virtualenv --no-site-packages myapp
$ sudo chown -R www-data:www-data myapp
$ sudo -u www-data bash
$ cd myapp
$ source bin/activate
(myapp)$ easy_install -i http://tg.gy/current tg.devtools
(myapp)$ mkdir python-eggs
(myapp)$ exit

Note

The python-eggs directory is used by Mod-WSGI to unpack “zipped”
eggs which contain binary extensions (.so files). Python cannot
load those packages unless they are on the file-system.
Configuring this directory will be automatically done in the .wsgi
file created by the deploy_modwsgi_deploy.

Your application’s lib/pythonX.X/site-packages directory will be added to the
WSGI environment’s path via a WSGIPythonPath directive, and will be moved
to the front of the PythonPath by the .wsgi script in order to make it the
dominant source for packages.

Note

You can use any VirtualEnv installation mechanism you like to set up
the application’s VirtualEnv. See Alternate Installation Process for other options
such as PIP. In particularly you may want to use a mechanism that
allows you to explicitly control which packages are installed and
keep local copies of them to prevent external dependencies.

Deploying Your Project Code

You have a number of options for deploying your code. See Deploying Your Project Code.

If you are following this Standard Deployment Pattern, you should be sure to deploy
the code of your project to /usr/local/turbogears/myapp.

If you are going to Deploy with a Source Code Checkout, make sure to install
/usr/local/turbogears/myapp‘s dependencies (into /usr/local/pythonenv/myapp)
and generate its meta-data by using the develop option to
/usr/local/turbogears/myapp/setup.py.

modwsgi_deploy Helper Script

While you can generate your Apache site-configuration files by
hand, new users will generally find this a somewhat daunting task.
The modwsgideploy project provides a small helper script which
has parameterized helper scripts which can generate an initial
Apache Mod-WSGI configuration file and .wsgi script.

$ cd ~
$ easy_install bzr
$ bzr branch http://bazaar.launchpad.net/~mcfletch/modwsgideploy/parameterized/
$ cd parameterized/trunk
$ source /usr/local/pythonenv/bin/activate
(myapp)$ python setup.py develop
(myapp)$ paster modwsgi_deploy --help
(myapp)$
(myapp)$ cd /usr/local/turbogears/myapp
(myapp)$ paster modwsgi_deploy --logging [other options you choose]
(myapp)$ deactivate

Todo

When we have the branch integrated, replace with easy_install modwsgideploy

the script is heavily parameterized to allow you to configure your
site as desired. If you want your site to be available as a sub-directory
of your main site, you can specify a mount-point (the default is /projectname).
If you want to set up VirtualHost support (where your server looks at the
requested host-name to determine which site to display), you can specify
the server-name on the command-line.

The script will create a directory (by default ./apache) which will contain
the .wsgi script and an Apache configuration file. It will also (likely)
log a number of warnings telling you how to create your Baseline VirtualEnv,
your Application-Specific VirtualEnv, where to copy/checkout your project code,
and where to put your production config file.

The files generated will look like this:

myapp
|-- apache
| |-- README.txt
| |-- myapp
| |-- myapp.wsgi
| `-- test.wsgi

You should review and/or edit the generated files. See the
References for documentation on the contents of these
files.

Note

The config files assume that your application is deployed in the
deployment location (/usr/local/turbogears/ by default) in a directory
named myapp with the config-file (production.ini by default) in that
directory. The application’s directory will be added to the PYTHONPATH,
as will the VirtualEnv’s directory.

		See Production Config

		See Deploying Your Project Code

When you are finished, you can continue on to Enable Your Apache Site.

Possible Issues

Print Statements

If you have used print statements anywhere in your codebase, you can
expect your Mod-WSGI applications to crash. Mod-WSGI will error out
if there is any attempt to write to stdout (which is what print does
by default). Use the logging module instead of print throughout
your codebase.

Widget Resource Race Condition

In multiple process load balanced deployments (such as this one) it is
very possible that a given request will pull resources from multiple
processes.

You may want to make sure that the TG controllers are loaded up even
before the first request comes in to handle this, so you should add:

import paste.fixture
app = paste.fixture.TestApp(application)
app.get("/")

to the end of the wsgi-script that starts your application.

This will fetch the index page of your app, thus assuring that it’s
ready to handle all of your requests immediately. This avoids a
problem where your controller page is not yet loaded so widgets aren’t
initialized, but a request comes in for a widget resource the
ToscaWidgets middleware doesn’t have registered yet.

References

		Mod-WSGI [http://code.google.com/p/modwsgi/] the official home of the extension, including documentation

		Mod-WSGI and VirtualEnvironments [http://code.google.com/p/modwsgi/wiki/VirtualEnvironments] discusses the recommended usage
pattern and the various options involved

		Mod-WSGI and Pylons [http://code.google.com/p/modwsgi/wiki/IntegrationWithPylons] discusses the usage pattern with focus
on how to integrate Pylons applications (TurboGears is built on Pylons)

What’s Next

		Enable Your Apache Site enabling (running) your Apache ModWSGI site

		Standard Deployment Pattern provides an overview of the recommended
deployment pattern

		Apache Web Server discusses alternatives to Mod-WSGI under Apache

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

modules/pylons/controllers_core.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Modules »

pylons.controllers.core – WSGIController Class

The core WSGIController

Module Contents

		
class pylons.controllers.core.WSGIController

		WSGI Controller that follows WSGI spec for calling and return
values

The Pylons WSGI Controller handles incoming web requests that are
dispatched from the PylonsBaseWSGIApp. These requests result in a
new instance of the WSGIController being created, which is then
called with the dict options from the Routes match. The standard
WSGI response is then returned with start_response called as per
the WSGI spec.

Special WSGIController methods you may define:

		__before__

		This method is called before your action is, and should be used
for setting up variables/objects, restricting access to other
actions, or other tasks which should be executed before the
action is called.

		__after__

		This method is called after the action is, unless an unexpected
exception was raised. Subclasses of
HTTPException (such as those raised by
redirect_to and abort) are expected; e.g. __after__
will be called on redirects.

Each action to be called is inspected with _inspect_call() so
that it is only passed the arguments in the Routes match dict that
it asks for. The arguments passed into the action can be customized
by overriding the _get_method_args() function which is
expected to return a dict.

In the event that an action is not found to handle the request, the
Controller will raise an “Action Not Found” error if in debug mode,
otherwise a 404 Not Found error will be returned.

		
_perform_call(func, args)

		Hide the traceback for everything above this method

		
_inspect_call(func)

		Calls a function with arguments from
_get_method_args()

Given a function, inspect_call will inspect the function args
and call it with no further keyword args than it asked for.

If the function has been decorated, it is assumed that the
decorator preserved the function signature.

		
_get_method_args()

		Retrieve the method arguments to use with inspect call

By default, this uses Routes to retrieve the arguments,
override this method to customize the arguments your controller
actions are called with.

This method should return a dict.

		
_dispatch_call()

		Handles dispatching the request to the function using
Routes

		
__call__(environ, start_response)

		The main call handler that is called to return a response

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

deprecated/ToscaWidgets/Cookbook.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

ToscaWidgets Cookbook

Here you will find information about how to do common tasks involving ToscaWidgets.

		JQuery AutoComplete Widget Tutorial

		JQuery FlexiGrid Widget

		JQuery AjaxForm Widget

		JQuery TreeView Widget Tutorial

		JQuery Flot Widget

		JQuery FlexiGrid Widget

		OpenLayers Map Widget

		Creating A Password Verification Field

		Adding Captcha To Your Form

		How To Create A Database-Driven Select Field

		JSUnit Widget

		ExtJS Tree Widget Tutorial

		ExtJS ItemSelector Widget Tutorial

		ExtJS SingleSelectCombo Widget

		Creating Ajax-Enabled Forms Using Prototype

Javascript Library Specific Widgets

ExtJS

TreeView

Learn how to use the ext widget library to create a dynamically loading TreeView.

ExtJS Tree Widget Tutorial

[image: ../../_images/itemselector1.png]

ItemSelector

How to use the ext ItemSelector which allows multiple selection by
shuttling items between source and destination lists. It supports
full drag and drop and ordering of items.

ExtJS ItemSelector Widget Tutorial

[image: ../../_images/singleselectcombo-small.png]

SingleSelectCombo

Create a ComboBox using Ext which also does autocompletion.

ExtJS SingleSelectCombo Widget

jQuery

[image: example AutoComplete Field]

AutoComplete Field

Create a field which automatically completes the user entry as they
type. Based on tw.jquery AutoComplete widget.

JQuery AutoComplete Widget Tutorial

[image: ../../_images/flexigrid.png]

FlexiGrid

How to create an Ajax Data Grid with support for pagination, sorting,
searching and column resizing. This widget is based on the jQuery
FlexiGrid Plugin.

JQuery FlexiGrid Widget

Ajax Form

How to use AjaxForm to create a dynamic form.

JQuery AjaxForm Widget

[image: ../../_images/flot1.png]

Flot

How to create dynamic graphs using the powerful Flot library.

JQuery Flot Widget

[image: ../../_images/treeview.png]

Tree View

How to create a simple tree view of an unordered list where the
branches can be expanded or collapsed to present a good view of a
document tree structure. This widget is based on the jQuery Treeview
Plugin.

JQuery TreeView Widget Tutorial

[image: ../../_images/stars.png]

Ajax Star Rating

How to add a simple star rating widget to your application.

Todo

Difficulty: Medium to Hard. write a tutorial to add a star rating widget to an application

Prototype

Ajax Form

How to use AjaxForm to create a dynamic form.

Creating Ajax-Enabled Forms Using Prototype

Dojo

Todo

Difficulty: Medium to Hard. Need some basic dojo widgets here.

JSUnit

[image: example JSUnit Widget]

JSUnit and Runner Widget

Create a widget for in-browser testing of javascript code using the
JSUnit Javascript Unit Testing Framework [http://www.jsunit.net/].

JSUnit Widget

To Be Done

Ajax Related Select Fields

How to create select fields which change based on the choices made on
other select fields.

Todo

Difficulty: Medium to Hard. write tutorial to show how to update select fields based on other choices

Ajax Progress Bar

How to create a progress bar with server-side progress indicator

Todo

Difficulty: Medium to Hard. create a tutorial for an ajax enabled progress bar

Ajax File Upload with Progress Bar

How to create a file upload with a progress bar.

Todo

Difficulty: Medium to Hard. create a tutorial for a file upload with progress bar

tw.forms

Basic Form usage (no ajax)

[image: ../../_images/passwordverify.png]

Password Validation

How to create a simple registration form with that makes sure the
user typed the correct password

Creating A Password Verification Field

[image: ../../_images/recaptcha_field.jpg]

ReCaptcha

A Description on how to add a tw.recaptcha field to your public forms
an keep spammers at bay.

Adding Captcha To Your Form

Database-driven Select Fields

How to create a select field which changes based on the entry in a
database table.

How To Create A Database-Driven Select Field

Other Valuable Widgets (no JS library)

Css based

Tabber

How to easily add Tabbed Browsing to your website.

Todo

Difficulty: Medium to Hard. create tutorial for adding tabbed browsing to your website

OpenLayers

OpenLayers Map

How to create a web map using OpenLayers Javascript Toolkit..

OpenLayers Map Widget

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/treeview.png
= TurboGears2
‘Documentation
AP Reference:
‘Bug Tracker
Mailng Lt

Pybns

SQLAEhemy

_images/tg2pagination_fig1.png
Movie List

“Into the Wild" (2007)

he Big Lebowsky" (1998)
ulp Fiction” (1994)

ead Man” (1995)

“Night on Earth” (1991)

apwee

£add a Movie

_images/menu_items.png
Welcome to TurboGears 2
i ; “The Python web metaframework

. Movie Listing

main/Auth/Authentication.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		Authentication and Authorization in TurboGears 2 »

repoze.who – Authentication in TurboGears 2 applications

		Status:		Official

		Website:		http://static.repoze.org/whodocs/

Overview

This document describes how repoze.who is integrated into TurboGears
and how you make get started with it. For more information, you may want
to check repoze.who‘s website.

repoze.who is a powerful and extensible authentication package for
arbitrary WSGI applications. By default TurboGears2 configures it to log using
a form and retrieving the user informations through the user_name field of the
User class. This is made possible by the authenticator plugin that TurboGears2
uses by default which is repoze.who.plugins.sa.SQLAlchemyAuthenticatorPlugin.

How it works

It’s a WSGI middleware which is able to authenticate the user through the
method you want (e.g., LDAP or HTTP authentication), “remember” the user in
future requests and log the user out.

You can customize the interaction with the user through four kinds of
plugins, sorted by the order in which they are run on each request:

		An identifier plugin, with no action required on the user’s side, is able
to tell whether it’s possible to authenticate the user (e.g., if it finds
HTTP Authentication headers in the HTTP request). If so, it will extract the
data required for the authentication (e.g., username and password, or a
session cookie). There may be many identifiers and repoze.who will run
each of them until one finds the required data to authenticate the user.

		If at least one of the identifiers could find data necessary to authenticate
the current user, then an authenticator plugin will try to use the
extracted data to authenticate the user. There may be many authenticators
and repoze.who will run each of them until one authenticates the user.

		When the user tries to access a protected area or the login page, a
challenger plugin will come up to request an action from the user (e.g.,
enter a user name and password and then submit the form). The user’s response
will start another request on the application, which should be caught by
an identifier to extract the login data and then such data will be used
by the authenticator.

		For authenticated users, repoze.who provides the ability to load
related data (e.g., real name, email) in the WSGI environment so that it can
be easily used in the application. Such a functionality is provided by
so-called metadata provider plugins. There may be many metadata providers
and repoze.who will run them all.

When repoze.who needs to store data about the authenticated user in the
WSGI environment, it uses its repoze.who.identity key, which can be
accessed using the code below:

from tg import request

The authenticated user's data kept by repoze.who:
identity = request.environ.get('repoze.who.identity')

Such a value is a dictionary and is often called “the identity dict”. It will
only be defined if the current user has been authenticated.

Tip

There is a short-cut to the code above in the WSGI request, which will
be defined in {yourproject}.lib.base.BaseController if you enabled
authentication and authorization when you created the project.

For example, to check whether the user has been authenticated you may
use:

 # ...
 from tg import request
 # ...
 if request.identity:
 flash('You are authenticated!')

``request.identity`` will equal to ``None`` if the user has not been
authenticated.

Likewise, this short-cut is also set in the template context as
``tg.identity``.

The username will be available in identity['repoze.who.userid']
(or request.identity['repoze.who.userid'], depending on the method you
select).

How it works in TurboGears applications

By default, TurboGears 2.2.2 configures repoze.who to use
repoze.who.plugins.friendlyform.FriendlyFormPlugin as the first
identifier and challenger – using /login as the relative URL that will
display the login form, /login_handler as the relative URL where the
form will be sent and /logout_handler as the relative URL where the
user will be logged out. The so-called rememberer of such identifier will
be an instance of repoze.who.plugins.cookie.AuthTktCookiePlugin.

All these settings can be customized through the config.app_cfg.base_config.sa_auth
options in your project. Identifiers, Authenticators and Challengers can be overridden
providing a different list for each of them as:

base_config.sa_auth['identifiers'] = [('myidentifier', myidentifier)]

You don’t have to use repoze.who directly either, unless you decide not
to use it the way TurboGears configures it.

Advanced topics

If you’re looking for different authentication methods, you may want to visit
the repoze.who website [http://static.repoze.org/whodocs/] to check if the
plugin you’re looking for is already available or how to create your own plugins.

To learn how to customize Authentication and Authorization in TurboGears you
can give a look at Customizing Authentication.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_static/basicmoves_debug_expanded.png
Module genshi.template.base:320 in _eval view:
>> result = _eval_expr(data, ctxt, **vars)
Module genshi.template.base:286 in _eval_expr view
>>retval = expr.evaluate(ctxt)
Module genshi.template.eval: 180 in evaluate view
Module 7:16 in <Expression u'hello’> view
<< <body>
<h1 py:conten

<div id="getting_started">
Module genshi.template.eval:306 in lookup_nane &

ello'>Nello variable replaces this text</h1>

>>> data.get(*hello’, 'not defined')
"not defined'

| Execute || Expand |

__traceback_hide__ True
as <class 'genshi.template.eval .StrictLookup'>

data [{'defined': <function defined at 8x9850d84>, 'header': <function header at 0x9856f7c>, il
name “hello’

val <object object at Gxb7ce2548>

view

Module gensh.template.eval:405 in undefined view

UndefinedError: "hello” not defined

TURBOGEARS ONLINE ASSISTANCE Extra Features

>> Display the lines of code near each part of the traceback
‘Show a debug prompt to allow you to directly debug the code

at the traceback.

| Re-RET Dame |

_images/dojo.png
D (& 03 i Tcaboss 80807 mavsine 22

Welcome to TurboGears 2

The Python web metaframework

Create New Movie

G]

= o

s

main/Deployment/OptimizingTWResources.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		Deployment »

Optimizing Toscawidgets Resources

Toscawidgets uses a lot of static files for its widgets.
Having those files served by the middleware is quite inefficient and doesn’t usually provide
any extra feature, so it is usually a good idea to let a web server directly serve them.

Extracting static files

People at Toscawidgets know this and have been so kind to provide a way to extract all the
static files needed by the widgets that your application is currently using and since
Turbogears 2.1.1 this command is directly exposed when you quickstart a new application.

Static resources can be extracted by using:

python setup.py archive_tw_resources

By default the static files will be extracted to your project public directory, and if you
had properly configured your web server or are using a proxy server you should end up
having your public directory directly served by you webserver instead of passing through
toscawidgets middleware.

Compressing static files

By default turbogears won’t compress your static files, it will just extract them.
This is because static files compression requires a working java environment and the
YUICompressor tool.

If you want to enable extracted files compression you just have to modify your setup.cfg
by uncommenting those two lines:

#yuicompressor = /home/someuser/bin/yuicompressor.jar
#compresslevel = 2

The first one must point to your YUICompressor executable and the second one can be used
to specify the compression level.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_static/contents.png

deprecated/ToscaWidgets/Cookbook/ExtTreeView.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		ToscaWidgets Cookbook »

ExtJS Tree Widget Tutorial

Installation

easy_install tw.extjs

Usage

Widget definition:

from tw.extjs import TreeView
extTree = TreeView(divID='treeView1', fetch='fetchTree')

Server Side

@expose('myproject.templates.tableview')
def ext(self):
 pylons.c.tree = extTree
 return dict()

Template Code

${tmpl_context.tree()}

Fetch Code

import simplejson
def _getData(self, node):
 #return a list of dictionaries
 #dictionaries have the format:
 # {'text':visible_node_name, 'id':identifier, 'cls':'file'|'folder', 'allowChildren':False, 'leaf':True}
 #return the data for a given node
 #more here soon
 pass

@expose()
def fetchTree(self, node):
 r = [self._getData(node),]
 return simplejson.dumps(r)

Todo

Difficulty: Medium. This entire tutorial is code snippets. Add some text to explain what is going on

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/TG2Upgrading.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

Upgrading Your TurboGears Project

From 2.1 to 2.2

Projects quickstarted on 2.1 should mostly work out of the box.

Main points of interest when upgrading from 2.1 to 2.2 are related to some features deprecated in 2.1
that now got removed, to the new ToscaWidgets2 support and to the New Authentication layer.

Both ToscaWidgets2 and the new auth layer are disabled by default, so they should not get in
your way unless you explicitly want.

Deprecations now removed

tg.url changed in release 2.1, in 2.0 parameters for the url could be passed as
paremeters for the tg.url function. This continued to work in 2.1 but provided a
DeprecationWarning. Since 2.1 parameters to the url call must be passed in the params
argument as a dictionary. Support for url parameters passed as arguments have been totally
removed in 2.2

use_legacy_renderer option isn’t supported anymore. Legacy renderers (Buffets) got
deprecated in previous versions and are not available anymore in 2.2.

__before__ and __after__ controller methods got deprecated in 2.1 and are not
called anymore, make sure you switched to the new _before and _after methods.

Avoiding ToscaWidgets2

If you want to keep using ToscaWidgets1 simply don’t install ToscaWidgets2 in your enviroment.

If your project has been quickstarted before 2.2 and uses ToscaWidgets1 it can continue to
work that way, by default projects that don’t enable tw2 in any way will continue to use
ToscaWidgets1.

If you install tw2 packages in your environment the admin interface, sprox, crud and all the
functions related to form generation will switch to ToscaWidgets2.
This will force you to enable tw2 wit the use_toscawidgets2 option, otherwise they will
stop working.

So if need to keep using ToscaWidgets1 only, don’t install any tw2 package.

Mixing ToscaWidgets2 and ToscaWidgets1

Mixing the two widgets library is perfectly possible and can be achieved using both the
use_toscawidgets and use_toscawidgets2 options. When ToscaWidgets2 is installed
the admin, sprox and the crud controller will switch to tw2, this will require you to
enable the use_toscawidgets2 option.

If you manually specified any widget inside Sprox forms or CrudRestController
you will have to migrate those to tw2. All the other forms in your application can keep
being ToscaWidgets1 forms and widgets.

Moving to ToscaWidgets2

Switching to tw2 can be achieved by simply placing the prefer_toscawidgets2 option in
your config/app_cfg.py. This will totally disable ToscaWidgets1, being it installed or
not. So all your forms will have to be migrated to ToscaWidgets2.

New Authentication Layer

2.2 release introduced a new authentication layer to support repoze.who v2 and prepare for
moving forward to Python3. When the new authentication layer is not in use, the old one
based on repoze.what, repoze.who v1 and repoze.who-testutil will be used.

As 2.1 applications didn’t explicitly enable the new authentication layer they should
continue to work as before.

Switching to the new Authentication Layer

Switching to the new authentication layer should be quite straightforward for applications
that didn’t customize authentication. The new layer gets enabled only when a
base_config.sa_auth.authmetadata object is present inside your config/app_cfg.py.

To switch a plain project to the new authentication layer simply add those lines to your
app_cfg.py:

from tg.configuration.auth import TGAuthMetadata

#This tells to TurboGears how to retrieve the data for your user
class ApplicationAuthMetadata(TGAuthMetadata):
 def __init__(self, sa_auth):
 self.sa_auth = sa_auth
 def get_user(self, identity, userid):
 return self.sa_auth.dbsession.query(self.sa_auth.user_class).filter_by(user_name=userid).first()
 def get_groups(self, identity, userid):
 return [g.group_name for g in identity['user'].groups]
 def get_permissions(self, identity, userid):
 return [p.permission_name for p in identity['user'].permissions]

base_config.sa_auth.authmetadata = ApplicationAuthMetadata(base_config.sa_auth)

If you customized authentication in any way, you will probably have to port forward all your
customizations, in this case, if things get too complex you can keep remaining on the old
authentication layer, things will continue to work as before.

After enabling the new authentication layer you will have to switch your repoze.what imports
to tg imports:

#from repoze.what import predicates becames
from tg import predicates

All the predicates previously available in repoze.what should continue to be available.
Your project should now be able to upgrade to repoze.who v2, before doing that remember to remove
the following packages which are not in use anymore and might conflict with repoze.who v2:

		repoze.what

		repoze.what.plugins.sql

		repoze.what-pylons

		repoze.what-quickstart

		repoze.who-testutil

The only repoze.who packages you should end up having installed are:

		repoze.who-2.0

		repoze.who.plugins.sa

		repoze.who_friendlyform

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_static/top.png

deprecated/ToscaWidgets/Cookbook/ExtItemSelector.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		ToscaWidgets Cookbook »

ExtJS ItemSelector Widget Tutorial

Installation

easy_install tw.extjs

Usage

The ItemSelector widget aka SelectShuttle allows selection and
deselection of multiple items from a select list. The ExtJS
ItemSelector widget supports powerful features like drag and drop and
ordering of selected items. The basic usage of this widget is
demonstrated below. The widget uses the following parameters:

Parameters:

		Name
		Description
		Default

		divID
		The id of the element containing the widget.
		

		url
		The url of the form action
		

		width
		Width of the Form Panel container in px.
		‘auto’

		fieldLabel
		Label for the ItemSelector Field.
		None

		labelWidth
		The width of the field label in pixels.
		‘auto’

		fromData
		A list of source selection items.
		[]

		toData
		A list of destination selection items.
		[] (Each item in the
fromData and toData
lists is a data
record represented
as a list (typically
containing a value
and a description))

		msWidth
		The width of the MultiSelect field in px.
		200

		msHeight
		The height of the MultiSelect field in px.
		300

		dataFields
		A list of fields used for storing the data.
		[0, 1]

		valueField
		Field for storing the values.
		0

		displayField
		Field that is displayed.
		1

		fromLegend
		Legend for the source select Field.
		None

		toLegend
		Legend for the destination select Field.
		None

		submitText
		Text for the submit button.
		‘Submit’

		resetText
		Text for the reset button.
		‘Reset’

The widget can be instantiated as follows:

from tw.extjs import ItemSelector

from_data = [["AL","Alabama"], ["AK","Alaska"], ["AZ","Arizona"], ["AR","Arkansas"], ["CA","California"], ["WY","Wyoming"]]
to_data = []

item_selector = ItemSelector(divID='item_selector_div',
 width=550,
 url='/save',
 fieldLabel='States',
 labelWidth=40,
 fromData=from_data,
 toData=to_data,
 msWidth=200,
 msHeight=200,
 dataFields=['code','desc'],
 valueField='code',
 displayField='desc',
 fromLegend='Available',
 toLegend='Selected',
 submitText='Save',
 resetText='Reset')

It can be then served up to the user via a controller method like this:

@expose('mypackage.templates.myformtemplate')
def index(self, **kw):
 pylons.c.field = item_selector
 return dict()

The widget can then be displayed in the template like this:

${tmpl_context.field()}

This brings up the ItemSelector on the browser. It allows shuttling of
items between the source and destination Fields and ordering of items
selected in the destination field using the arrow keys or by dragging
and dropping the items at the correct place. This is how it looks in
the browser:

[image: example ItemSelector]

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_static/plus.png

deprecated/ToscaWidgets/Cookbook/ReCaptcha.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Adding Captcha To Your Form

What Is tw.recaptcha?

tw.recaptcha is an extension to tw.forms TextField with a formencode
validator. It keeps a form from being processed until there is proof
that the form is being used by a human by forcing the human to analyze
an image and type in the words that are shown. It also has an audio
clip you can listen to instead.

Why Is tw.recaptcha Good?

tw.recaptcha is good because like ReCaptcha [http://recaptcha.net/] the words you analyze are
words that are scanned from old books that are being digitized. The
books are free and anyone can download and read them. What happens is
when the book is scanned it is broken up by word and those words are
what is used in ReCaptcha [http://recaptcha.net/]. Since a scanner is not perfect and
sometimes interprets the words incorrectly, the human answers the
ReCaptcha [http://recaptcha.net/] sends back help to make the digital copies as accurate as
possible and thus a pleasant experience for everyone.

Installation

easy_install tw.recaptcha

If you have problems there is a way to manually get ReCaptcha [http://recaptcha.net/]
working: often recaptcha-client does not install properly:

Download and install recaptcha-client on its own first. If you want
to try it all in one command using easy_install then you could try
this (just doing _easy_install_ _’recaptcha-client’_ sometimes gives a
broken egg):

easy_install recaptcha-client

If you get a broken egg download manually and install using the
available setup.py:

curl -O http://pypi.python.org/packages/source/r/recaptcha-client/recaptcha-client-1.0.1.tar.gz#md5=6a479f2142efc25954a6f37012b4c2dd
tar -xvf recaptcha-client-1.0.1.tar.gz
cd recaptcha-client-1.0.1
python setup.py install

Now try easy_installing tw.recaptcha again

Usage

First things first. Goto the ReCaptcha [http://recaptcha.net/] website and register your
domain. It is free.

Once that is done we can move onto the actual coding aspect.

The first step is to make sure you have all of the imports that you
need. If you are already using forms and/or validation you may
already have some of these:

from tw.forms import TableForm
from tw.recaptcha import ReCaptchaWidget
from tw.recaptcha.validator import ReCaptchaValidator
from tw.api import WidgetsList
from formencode import Schema, NoDefault
from formencode.validators import NotEmpty

Create a new Form to hold your recaptcha:

class MyForm(TableForm):
 class fields(WidgetsList):
 recaptcha_response_field = ReCaptchaWidget(public_key='<your_public_key>')

Of course, we are going to need a validator, and since there are extra
fields appended with the recaptcha widget, we are going to need a
filtering schema to address the extra fields.

Alright, now with that done you need to setup your filtering schema
class:

class FilteringSchema(Schema):
 filter_extra_fields = False
 allow_extra_fields = True
 ignore_key_missing = False

Add the recaptcha validator to the list of chained validators for your
form:

validator = FilteringSchema(chained_validators=(ReCaptchaValidator(private_key='<your_private_key', remote_ip='<your_domains_ip_address'),))

The next step is to create an instance of the form to pass into your
page:

captchaForm = MyForm(validator=validator)

That takes care of the creation process. It should now load and work
on your page. Make sure the function that it goes to when you hit
submit is expecting the two variables. If you are using **kw then
you are fine. If you are specifying each one individually, then you
will want to add the two variables into your definition. If you don’t,
it will error saying it got values it wasn’t expecting. Your code
might look something like this:

class MyController(BaseController):

 @expose("genshi:my.page.with.form.def")
 def showForm(self, **kw):
 pylons.c.form = captchaForm
 return dict(values=kw)

 @validate(captchaForm, error_handler=showForm)
 def storeFormData(self, myvar, myvar2, recaptcha_response_field=None, recaptcha_challenge_field=None):
 """My form storage code here"""
 return dict()

Once you are done you will end up with a captcha on your page that
looks like

[image: ../../../_images/recaptcha_field1.jpg]

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Realtime/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Real-time TurboGears Introduction

This tutorial will describe how to set up an introductory “real time chat”
application using the Orbited [http://orbited.org/] framework and TurboGears. Real-time
web-sites are capable of far more than simple chat applications, but
chat is the common “Hello World” of real-time developers.

Warning

You should already be fairly familiar with TurboGears, Javascript and
JQuery before you begin this tutorial.

Note

The setup described here is not a production-ready real-time-web
solution. MorbidQ is not a production Message Queue Server, and indeed
most production solutions would want to use a more robust and efficient
protocol such as AMQP. Currently AMQP protocols for Javascript are
“in development”. This document is intended to let you get started
with real-time-web development before you graduate to more mature
technologies.

Setup

You will need to have a running TurboGears VirtualEnv to follow along
in this tutorial. We recommend the TurboGears 2.2.2 Standard Installation if possible.

Architectural Overview

		Orbited [http://orbited.org/] – a server process which provides “web socket proxying” support
as well as Javascript client-side implementations for supported
protocols.

		MorbidQ [http://www.morbidq.com/] – a simple (non-scalable) STOMP message queue for developers,
its primary advantage is that the message queue is built into the Orbited
server, so a simple config setting will enable and configure it

		TurboGears – serves the HTML widget which references the Orbited Javascript.
TurboGears does not connect to the MorbidQ service in this project, but
sending STOMP messages to the server can be implemented.

Software Install

Orbited provides a “web socket” mechanism that allows Javascript code
to connect to (defined) servers to recieve messages. The networking
protocol spoken by the Javascript code can be any implemented TCP protocol.
The following are the protocols commonly used with Orbited:

		STOMP [http://stomp.codehaus.org/], a simple streaming text format we will use here

		XMPP [http://xmpp.org/], such as spoken by jabberd

		IRC [http://en.wikipedia.org/wiki/Internet_Relay_Chat], an older protocol for internet chat

Orbited’s model means that with a simple Javascript plugin which speaks a
given protocol, your Javascript code can be connected to any server and
port on the Internet (with the proper Orbited configuration).

To install the Orbited framework in your VirtualEnv we need to install the
Orbited 0.7.10+ and Twisted [http://www.twistedmatrix.com/] 9.0+ packages. This will also pull in the
morbidq package.

(tgenv)$ easy_install twisted orbited

MorbidQ

MorbidQ provides an easily configured message broker/queue which is not intended
for large-scale production use. It uses the simple STOMP protocol.
If you want to stick with STOMP as you scale up, you can explore the
other STOMP servers available [http://www.morbidq.com/].

Note

There are (far) faster message queue engines than Morbid, but most of them use
the AMQP binary protocol. There is an experimental AMQP implementation for
Javascript available in Kamaloka-js [https://fedorahosted.org/kamaloka-js/]. It is suggested that you become
comfortable with real-time-web programming before switching to a full-featured
Queue server.

To configure MorbidQ and Orbited, you need a config file. Something like the
following, which we will save as “chat.ini” in our “rtchat” project’s
directory.

[listen]
this is the server which provides the socket-proxy for javascript
http://:9000
the following enables the MorbidQ STOMP Message Queue
stomp://:61613

[access]
allow incoming HTTP requests on port 9000 to connect to
localhost:61613 (i.e. the MorbidQ STOMP server)
The * refers to the
* -> localhost:61613

[global]
session.ping_interval = 20

You can now run Orbited with the embedded MorbidQ queue with the following
command:

(tg2env)$ orbited --config=chat.ini

You should see messages telling you that Orbited/MorbidQ is listening on the
defined ports. You can hit CTRL-C to stop the server, though we’ll want to
use it in a moment, so you’ll likely want to leave it running and start
another console.

Chat View (HTML)

We are going to be very simplistic with our chat widget in our first attempt.
We’ll simply dump the text which is sent to the server into a div node. The
view looks like this:

<?python
we pull some values out of TurboGears config-file, with defaults
for our tutorial settings.
from simplejson import dumps as d
orbited_server = config.get('orbited_server', 'localhost')
orbited_port = config.get('orbited_port', 9000)
stomp_server = config.get('stomp_server', 'localhost')
stomp_port = config.get('stomp_port', 61613)
orbited_files = 'http://%s:%s/static'%(orbited_server, orbited_port)
?>
 <div id="chat">
 <h2>Real-time Chat</h2>
 <div class="chat-trace">
 </div>
 <div class="chat-entry">
 Chat:
 <input class="chatter" />
 <button class="chat-trigger">Send</button>
 </div>
 </div>

Orbited/STOMP Javascript Setup

We are going to use JQuery for our javascript framework. Here we use the
Google javascript APIs version of the library:

<script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js"></script>

The JSON javascript library provides for safe JSON parsing, that is, it
actually parses the JSON data rather than doing an unsafe “eval” on the
code. We linked it into our “public” directory above.

<script type="text/javascript" src="${orbited_files}/JSON.js"></script>

The Orbited javascript library implements the “proxied socket” mechanism
which connects to the Orbited server we started above. We’ll use Orbited’s
proxy-socket to connect to the MorbidQ server via STOMP. We configure the
Orbited client before we import the STOMP client library as the STOMP
client library references “TCPSocket” as seen here.

<script type="text/javascript" src="${orbited_files}/Orbited.js"></script>
<script type="text/javascript">
 // This line is required to allow our chat server and this
 // page to operate on different ports...
 document.domain = document.domain;
 // Establish the port and server for the Orbited server
 Orbited.settings.port = 9000;
 Orbited.settings.hostname = ${simplejson.dumps(chat_server)};
 // Enable streaming operation
 Orbited.settings.streaming = true;
 // This object is referenced by stomp.js
 TCPSocket = Orbited.TCPSocket;
</script>
<script type="text/javascript" src="${orbited_files}/protocols/stomp/stomp.js"></script>

The Chat Client

The chat client we show here is extremely simplistic. It is intended to show
you the minimum required to get messages flowing across the MorbidQ server.

<script type="text/javascript">
 var add_message = function(text) {
 var node = $('<div class="chat-message"></div>');
 node.append(text);
 $('.chat-trace').append(node);
 };
 $(document).ready(function() {
 stomp = new STOMPClient();
 stomp.onconnectedframe = function(frame) {
 stomp.subscribe("/topic/chat");
 };
 stomp.onmessageframe = function(frame) {
 add_message(frame.body);
 };
 stomp.connect(${d(stomp_server)},${d(stomp_port)});
 $('.chat-entry .chat-trigger').click(function() {
 var chatter = $('.chat-entry .chatter');
 var value = chatter.attr('value');
 if (value.length) {
 stomp.send(value, "/topic/chat");
 chatter.attr('value', '');
 }
 });
 });
</script>

Testing and Revision

You should now be able to start your TurboGears server, browse to
http://localhost:8080 and start chatting. Your messages should show up
in the chat-trace DIV as you enter them.

You will immediately notice problems with the chat system, some obvious
enhancements:

		messages should include the user’s chosen nickname

		the “enter” key should be hooked to send chat messages

		it would be nice to log the messages on the server

		you would normally use JSON.stringify() and JSON.parse() to send JSON
structured messages

		you likely want to implement some form of security

There are a number of callbacks of the STOMP object that you may wish to
override to perform basic configuration and the like:

		stomp.onopen() – called on initialization of the STOMP connection

		stomp.onclose(code) – connection was lost with an error-code
describing the reason

		stomp.onerrorframe(frame) – error-describing frame was recieved
* frame.body contains the payload

		stomp.onconnectframe(frame) – called when the connection to the server
has been set up

		stomp.onmessageframe(frame) – a (normal) message was received from
the server, frame.body is normally a JSON payload, but can be whatever
the sender has put into the body

The methods to control the STOMP object are:

		stomp.reset() – force the STOMP connection to reset/reconnect

		stomp.connect(server, port) – connect to the given address

		stomp.send(payload, channel) – send the given payload to the
given channel

		stomp.subscribe(channel) – subscribe to messages sent to a given
channel (onmessageframe(frame) will begin getting called).

What’s Next?

		Moksha

Note

The code on this page is loosely based on Django, Orbited, Stomp and Co. [http://mischneider.net/?p=125]

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/movie_form_3.png
New Movie

Movie Title

Year

Release Date

Genre

Description

Please enter the full title of the movie

Please enter the year this movie was made

09-02-22

("choose

Please pick the exact release date

Action & Adventure [Please choose the genre of the movie.

Please provide a short description of the plot.

modules/pylons/controllers_xmlrpc.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Modules »

pylons.controllers.xmlrpc – XMLRPCController Class

The base WSGI XMLRPCController

Module Contents

		
class pylons.controllers.xmlrpc.XMLRPCController

		XML-RPC Controller that speaks WSGI

This controller handles XML-RPC responses and complies with the
XML-RPC Specification [http://www.xmlrpc.com/spec] as well as
the XML-RPC Introspection [http://scripts.incutio.com/xmlrpc/introspection.html]
specification.

By default, methods with names containing a dot are translated to
use an underscore. For example, the system.methodHelp is handled
by the method system_methodHelp().

Methods in the XML-RPC controller will be called with the method
given in the XMLRPC body. Methods may be annotated with a signature
attribute to declare the valid arguments and return types.

For example:

class MyXML(XMLRPCController):
 def userstatus(self):
 return 'basic string'
 userstatus.signature = [['string']]

 def userinfo(self, username, age=None):
 user = LookUpUser(username)
 response = {'username':user.name}
 if age and age > 10:
 response['age'] = age
 return response
 userinfo.signature = [['struct', 'string'],
 ['struct', 'string', 'int']]

Since XML-RPC methods can take different sets of data, each set of
valid arguments is its own list. The first value in the list is the
type of the return argument. The rest of the arguments are the
types of the data that must be passed in.

In the last method in the example above, since the method can
optionally take an integer value both sets of valid parameter lists
should be provided.

Valid types that can be checked in the signature and their
corresponding Python types:

'string' - str
'array' - list
'boolean' - bool
'int' - int
'double' - float
'struct' - dict
'dateTime.iso8601' - xmlrpclib.DateTime
'base64' - xmlrpclib.Binary

The class variable allow_none is passed to xmlrpclib.dumps;
enabling it allows translating None to XML (an extension to the
XML-RPC specification)

Note

Requiring a signature is optional.

		
__call__(environ, start_response)

		Parse an XMLRPC body for the method, and call it with the
appropriate arguments

		
system_listMethods()

		Returns a list of XML-RPC methods for this XML-RPC resource

		
system_methodSignature(name)

		Returns an array of array’s for the valid signatures for a
method.

The first value of each array is the return value of the
method. The result is an array to indicate multiple signatures
a method may be capable of.

		
system_methodHelp(name)

		Returns the documentation for a method

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/TwForms.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Getting Started »

Creating and Validating Forms

TurboGears relies on ToscaWidgets for Forms building and validations.
Since version 2.2 TurboGears uses ToscaWidgets2, this is an introduction
on using ToscaWidgets2 for building and validating forms, a more complete
documentation is available on the
ToscaWidgets2 Documentation [http://tw2core.readthedocs.org/en/latest/index.html#] itself.

Displaying Forms

To create a form you will have to declare it specifying:

		the form action (where to submit the form data)

		the form layout (how the form will be displayed)

		the form fields

The action can be specified as an attribute of the form itself, while the layout
must be a class named child which has to inherit from tw2.forms.BaseLayout.
Any of tw2.forms.TableLayout or tw2.forms.ListLayout will usually do, but you
can easily write your own custom layouts. The form fields can then be specified
inside the child class.

import tw2.core as twc
import tw2.forms as twf

class MovieForm(twf.Form):
 class child(twf.TableLayout):
 title = twf.TextField()
 director = twf.TextField(value='Default Director')
 genres = twf.CheckBoxList(options=['Action', 'Comedy', 'Romance', 'Sci-fi'])

 action = '/save_movie'

To display the form we can return it from the controller where it must be rendered:

@expose('tw2test.templates.index')
def index(self, *args, **kw):
 return dict(page='index', form=MovieForm)

and display it inside the template itself.
Any field of the form can be filled using the value argument passed to the
display function. The values provided inside this argument will override the
field default ones.

<div id="getting_started">
 ${form.display(value=dict(title='default title'))}
</div>

When submitting the form the save_movie controller declared in the action
attribute of the form will receive the submitted values as any other provided
GET or POST parameter.

@expose()
def save_movie(self, **kw):
 return str(kw)

Validating Fields

ToscaWidgets2 is able to use any FormEncode validator for validation of
both fields and forms. More validators are also provided inside the
tw2.core.validators module.

To start using validation we have to declare the validator for each form field.
For example to block submission of our previous form when no title or director
is provided we can use the tw2.core.Required validator:

class MovieForm(twf.Form):
 class child(twf.TableLayout):
 title = twf.TextField(validator=twc.Required)
 director = twf.TextField(value="Default Director", validator=twc.Required)
 genres = twf.CheckBoxList(options=['Action', 'Comedy', 'Romance', 'Sci-fi'])

 action = '/save_movie'

Now the forms knows how to validate the title and director fields,
but those are not validated in any way.
To enable validation in TurboGears we must use the tg.validate decorator
and place it at our form action:

@expose()
@validate(MovieForm, error_handler=index)
def save_movie(self, *args, **kw):
 return str(kw)

Now every submission to /save_movie url will be validated against
the MovieForm and if it doesn’t pass validation will be redirected
to the index method where the form will display an error for each field
not passing validation.

More about TurboGears support for validation is available inside the
FormEncode @validate, and TurboGears Validation page.

Validating Compound Fields

Suppose that you are afraid that people might enter a wrong director name
for your movies. The most simple solution would be to require them to
enter the name two times to be sure that it is actually the correct one.

How can we enforce people to enter two times the same name inside our form?
Apart from fields, ToscaWidgets permits to set validators to forms.
Those can be used to validate form fields together instead of one by one.
To check that our two directors equals we will use the
formencode.validators.FieldsMatch validator:

import tw2.core as twc
import tw2.forms as twf
from formencode.validators import FieldsMatch

class MovieForm(twf.Form):
 class child(twf.TableLayout):
 title = twf.TextField(validator=twc.Required)
 director = twf.TextField(value="Default Director", validator=twc.Required)
 director_verify = twf.TextField()
 genres = twf.CheckBoxList(options=['Action', 'Comedy', 'Romance', 'Sci-fi'])

 action = '/save_movie'
 validator = FieldsMatch('director', 'director_verify')

Nothing else of our code needs to be changed, our /save_movie controller
already has validation for the MovieForm and when the form is submitted
after checking that there is a title and director will also check that
both director and director_verify fields equals.

Relocatable Widget Actions

Whenever you run your application on a mount point which is not the root of
the domain name your actions will have to poin to the right path inside the
mount point.

In TurboGears2 this is usually achieved using the tg.url function which
checks the SCRIPT_NAME inside the request environment to see where
the application is mounted. The issue with widget actions is that widgets
actions are globally declared and tg.url cannot be called outside of
a request.

Calling tg.url while declaring a form and its action will cause a crash
to avoid this TurboGears provides a lazy version of the url method which
is evaluated only when the widget is displayed (tg.lurl):

from tg import lurl

class MovieForm(twf.Form):
 class child(twf.TableLayout):
 title = twf.TextField(validator=twc.Required)
 director = twf.TextField(value="Default Director", validator=twc.Required)
 genres = twf.CheckBoxList(options=['Action', 'Comedy', 'Romance', 'Sci-fi'])

 action = lurl('/save_movie')

Using tg.lurl the form action will be correctly written depending on
where the application is mounted.

Please pay attention that usually when registering resources on ToscaWidgets (both
tw1 and tw2) it won’t be necessary to call neither tg.url or tg.lurl as
all the Link subclasses like JSLink, CSSLink and so on will already
serve the resource using the application mount point.

Automatic Form Generation

TurboGears provides support for forms autogeneration from models using Sprox.

Those features are documented inside the TurboGears Autogenerated Forms Overview page.

Back to ToscaWidgets1

Some projects may still want to rely on ToscaWidgets1 due to legacy code or
due to external packages which are not available on ToscaWidgets2.

If you want to switch back your entire project to ToscaWidgets1, just remove the:

base_config.prefer_toscawidgets2 = True

from your config/app_cfg.py.

If you want to use both ToscaWidgets2 and ToscaWidgets1 remove the prefer_toscawidgets2 line
and replace it with:

base_config.use_toscawidgets = True
base_config.use_toscawidgets2 = True

Please keep in mind that recent versions of sprox, tgext.crud and tgext.admin
all rely on ToscaWidgets2 if it is available inside your virtualenv so remember to have
ToscaWidgets2 enabled inside your project or remove it from your virtual environment
if you want to use those modules.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

deprecated/ToscaWidgets/Cookbook/ExtSingleSelectCombo.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		ToscaWidgets Cookbook »

ExtJS SingleSelectCombo Widget

Installation

easy_install tw.extjs

Usage

The SingleSelectCombo widget is a widget derived from the
SingleSelectField widget and thus supports all parameters and
validation rules supported by a SingleSelectField. In addition it
renders the widget as a ComboBox allowing autocomplete and write ahead
features. All defined in the ExtJS ComboBox widget API can be used by
extending this widget. In its present form, in addition to the
SingleSelectField parameters, it supports the following:

Mandatory Parameters:

		id The element id of the select field element.

Optional Parameters:

		
		typeAhead Whether the remaining portion of the field will be

		automatically populated by the first matching option. (Default:
True)

		
		triggerAction Action to execute when the trigger field is

		activated. (Default: ‘all’)

		width The width of the field in px. (Default: ‘auto’)

		
		forceSelection Whether to restrict the user to enter values

		available in the options list. Setting it to False will allow
the user to enter arbitrary values in the field. (Default: True)

In its simplest form the widget can be instantiated as follows:

from tw.extjs import SingleSelectCombo

select_options = [('AL','Alabama'), ('AK','Alaska'), ('AZ','Arizona'), ('WY','Wyoming')]

ssc = SingleSelectCombo(id="states", options=select_options)

It can be then served up to the user via a controller method like
this:

@expose('mypackage.templates.myformtemplate')
def entry(self, **kw):
 pylons.c.field = ssc
 return dict(value=kw)

The widget can then be displayed in the template like this:

${tmpl_context.field(value=value)}

This is how it looks like in the browser:

[image: example SingleSelectCombo Field]

Todo

Difficulty: Medium. extend tutorial to include the SingleSelectCombo widget in a Form

Todo

Difficulty: Medium. extend the tutorial to populate the options list by sending a JSON request

Todo

Difficulty: Medium. extend the tutorial to have form field validation

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/BasicMoves.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Getting Started »

TurboGears 2 At A Glance

		Status:		Work in progress

Introducing MVC (Model View Controller)

This tutorial is an extension of the tutorial Quickstarting A TurboGears 2.2.2 Project.
In order to follow along properly, you should have already completed
that tutorial, and be serving your project with:

paster serve --reload development.ini

TurboGears 2, like TurboGears 1 and many other modern web frameworks,
uses a pattern called “Model View Controller”, or “MVC” pattern.
Basically the MVC pattern is an attempt to separate the code which
handles what the user sees (the view) from the code that responds to
user actions (the controller) and code that changes the state of data
(the model). For more in depth information on the MVC pattern, we
recommend you read the Wikipedia page [http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller] on it, and follow the links
it provides.

The goal of the MVC pattern is to help you create more flexible
software, and since web-applications tend to have more user-interface
changes than anything else, it’s particularly designed so that you can
change the view code without necessarily having to change anything
else.

Here we’ll explore some of the different approaches to displaying the
obligatory “Hello World” text. In doing so, we’ll introduce you to
the V and C of MVC, the view and controller.

Hello World Using Template

In this first approach, we’ll use the existing template that was
provided by the quickstart application, and add a “Hello World”
headline.

To keep the tutorial small and simple, we make an assumption that you
already have some knowledge about html tags.

Edit helloworld/templates/index.html, and add a <h1> tag like this:

...
<body>
<h1>Hello World</h1>
...
</body>

The <h1> tag should be added just after the <body> tag of the
template, so that the template is still a valid HTML file.

You can now point your browser at http://localhost:8080 to see the
change. You should see “Hello, world!” text in h1 size.

Hello World Using A Static File

Open a new file, edit the content as a simple html file:

<html>
<body>
<h1>Hello World</h1>
</body>
</html>

and save it to helloworld/public/hello.html.

Browse http://localhost:8080/hello.html and see the page.

Hello World Using A Controller

The controller defines how the server responds to user actions. In
the case of a web framework this almost always means HTTP requests of
some kind (either directly initiated, or fired off by JavaScript as
part of an Ajax app).

TurboGears 2 uses an Object Publishing system to determine what
controller method will be called for a particular URL. Basically you
have RootController, with @expose’d objects which define your URL
hierarchy. This means that the index method of your RootController is
called when you go to /index (or even just /). We can tell our
controller to respond at a new URL by defining a new method.

In this case we will add a new method called hello, which just returns
a string. TurboGears 2.2.2 allows us to bypass the template process
and return a string directly to the http response, which will be returned to the
browser directly.

Edit helloworld/controllers/root.py:

skipped various imports here, these two are used in example below
(.. note:: these should already be included by quickstart code)
from helloworld.lib.base import BaseController
from tg import expose

class RootController(BaseController):

 ### skipped index method are here!
 # (there are also a few other items above it)

 @expose()
 def hello(self):
 return "Hello World from the controller"

Browse http://localhost:8080/hello to see the change.

Hello World Combining Template With Controller

So far, we’ve been returning plain text for every incoming request.
But you might have noticed that the index method does a little more.
This time we’ll use a template, and pass it a variable using a
dictionary.

To save a little time, we are re-using the existing index.html
template.

skipped other imports
from helloworld.lib.base import BaseController
from tg import expose

class RootController(BaseController):

 ### skipped index and hello methods are here!

 @expose('helloworld.templates.index')
 def new_hello(self):
 return dict(hello="Hello World via template replacement")

TurboGears sees that the controller returned a dict, and that there’s
a template name defined in the @expose decorator. TurboGears renders
that template, turning the elements of the dictionary into local
variables in the template’s namespace. That means that we’ve now got
a ‘hello’ variable in our template which we can use when we call the
new_hello method.

The @expose decorator’s first argument is the template name given
in “dotted” notation just like a python module. TurboGears 2 uses the
Genshi [http://genshi.edgewall.org] templating system by default, which uses the filename
extension of .html. So, in this case, ‘helloworld.templates.index’,
translates to the file helloworld/templates/index.html.

So let’s edit helloworld/templates/index.html to replace the h1 tag we
added earlier with:

<h1 py:content="hello">hello variable replaces this text</h1>

Browse http://localhost:8080/new_hello to see the change.

The py:content attribute we added to the <h1> tag above is an
example of a Genshi template directive [http://genshi.edgewall.org/wiki/Documentation/0.5.x/xml-templates.html#id7]. It directs genshi to
replace the content of the h1 tag with the value of the hello
variable.

For each page on your site, you could have a controller method with a
corresponding template file specified using the @expose decorator.

To create more skeletons for your templates, just copy the default index.html
template that was generated when your project was created.

A Controller can return a dictionary to pass variables and other dynamic
content to the template.

Not every template has dynamic content and therefore may not need arguments. In
that case, just return an empty dictionary:

@expose(template="helloworld.templates.index")
def index(self):
 return dict()

Oops, we made a mistake! We’re trying to use variables in index.html
which we’re not creating in our controller. But, let’s take advantage
of this mistake to take a quick look at the interactive debugger page
that TurboGears 2.2.2 gives you when you get a python exception in
your code.

Browse http://localhost:8080/ to see the error. Here is a screenshot.

[image: ../_images/basicmoves_oops.png]
This gives you an opportunity to explore the full stack trace
interactively. If you click on the little + icon, you can see what
local variables are set at that frame in the call stack, and you can
even use the text entry provided there to type in some python code to
test what’s happening at that level.

There is also a >> link near each line of source code, which allows
you expand that source code, and see a few surrounding lines. The
view link lets you view the whole source code file.

Here is a screenshot after scrolling near the bottom of the debugger
window, clicking the >> link near <Expresion u’hello’>, and the +
icon after lookup_name. To really confirm what was happening, we
also entered a python command to look at the contents of the “data”
variable (this is where lookup_name checks for template variables to
display).

[image: ../_images/basicmoves_debug_expanded.png]
In this case, we can see that we are trying to use the “hello”
variable which is not defined. To fix the problem, we need to pass
“hello” to our index method as well.

@expose(template="helloworld.templates.index")
def index(self):
 return dict(hello='Hello variable from index')

The interactive debugger is actually something that TurboGears 2 got
“for free” since it is now based on the Pylons [http://www.pylons.org] framework. You can
read more about the interactive debugger here [http://pylonsbook.com/en/1.0/tracking-down-problems-and-handling-errors.html].

Hello World Using Flash

Here we are going to use a builtin function that TurboGears supplies
you with called “flash”. This function works in conjunction with the
default templates that quickstart provided you with to show a
highlighted message to the end user. The “flash” function has no
relation to adobe/macromedia flash player.

To use it, we will modify our index method one more time. Edit
helloworld/controllers/root.py, and add a ‘flash’ statement:

flash("Hello World")

Below is the complete index method, including our fix for the “oops”
above.

skipped other imports
from helloworld.lib.base import BaseController
from tg import expose, flash

class RootController(BaseController):

 ### skipped index and hello methods are here!

 @expose('helloworld.templates.index')
 def index(self):
 flash("Hello World")
 return dict(hello="Hello World via template replacement")

Browse http://localhost:8080 to see the change.

Below is a brief screenshot of what our flash message looks like:

[image: ../_images/basicmoves_flash.png]
How did the flash message get included in the template? The
index.html template is actually an extension of the “master.html”
template, which includes a call to display the highlighted (flash)
message. The master.html template is referenced in index.html with
this line, near the top of the file:

<xi:include href="master.html" />

For a complete dissection of master.html, please check out the
page devoted to just that.

What Was Covered

Here we showed various ways of displaying messages to the user with
TurboGears, and gave a brief introduction to using templates. We also
learned a little about Controllers, and got introduced to the MVC
concept (Model View Controller). We just scratched the surface on the
V (as in View) and C (as in
Controller) parts here...

and of course, the next step in the tutorial path!

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/flot3.png
] sin.
costo)
e

2 ™ 3mi2
‘Setting various options

misc.html

 Navigation

 		
 index

 		
 modules |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

Misc To Do Items From The Docs

Configuration

Todo

Difficulty: Medium. Understand “variable_provider”: you define
tg.config[‘variable_provider’] = callable and that returns a
dict with all the variables you want in all templates.

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/7db400f92f652fd4/95c256ac817a5102?hl=en
How can I configure genshi?

Authorization/Authentication

Todo

Difficulty: Medium. add in notes regarding how to use repoze.who’s user_checker

Todo

Difficulty: Medium. Include these docs: http://groups.google.com/group/turbogears/browse_frm/thread/c2aa4cb5ed07f52d?hl=en
Everything there is to know about the current auth/identity in TG2

Todo

Difficulty: Medium. Include these docs: http://groups.google.com/group/turbogears/browse_frm/thread/3afbc13d88af57d3?hl=en TG2
repoze.who and multiple auth sources

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/f3c2c616f5530426?hl=en
Help with Authentication

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/54306a9fd9b76a7d?hl=en
How to check if the user is authorized for a controller or action

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/f6c61b5f1668e6d3?hl=en
Auth can now be configured via config [ini] files
percious: priority high

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/ba405adcabf4f78f?hl=en
Configuring LDAP authentication on turbogears2
percious: priority high on this one

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/4a87b275876647b6?hl=en
list of connected users?

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/9fab648428c20761?hl=en
login_handler

Todo

Difficulty: Medium. Include these docs: http://groups.google.com/group/turbogears/browse_frm/thread/f35ef3d347793682?hl=en
What’s wrong with predicates being “booleanized”

ToscaWidgets

Todo

Difficulty: Hard. TW2 usage documentation

Todo

Difficulty: Easy. Add note for “validator=Schema(allow_extra_fields=True)” for ToscaWidgets and RestController classes

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/33a64a06ee4020ce?hl=en
Upload images to a TG2 app with Dojo (Ajax style)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/bb07ff87d38367f0?hl=en
Best way to add fields on the fly to TW Forms?

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/ca5ddeabdc7cb517?hl=en
trying to inject Dojo resources with ToscaWidgets

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/72e106fc6512b1cb?hl=en
Toscawidgets form with multiple buttons
priority: low

Todo

Difficulty: Hard. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/a691ae9d3b31138d?hl=en
Flash Widget

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/7d5a07b4a21d7226?hl=en
Visitor IP & pre-populated toscawidget field from database

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/be2939380bfe0f2b?hl=en
Using ImageButton() as submit throws an error

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/c721e2d15bb2c134?hl=en
Return to form after custom validation and keep form data?

Controllers

Todo

Difficulty: Medium. Document @restrict decorator, restricts request types that a given method will respond to

Todo

Difficulty: Medium. incorporate custom routes docs from here http://simplestation.com/locomotion/routes-in-turbogears2/
percious: There is a better way of doing this by overriding _dispatch in 2.0
so I would wait until I re-write RoutedController with _dispatch before documenting this

Todo

Difficulty: Hard. RestController requires that all data come in as a key/value pair, can’t just get raw POST body.
percious: not sure what you mean by this. You want to provide RestController with just a blob of data?
jorge: yes, this was the complain from europe74 this goes against the atom protocol http://tools.ietf.org/html/rfc5023#section-9.2
I think that this needs to be a trac ticket, not a doc todo

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/ad87eeef701ed1b1?hl=en
exception object in ErrorController

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_thread/thread/3ba7ca9d35fd9d75?fwc=1
mounting test-controllers/getting root-controller instance?

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/b97ee4faeb6acd53?hl=en
CRC does wacky pluralization
percious: this should probably be a trac ticket, not a doc todo.

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/d4635f5eb2ad1dc4?hl=en
how could a controller method know whether it’s invoked as an error_handler or directly

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/9b451d82b410f844?hl=en
TG2 serveFile equivalent?

Todo

Difficulty: Medium. Include these docs: http://groups.google.com/group/turbogears/browse_frm/thread/1c4158ad3035082c?hl=en
Secure Static Files TG2

Installation

Todo

Difficulty: Medium. http://turbogears.org/2.0/docs/main/DownloadInstall.html references
ttp://www.turbogears.org/2.0/downloads/current/tg2-bootstrap.py and this needs to be updated.
Or does it? request from percious, the code to generate the installer currently has
tg.devtools/scripts/_installer.py and it’s fixed at 2.0 only update needed is to hg

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/263233e9a8081c7a?hl=en
easy_install and offline installation in virtualenv og TG2
percious: we need to add an offline install section to deployment. This should not be very difficult, it’s basically 2 commands.

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/bbf8c847e77ca740?hl=en
TG2 on Webfaction - Make TG not see the extra part of the URL

Database

Todo

Difficulty: Hard. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/92581851b407cdd6?hl=en migrate
priority: high

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/57229bc8677f0e6b/a9843e77e67af793?hl=en Problem
with accessing attributes after transaction.commit()

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/d64d27b2cf54bb2e?hl=en
Suggestion about how turbojson handle SQLAlchemy object circuit jorge: this seems like a feature request rather than a docs item

Todo

Difficulty: uncertain. Document how SA+TG+Transaction manager work together.

Templating

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/4fc2abf3b91b9ce3?hl=en
tg_template is now override_template

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_thread/thread/1174aad1b3350b5c
TurboGears2: Overriding meta element on child template.

Review

Todo

Difficulty: Medium. critique the toc, and other organization.

I think the toc has an airy aroma, with a hint of cherry and oak. It is not yet
aged to perfection, but will mature as time goes on. This todo will be open
for some time.

Todo

Difficulty: Medium: the TG logo is missing in the new theme.
It’s hard to find a place for it where it does not disturb in the new layout.

Todo

Difficulty: Hard. add prerequisites to all pages - well, especially tutorials

Todo

Difficulty: Hard. Compare Our Docs to Django Docs <http://docs.djangoproject.com/en/dev/,
see where we can do better. Also compare to pylons book!

Todo

Difficulty: Medium. laurin is following the tutorial path.
right now, I created a tutorials directory under _static.
perhaps, all tutorial images, etc should go in there? just a thought.

Todo

Difficulty: Medium. make docs more linky. provide link to pylons,
and why tg2 is now based on it. eventually, I’d really like to see
links to pylonsbook for specific “more information”, and how turbogears is different/expands upon it

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/1f9853eac52decd5?hl=en
Rolling back transactions in TG2 (I think this is documented, need to double check)

Todo

Difficulty: Hard. Resolve all tickets that match this query: http://trac.turbogears.org/query?status=new&status=assigned&status=reopened&component=Documentation&order=id

General

Todo

Difficulty: Medium. include links to “read more” - especially true of
tutorials that just scratch the surface (this kind of replaces the “more linky” todo)

Todo

Difficulty: Medium. parts is parts: the text on the frontgage of a quickstart says:
“standing on the shoulders of giants, since 2007” - provide a main place to
see what components are used (by default) in turbogears.
don’t be afraid to mention TG2 is built on pylons now, and link to the pylonsbook for more info

Todo

Difficulty: Hard. only after showing the default components - show what components can be easily switched in TG2, and how

Todo

Difficulty: Medium. Add lifecycle of TG project in the getting to know TG section.

Todo

Difficulty: Medium. make sure that override_template is more visible, and provide a tutorial on how to use it

Todo

Difficulty: Medium. http://code.google.com/p/tgtools/source/browse/projects/tgext.admin/trunk/tgext/admin/tgadminconfig.py#114 << how to override tgext.admin controllers properly

Todo

Difficulty: Medium. Include these docs: http://groups.google.com/group/turbogears/browse_frm/thread/9b07a8d34611f5d7?hl=en
TG2 virtualenv MySQLdb ImportError.
Should we be providing documentation to debug MySQLdb problems? Seems out of scope.

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/5dd5b090eb0d4c49?hl=en
List of Quickstarted files that are safe to remove
percious: I think this is a terrible idea to document

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/ae89ea2b3a354bc2?hl=en
Lukasz Szybalski’s docs: http://lucasmanual.com/mywiki/TurboGears2

Todo

Difficulty: Medium. Document the code_ext extension for Sphinx (docs/code_ext.py)
TG documentation writers should be aware of this extension, and how to use it.

Other

Todo

Difficulty: Medium. Include these docs: http://groups.google.com/group/turbogears/browse_frm/thread/4023f34fd114121e?hl=en
Trouble with WebHelpers

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/b718855725da557d?hl=en
tgext and i18n

Todo

Difficulty: Hard. Performance deployment enhancements pretty much explain all the YSlow issues
* serving static files from the frontent, /config/app_cfg.py base_config.serve_static = False
* compressing JS/html/CSS,etc

Todo

Difficulty: Medium. Add shell script which validates environment for building docs

Todo

Difficulty: Medium. main/ToscaWidgets/forms.rst uses the archive directive. This outputs an absolute path relative to root on the machine that builds the docs. Fix the code so it is relative to _build/html/_static

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/jsunit.png
http// localhost:8080/itemselectortest Run

Trace level no tracing ~| [Close old trace window on new run

Status: Done (7.793 seconds)
Progress: [

Runs: 13 Errors: 0 Failures: 0

Errors and failures:

Show selected Show all

_images/field.png
D (@ 03 v caost0801moves T Giloors Q) @0

Welcome to TurboGears 2

The Python web metaframework

Create New Movie

st T

modules/pylons/middleware.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Modules »

pylons.middleware – WSGI Middleware

Pylons’ WSGI middlewares

Module Contents

		
class pylons.middleware.StatusCodeRedirect(app, errors=(400, 401, 403, 404), path='/error/document')

		Internally redirects a request based on status code

StatusCodeRedirect watches the response of the app it wraps. If the
response is an error code in the errors sequence passed the request
will be re-run with the path URL set to the path passed in.

This operation is non-recursive and the output of the second
request will be used no matter what it is.

Should an application wish to bypass the error response (ie, to
purposely return a 401), set
environ['pylons.status_code_redirect'] = True in the application.

		
__init__(app, errors=(400, 401, 403, 404), path='/error/document')

		Initialize the ErrorRedirect

		errors

		A sequence (list, tuple) of error code integers that should
be caught.

		path

		The path to set for the next request down to the
application.

		
pylons.middleware.ErrorHandler(app, global_conf, **errorware)

		ErrorHandler Toggle

If debug is enabled, this function will return the app wrapped in
the WebError EvalException middleware which displays
interactive debugging sessions when a traceback occurs.

Otherwise, the app will be wrapped in the WebError
ErrorMiddleware, and the errorware dict will be passed into
it. The ErrorMiddleware handles sending an email to the address
listed in the .ini file, under email_to.

note:

		The errorware dictionary is constructed from the settings in the DEFAULT section of development.ini. the recognised keys and settings at initialization are:

		
		error_email = conf.get(‘email_to’)

		error_log = conf.get(‘error_log’, None)

		smtp_server = conf.get(‘smtp_server’,’localhost’)

		error_subject_prefix = conf.get(‘error_subject_prefix’, ‘WebApp Error: ‘)

		from_address = conf.get(‘from_address’, conf.get(‘error_email_from’, 'pylons@yourapp.com‘))

		error_message = conf.get(‘error_message’, ‘An internal server error occurred’)

Referenced classes

Pylons middleware uses WebError to effect the error-handling. The two
classes implicated are weberror.errormiddleware and weberror.evalexception

Legacy

Changed in version 0.9.7: These functions were deprecated in Pylons 0.9.7, and have been superseded
by the StatusCodeRedirect middleware.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

deprecated/ToscaWidgets/ExistingLibraries.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		ToscaWidgets »

Existing ToscaWidgets Packages

ToscaWidgets has been around for a few years and has grown a significant
set of widget libraries. TW has grown from it’s simple roots defining
Form widgets to include a full suite of ajax enabled capabilities.
Recent versions of TW even support on-widget controllers which makes
it easy to encapsulate both server and client side code in the same
object. In addition to form functionality nearly every major JavaScript
library is wrapped in someway by ToscaWidgets.

Form Libraries

tw.forms

The form library that started it all. This library allows you to create
forms and fields with objects instead of raw html. Coupled with FormEncode
validation, this library provides a powerful tool for the creation of
validated forms for your application.

maintainers: Alberto Valverde, Chris Perkins, Diez B. Roggisch, Christoph Zwerschke

Notable Widgets:

		TableForm

		InputField

		CalendarPicker

tw.dynforms

This add-on for tw allows for more dynamic forms on your
web pages. This widget allows for some functionality like
autocompletion fields, as well as allowing for sub-forms
with the capability to grow or shrink based on user
needs.

maintainers: Paul Johnston, Chris Perkins, Joseph Tate

Notable Widgets:

		HidingTableForm

		AjaxLookupField

		GrowingTableFieldSet

JavaScript wrapping Libraries

Although most people associate ToscaWidgets with the ability
to create forms, the brunt of the development has gone into
wrapping existing JS libraries, making them easily available
to pages for further development. Here are a few JavaScript
libraries that you can use for this purpose.

tw.jquery

A wrapper for the popular jquery library. This library gives
you the ability to use jquery on your pages, and implements
a number of widgets to make it easier to render jquery enabled
components.

maintainers: Luke Macken, Christoph Zwerschke

		Notable Widgets:

		
		ActiveForm

		AutoCompleteField

		FlotWidget

		DynaTree

		TreeView

		UIDatePicker

tw.mootools

Mootools is a JavaScript library that took off from the Prototype
JavaScript library. Jonathan Schemoul has contributed a considerable
amout of functionality, some of which is used in his Paris Envies [http://www.parisenvies.com/] site.

maintainer: Jonathan Schemoul

Notable Widgets:

		SortableWidget

		KwickWidget

		SimpleGridWidget

		CalendarWidget

tw.extjs

This library wraps the 2.0.2 version of extjs. It is locked at this
version for licensing reasons and is not likely to change any time soon.
Use of this library is cautioned as there is no clear upgrade path.

maintainer: Chris Perkins

tw.yui

This is a wrapper for the popular YUI javascript library. This library
wraps the version 2.x code and is periodically updated. There are limited
widgets for this library available, as it is mostly used for it’s ability
to inject YUI links into a page.

maintainer: Chris Perkins

Notable Widgets:

		AutoCompleteField

tw.openlayers

OpenLayers is a JavaScript library especially good for handling
the needs of Geospacial web pages. This library helps you to put
meaningful maps on your page. Coupled with TileCache, you can render
maps and data assocaited data much more easily.

		Notable widgets:

		
		Map

		Layer

		Navigation

		LayerSwitcher

maintainer: Sanjiv Singh

tw.prototype

needs maintainer

tw.mochikit

needs maintiner

JavaScript Testing Libraries

tw.yui

Again, yui is provided as a means to inject JavaScript resources into your
page. One of those resources is the yuitest framework, which is an excellent
way to unit test your client side JavaScript.

maintainer: Chris Perkins

tw.jsunit

A simple wrapper for the jsunit code that you may use to load the JS
framework required for getting your unit tests started.

maintainer: Sanjiv Singh

Simile Libraries

Simile is a library from MIT that helps display time-based data. We have
created a few libraries to make this process a bit easier.

tw.timeline

Wraps the timeline library, which can plot events over time whether
the time for the events is continuous or point-related.

maintainer: Chris Perkins

tw.timeplot

Wraps the timeplot library, which can plot datapoints over time.

maintainer: Chris Perkins

One-Off Libraries

tw.recaptcha

ReCaptcha packaged as ToscaWidgets

tw.rating

Ajax star rating system

tw.analytics.google

Google Analytics wrapped by ToscaWidgets

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/movie_form_6.png
New Movie

Movie Title Please enter a value
Year 1776 | Please enter a number that is 1900 or greater
Release Date 220212009 ("choose

Please enter a month from 1 to 12

main/DownloadInstall.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

TurboGears 2.2.2 Standard Installation

This document is intended to get the new developer up-and-running
quickly with TurboGears 2.2.2. It assumes that you will follow the
recommended installation procedures and preferred setup.
Alternate Installation Process covers non-standard installation procedures
such as for 32-bit Windows or Mac OSX Install.

The setup here is a development environment which uses the Paste
web-server which is easy to set up, but isn’t normally used in
production save for very low-traffic sites. For instructions on
setting up a production environment, see Deployment.

Recommended Installation Environment

We will assume here that you are installing into this environment:

		Linux Operating System (Debian or RPM based)

		GCC (or another C compiler for your platform, XCode for OS-X,
Mingw32 or VisualStudio for Win32)

		Python 2.5 or 2.6 (see also Python 2.4 Installation)

		Python headers for building C extensions (often split into a “dev”
package on Linux distributions)

		SetupTools [http://pypi.python.org/pypi/setuptools] (version 0.6c9) (or Distribute [http://pypi.python.org/pypi/distribute] 0.6c9 or above)

		a VirtualEnv isolated environment

System Package Installation

For Debian/Ubuntu systems:

$ sudo apt-get install build-essential python-dev python-setuptools python-virtualenv

For RHEL systems (see Python 2.4 Installation):

$ su -c 'rpm -Uvh http://download.fedora.redhat.com/pub/epel/5/i386/epel-release-5-3.noarch.rpm'
$ su -c 'yum install gcc sqlite-devel'
$ su -c 'yum --enablerepo=epel-testing install python-virtualenv'

For Fedora systems:

$ su -c 'yum install gcc sqlite-devel python-virtualenv'

For other operating systems, see Alternate Installation Process.

Installation for the Impatient

Here’s the whole process for the impatient. It sets up a VirtualEnv, installs
TurboGears 2.1 into the environment, creates a new quick-started project and
runs that project with the Paste web server:

$ virtualenv --no-site-packages -p python2.6 tg2env
$ cd tg2env/
$ source bin/activate
(tg2env)$ easy_install -i http://tg.gy/current tg.devtools
(tg2env)$ paster quickstart example
(tg2env)$ cd example/
(tg2env)$ python setup.py develop
(tg2env)$ nosetests
(tg2env)$ paster setup-app development.ini
(tg2env)$ paster serve development.ini
(tg2env)$ deactivate

Note

Hit CTRL-C to exit from the “paster serve” command.

Note

If you are using Python 2.4, such as on RHEL 5, see Python 2.4 Installation

Note

You might get an error at the end of the “paster quickstart” command if your LC_CTYPE environment variable is not correctly set

Explaining the Installation Process

Note

This section is just a longer explanation of the
“Installation for the Impatient” process above.

This sets up a Python 2.6 VirtualEnv, substitute -p python2.5 if you
wish to use that version. The use of –no-site-packages prevents
conflicts with any packages installed into the platform directories.
(See VirtualEnv for details on VirtualEnv)

Hint

Please note we are using tg2env as the name of the
virtual environment. This is simply a convention in our
documentation, the name of the virtualenv is up to you, and is
normally your project or product name, or a descriptive name
such as “testing”, “trunk” or “staging”.

$ virtualenv --no-site-packages -p python2.6 tg2env

Here we activate the VirtualEnv, the activation “switches into” the
isolated environment and makes future setup.py or easy_install operations
affect just this VirtualEnv.

$ cd tg2env/
$ source bin/activate

This command installs TurboGears 2.1 into the VirtualEnv. The -i argument
tells easy_install to lookup the packages involved by treating that page
as providing the index page which declares the appropriate package versions
(and provides links to them). The “current” URL fragment can be replaced
with, for instance, “2.1b1” to pull in precisely the first 2.1 beta. Your
projects will normally use a particular version of TurboGears.

(tg2env)$ easy_install -i http://tg.gy/current tg.devtools

A large number of packages will be installed. These are the officially
required packages which define TurboGears itself. The Paste package
provides the “paster” command, which we will use to set up an example project.

(tg2env)$ paster quickstart example
accept all defaults
(tg2env)$ cd example/

The following command will install your new package into your VirtualEnv and
will download a number of packages which are not technically part of TurboGears,
but which provide useful features for the quick-started application.

(tg2env)$ python setup.py develop
more stuff installed here
(tg2env)$ nosetests

The nosetests command runs the quickstarted application’s test-suite. This
step is optional, but is a good smoke-test to see if you have installed
correctly.

Note

Quick-Start has created a large number of files for you at this
point. You can Explore the QuickStarted Project
if you like.

Here we create our example application’s database (an SQLite database) and
then serve it on the default port (8080).

(tg2env)$ paster setup-app development.ini
(tg2env)$ paster serve development.ini

Point your web-browser at http://localhost:8080/ when satisfied that you are
running correctly, hit CTRL-C to exit from the tg2env VirtualEnv.

(tg2env)$ deactivate
$

The deactivate command (deactivate.bat on Win32) exits from the VirtualEnv.
You will need to reactivate the VirtualEnv to run TurboGears again (see
below). The presence of the VirtualEnv name in the brackets before your
prompt lets you know which environment is currently active.

Running the Installed Environment

Each time you want to work with your TurboGears install, you need to
re-activate the VirtualEnv.

$ cd tg2env/
$ source bin/activate
$ cd example/
(tg2env)$ paster serve development.ini

You will often wish to have the Paste server reload your Python code
when you change it (normally via an editor). To start the server
with reloading enabled use:

(tg2env)$ paster serve --reload development.ini

Upgrading TurboGears

To upgrade an existing TurboGears installation, activate the VirtualEnv and
pass the -U flag to easy_install with the “index” URL for the new version
to which you would like to upgrade:

easy_install -U -i http://tg.gy/current tg.devtools

which will update each dependency which has been upgraded. Note that it will
not uninstall the previous versions of the packages.

Install a Database Driver

TurboGears uses SQLAlchemy as its default ORM (Object Relational
Mapper) layer. SQLAlchemy maintains excellent documentation on all
the engines supported [http://www.sqlalchemy.org/docs/05/reference/dialects/index.html].

Hint

The installation of the database backend is a topic outside
of the scope of this document. Most Linux distributions can install
PostgreSQL [http://www.postgresql.org/] or MySQL [http://dev.mysql.com/] via a simple package-manager call. You will
often need to install a “-dev” package for the client library to be
able to build the database client library for Python.

Here are the easy_install commands for two of the most common free SQL
databases. We provide these here because they are very common, yet
the pypi [http://pypi.python.org] packages have different names than you might expect.

$ easy_install MySQL-python
$ easy_install psycopg2

SQLAlchemy also has support for PyGreSQL and the 0.6 version will support pg8000
which is a fully python driver for postgres. TG plans to support these when SA 0.6
is released.

Cygwin users can’t use sqlite as it does not include the necessary
binary file (sqlite3.dll). If you want to run Cygwin you’ll need
to install a different database.

What’s Next?

		If you are new to TurboGears you will likely want to continue with the
Quick Start Guide.

		If you are a TG1 user be sure to check out our
What’s new in TurboGears 2 page to get a
picture of what’s changed in TurboGears2.

		Alternate Installation Process
		32-bit Windows

		Mac OSX Install

		Linux Root Install

		Python 2.4 Installation

		Install Via PIP

		Source Install (Development Version)

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_static/hovercomment.png

modules/tgflash.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

tg.flash – Flash

Flash messaging system for sending info to the user in a non-obtrusive way

		
class tg.flash.TGFlash(cookie_name='webflash', default_status='ok')

		Flash Message Creator

		
tg.flash.get_flash()

		Get the message previously set by calling flash().

Additionally removes the old flash message.

		
tg.flash.get_status()

		Get the status of the last flash message.

Additionally removes the old flash message status.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Auth/whoini.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		Authentication and Authorization in TurboGears 2 »

Using who.ini

Once you have disabled your quickstart configuration
(see Disabling authentication and authorization), you may find yourself wanting to
use the who.ini configuration mechanism referenced in
most repoze.who documentation. This section describes how
to create a who.ini-based configuration that looks much
like the quickstart configuration you just disabled.

Since repoze.who is WSGI middleware, you will need to alter
your project’s project.config.middleware.py file to create
your middleware from your .ini file:

from repoze.who.config import make_middleware_with_config as make_who_with_config
...
 # Wrap your base TurboGears 2 application with custom middleware here
 app = make_who_with_config(
 app,
 global_conf,
 app_conf.get('who.config_file','who.ini'),
 app_conf.get('who.log_file','stdout'),
 app_conf.get('who.log_level','debug')
)

and add the following to your config file’s app:main section:

who.config_file = %(here)s/who.ini
who.log_level = debug
who.log_file = stdout

at this point, you are using the standard repoze.who configuration mechanism,
so should be able to follow most repoze.who documentation to complete your
configurations.

Quickstart via who.ini

If you would like to start off your customizations with something similar
to the repoze.who.quickstart mechanism, you can use standard mechanisms
to set up most of the machinery that the quickstart provides. Here is a
sample who.ini that provides much of the quickstart behaviour:

Sample of a who.ini file from which to begin configuring
this looks a lot like the "quickstart" application's setup,
minus the translation capability...

[plugin:auth_tkt]
Cookie-based session identification storage
use = repoze.who.plugins.auth_tkt:make_plugin
secret = 'this secret is not really very SECRET!'

[plugin:friendlyform]
Redirecting form which does login via a "post"
from a regular /login form
use = repoze.who.plugins.friendlyform:FriendlyFormPlugin
login_form_url= /login
login_handler_path = /login_handler
logout_handler_path = /logout_handler
rememberer_name = auth_tkt
post_login_url =
post_logout_url =

[plugin:sqlauth]
An SQLAlchemy authorization plugin
use = customwho.lib.auth:auth_plugin

Now the configuration starts wiring together the pieces
[general]
request_classifier = repoze.who.classifiers:default_request_classifier
challenge_decider = repoze.who.classifiers:default_challenge_decider

[identifiers]
We can decide who the user is trying to identify as using either
a fresh form-post, or the session identifier cookie
plugins =
 friendlyform;browser
 auth_tkt

[authenticators]
plugins =
 sqlauth

[challengers]
plugins =
 friendlyform;browser

[mdproviders]
Metadata providers are the things that actually look up a user's credentials
here we have a plugin that provides "user" information (md_plugin) and another,
which acts as an adapter to the first, to provide group/permission information.
plugins =
 customwho.lib.auth:md_plugin
 customwho.lib.auth:md_group_plugin

Note that “customwho” is the project name here. Also note that the who.ini
file references a custom Python module customwho.lib.auth which is where
we set up our repoze.who plugins in the normal manner for repoze.who:

"""Example of a simplistic, importable authenticator plugin

Intended to work like a quick-started SQLAlchemy plugin"""
from repoze.who.plugins.sa import (
 SQLAlchemyAuthenticatorPlugin,
 SQLAlchemyUserMDPlugin,
)
from repoze.what.plugins.sql import configure_sql_adapters
from repoze.what.middleware import AuthorizationMetadata

from customwho import model
auth_plugin = SQLAlchemyAuthenticatorPlugin(model.User, model.DBSession)
md_plugin = SQLAlchemyUserMDPlugin(model.User, model.DBSession)
_source_adapters = configure_sql_adapters(
 model.User,
 model.Group,
 model.Permission,
 model.DBSession,
)
md_group_plugin = AuthorizationMetadata(
 {'sqlauth': _source_adapters['group']},
 {'sqlauth': _source_adapters['permission']},
)

THIS IS CRITICALLY IMPORTANT! Without this your site will
consider every repoze.what predicate True!
from repoze.what.plugins.pylonshq import booleanize_predicates
booleanize_predicates()

This module creates a number of plugins which the who.ini file references.
It is also possible to configure plugins to accept parameters from the
who.ini configuration file (by specifying a plugin: section and providing
the parameters).

Warning

Without the booleanize_predicates() call you will find that almost all
TurboGears code will fail. TurboGears calls this when the authorization
stack is enabled (we have disabled it, you will recall), and most TurboGears
code was written to expect the authorization stack to be enabled.

Next Steps

		Adding OpenID Support – describes how to use a Repoze.who plugin to authenticate
users via the OpenID mechanism

References

		Pylons Repoze.who Cookbook [http://wiki.pylonshq.com/display/pylonscookbook/Authentication+and+Authorization+with+%60repoze.who%60] – describes how the repoze.who middleware
fitted into a Pylons application (TurboGears 2.2.2 is a Pylons application)

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/LogSetup.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Configuring and using the Logging System

		Status:		Unofficial

The Pylons logging wiki [http://wiki.pylonshq.com/display/pylonsdocs/Logging] has a well written and clearly documented logging HOWTO which this document will refer to. Each of the sections documented there have been tested under TG2 and they all are functional.

The logging system can be setup through the application ini file using the standard python logging [http://docs.python.org/lib/logging-config-fileformat.html] configuration layout.

To enable logging in your code, you will need to include the following:

import logging
log = logging.getLogger(__name__)

To prefix the logged message with your module name, use the special python variable __name__. Or, substitute __name__ for anything that makes sense to you.

Call the appropriate log level method on the Logger object to send a message to the log handler:

log.debug("This is a code debug")

By default, the root logger is set to INFO and will log to STDERR on the console.

To enable the viewing of ALL messages within the pylons and TG stacks you will need to add the following to your ini files:

[loggers]
keys = root

[logger_root]
level = NOTSET
handlers = console

[handlers]
keys = console

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatters]
keys = generic

[formatter_generic]
format = %(asctime)s,%(msecs)03d %(levelname)-5.5s [%(name)s] %(message)s
datefmt = %H:%M:%S

As an additional reference to the pylons write up, the RotatingFileHandler [http://docs.python.org/lib/node413.html] class is documented here:

[handler_accesslog]
class = handlers.RotatingFileHandler
args = ('access.log','a', 10000, 4)
level = DEBUG
formatter = accesslog

		class

		refers to a python class in the logging [http://docs.python.org/lib/module-logging.html] or logging.handlers [http://docs.python.org/lib/node410.html] module.

		args

		refers to the parameters required for the instantiation or initialization of the above class.

In this example 4 backup files are being kept and the log is rotated when the file size reaches 10000 bytes.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Extensions/Pluggable/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Extensions and Tools »

Pluggable Applications with TurboGears

TurboGears 2.1.4 introduced support for pluggable applications using tgext.pluggable.
tgext.pluggable is now the official supported way in TurboGears to create pluggable
reusable applications.
Currently only SQLAlchemy based applications are supported as pluggable applications.

Official documentation for tgext.pluggable can be found at: http://pypi.python.org/pypi/tgext.pluggable

Supported Features

Pluggable applications can define their own:

		controllers, which will be automatically mounted when the application is purged.

		models, which will be available inside and outside of the plugged application.

		helpers, which can be automatically exposed in h object in application template.

		bootstrap, which will be executed when setup-app is called.

		statics, which will be available at their own private path.

Mounting a pluggable application

In your application config/app_cfg.py import plug from tgext.pluggable and
call it for each pluggable application you want to enable.

The plugged package must be installed in your environment.

from tgext.pluggable import plug
plug(base_config, 'package_name')

Creating Pluggable Applications

tgext.pluggable provides a quickstart-pluggable command
to create a new pluggable applications:

$ paster quickstart-pluggable plugtest
Enter package name [plugtest]:
...

The quickstarted application will provide an example on how to use
models, helpers, bootstrap, controllers and statics.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

deprecated/ToscaWidgets/Cookbook/JSUnit.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		ToscaWidgets Cookbook »

JSUnit Widget

Installation

easy_install tw.jsunit

Usage

The JSUnit Widget can be used to create testpages for testing
javascript code using the JSUnit [http://www.jsunit.net/] javascript unit testing
framework. The package also includes a Runner Widget that sets up the
environment for running the JSUnit testRunner off a TurboGears webapp
as seen in the online testRunner example [http://www.jsunit.net/runner/testRunner.html?testpage=/runner/tests/jsUnitTestSuite.html].

The tutorial is divided into two parts. The first part demonstrates
the usage in testing custom javascript code used in a TurboGears
Application and the second part demonstrates the usage in testing
javascript code in a ToscaWidget.

Testing Javascript Code in A TurboGears App

When testing javascript code in a TG app, the JSUnit widget can be
used by creating two additional controller methods. One for running
the testRunner and the other for loading the testsuite. The method for
running the testRunner must instantiate and place the Runner widget in
the template context. Similarly the method for loading the testsuite
must instantiate the JSUnit widget. The following code block shows the
usage:

from tw.jsunit import JSUnit, Runner

class RootController(BaseController):

 @expose('samplejsunit.templates.runner')
 def runner(self, **kw):
 pylons.c.runner = Runner(testpage='/runpage')
 return dict()

 @expose('samplejsunit.templates.runpage')
 def runpage(self, **kw):
 pylons.c.jsunit = JSUnit()
 return dict()

We also need to create two templates. One for the testRunner and one
for the testsuite. The template for the testRunner should include the
runner widget:

${tmpl_context.runner(value=value)}

The template for the testsuite should include the JSUnit widget and
the javascript file containing the test functions. It should also
include javascript files where the functions to be tested are
defined:

<script type="text/javascript" src="/javascript/myfunctions.js" />
<script type="text/javascript" src="/javascript/mytests.js" />
${tmpl_context.jsunit(value=value)}

The javascript files are typically placed in the public/javascript
folder inside the package for the TG app. The mytests.js file would
contain all the test functions having the test signature as described
in the jsunit documentation. These functions should be called
testXXX() and should not take any parameters. The following example
shows some sample test functions:

function testAlwaysPasses() {
 assertEquals("Always Passes!", 1, 1);
}

function testNeverFails() {
 assertNotEquals("Never Fails!", 1, 0);
}

function testSometimesFails() {
 var rand_no = Math.ceil(Math.random()*10);
 assertEquals("Sometimes Fails!", true, rand_no>5);
}

Pointing the browser to http://localhost:8080/runner shows up the test
runner page. The tests are performed on hitting the Run button. The
results are displayed nicely as shown below:

[image: example JSUnit Widget]
The final files for this tutorial can be downloaded here;

		ZIP file: SampleJSUnit.zip

		Tar/Bz2 file: SampleJSUnit.tar.bz2

Testing Javascript Code in ToscaWidgets

For testing javascript code in ToscaWidgets, the package for the
widget to be tested should include a Test Widget created by extending
the JSUnit widget. The following example shows a new widget
ItemSelectorTest created inside the tw.extjs package for testing the
javascript code used in the ExtJS ItemSelector widget. Apart from the
javascript test code the Widget should include all the javascript code
which are required to be tested:

from tw.api import Widget, JSLink, CSSLink, JSSource
from tw.core.resources import Resource

from tw.jsunit import JSUnit
from tw.extjs import all_debug as all

multiselect_js = JSLink(modname=__name__, filename='static/Multiselect.js')
ddview_js = JSLink(modname=__name__, filename='static/DDView.js')
test_js = JSLink(modname=__name__, filename='static/multiselect_test.js')

class ItemSelectorTest(JSUnit):

 def __init__(self, *args, **kw):
 super(ItemSelectorTest, self).__init__(*args, **kw)
 self.javascript.append(all);
 self.javascript.append(multiselect_js);
 self.javascript.append(ddview_js);
 self.javascript.append(test_js);

 def update_params(self, d):
 super(ItemSelectorTest, self).update_params(d)

The file multiselect_test.js inside the static folder contains the
test functions having the test signatures described in the jsunit
documentation. The following code block shows some example
functions. The setUp() function is used to setup the test data. In
this case only a part of the function definition code is displayed:

function setUp() {

 formItemSelector = new Ext.form.FormPanel({
 labelWidth:40,
 width:550,
 url:"/save",
 items:panelItem,
 buttons:[buttonSave, buttonReset]
 });
formItemSelector.render("item_selector_div");

}

function testURL() {
 assertNaN("URL should be a string!", formItemSelector.url);
 assertEquals("URL value mismatch!", "/save", formItemSelector.url);
}

function testXtype() {
 assertNaN("xtype should be a string!", panelItem.xtype);
 assertEquals("xtype value mismatch!", 'itemselector', panelItem.xtype);
}

function testFieldLabel() {
 assertNaN("fieldLabel should be a string!", panelItem.fieldLabel);
 assertEquals("fieldLabel value mismatch!", 'States', panelItem.fieldLabel);
}

function testMsWidth() {
 assertNotNaN("msWidth should be an integer!", panelItem.msWidth);
 assertEquals("msWidth value mismatch!", 200, panelItem.msWidth);
}

function testMsHeight() {
 assertNotNaN("msHeight should be an integer!", panelItem.msHeight);
 assertEquals("msHeight value mismatch!", 200, panelItem.msHeight);
}

function testValueField() {
 assertNaN("valueField should be a string!", panelItem.valueField);
 assertEquals("valueField value mismatch!", 'code', panelItem.valueField);
}

This javascript code can be tested by using the Runner widget inside a
sample TG app. As described above, the Controller should have two
methods, one for the testRunner and the other for the testsuite. The
method for the runner should be the same as above. In this case, apart
from the Runner widget, two more widgets needs to be instantiated,
viz. the widget to be tested and the test widget. Both these widgets
should be placed in the template context by the testsuite method. The
following code block demonstrates the usage:

from tw.extjs.tests import ItemSelectorTest
from tw.jsunit import Runner, JSUnit

runner = Runner(testpage='/itemselectortest')
selectortest = ItemSelectorTest()

class RootController(BaseController):

 @expose('sampleunit.templates.runner')
 def runner(self, **kw):
 pylons.c.runner = runner
 return dict()

 @expose('sampleunit.templates.itemselectortest')
 def itemselectortest(self, **kw):
 pylons.c.selectortest = selectortest
 return dict()

The template file for the runner method should include the Runner
widget as follows:

${tmpl_context.runner(value=value)}

The template file for the testsuite method should include the test
widget:

${tmpl_context.selectortest(value=value)}

Pointing the browser to http://localhost:8080/runner shows up the test
runner page. The tests are performed on hitting the Run button. The
results are displayed nicely as shown below:

[image: example JSUnit Widget]
The final files for this tutorial can be downloaded here;

		ZIP file: SampleUnit.zip

		Tar/Bz2 file: SampleUnit.tar.bz2

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_static/minus.png

_images/poedit.png
Fchier _Edtion _Catalogus _ Affichage Marque-pages _ Ads

eRIsz &

orna Trasion]

G2 Tac repository

[pepat Tac deto2

12.% trackits, 127 chaines (0 trachites approximativement, 0 marqueurs incorrects, 111 a tradtire)

_static/hello-oops.jpg
(e Lo HEILI® v tocaostzasometo - CETD

Traceback Extra Data Template Source

Error Traceback:
~UndefinedError: "now" not defined View as: Interactive | Text | XML (full)

URL: http://localhost:8080/hello

Module weberror.evalexception.middieware:364 in respond @ view

>> app_iter = self.application(environ, detect start response)
Module toscawidgets. middieware:40 in _call @ view

>> return self.usgi app(environ, start response)

Module paste.registry:334 in __call, B view

>> app_iter = self.application(environ, star
Module toscawidgets.middleware:55 in wsgi_app ® view

>> app_iter = self.application(environ, start_response)

Module beaker.middieware:74 in_call @ view
>> return self.app(environ, start response)

Module beaker.middleware:145 in _call @ view

>> return self.wrap app(environ, session start response)
Module routes.middleware:99 in _call__ @ view

>> response = self.app(environ, start_response)
Module pylons.wsgiapp:95 in _call B view

>> response = self.dispatch(controller, environ, start_response)
Module pylons.wsgiapp:259 in dispatch & view - o

>> return controller(environ, start_response)

_images/jsunit1.png
JsUnit 2.2 TestRunner

Running on Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.1.13) Gecko/20080325 Fedora/2.0.0.13-1.fc8 Firefox/2.0.0.13

nttp:// localhost:8080/runpage _Run

Trace level{no tracing ~| [Close old trace window on new run Page load timeout 2o Seweps

Status: Done (0.906 seconds)
Progress: I

The page at http:/localhost:8080 says: X

A EEpE
Expected <true> (Boolean) but was <false> (Boolean)

Runs: 3 Errors: 0 Failures: 1
Stack trace follows:
> JsUnitException
> assert
Errors and failures: > assertbquals

> testSometimesFails

€]

Show selected Show all

main/RequestFlow.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

A Request’s Flow Through The TurboGears Stack

This document is intended to help you understand how the various
components of TurboGears 2 work together, and what happens to a
web-request on the way into your controller code.

It may seem like there are a lot of layers here, and there are, but
most of the time you don’t need to know anything about how they work,
just that they are there to do work for you.

The first thing that happens is that some WSGI (web server gateway
interface) compliant HTTP server recieves an HTTP message from
somebody, and it calls your TG application which is a WSGI app.

For those new to WSGI, it’s a very simple interface that defines how
web servers interact with python methods or functions, or really any
callable.

The basic WSGI interface is this:

def simple_app(environ, start_response):
 """Simplest possible application object"""
 status = '200 OK'
 response_headers = [('Content-type','text/plain')]
 start_response(status, response_headers)
 return ['Hello world!\n']

Fundamentally, WSGI means your python function gets called with two
things, an environ dictionary, and a start_response callable. Before
your function returns, you have to pass a status, and a set of headers
to the start_response method, and then you’re free to return a list
(or any itterable) of strings as the response body.

The environ dictionary, is a copy of the CGI spec’s ENVIRON
(http://hoohoo.ncsa.uiuc.edu/cgi/env.html). And it has everything you
need to know about the incoming request.

One more thing to know about WSGI is that it’s easy for a python
function or method to take and environ and start_response to do some
stuff, and then to call another function that’s also a WSGI app
(meaning it takes an environ and a start response). When an
application like this sits between the “real” webserver and another
WSGI app, we call it middleware.

The TurboGears request/response cycle is composed of various bits of
middleware that help make writing web applicaitons easier for you.

Here’s a quick outline of the stack, but we’ll be going through the
pieces in a bit more detail as we go.

WSGI Server
 PasteCascade - serves one of a list of WSGI apps.
 StaticFile Server - serves static files from /public
 OR
 TurboGears Application: - the TG stack

 Registry Manager - sets up the request proxy, etc.
 Error Middleware - if the path goes to _debug handle the request
 Database Session Manager - setup the DBSession
 Transaction Manager -
 Authentication - add info to the environ if user is authenticated
 Authorization - add more info to the environ for authorization.
 ToscaWidgets - nothing on the way in.
 Cache - sets up the cache
 Session - sets up the web session
 Routes - parses the URL and adds info to environ
 Custom Middleware - User defined middleware
 TurboGearsApp -- calls WSGI style controller
 ObjectDispatchController -- gets params, do validation, etc
 Your Controller Code -- does anything!
 ObjectDispatchController -- renders response, etc.
 ToscaWidgets - injects resources used by widgets
 Transaction Manager - commits or rolls back transaction
 Database Session Manager - cleans up the DBSession
 Error Middleware - displays error pages, etc

In total, this stack provides automatic database helpers, sessions,
authentication, authorization, caching, sessions, URL based dispatch,
and injection of CSS and JS resources into your app as required, and
generally makes web development easier.

WSGI Server
 PasteCascade - Tries one app then the next
 StaticFile Server
 OR
 TurboGears Application Stack

The first thing that gets called by the WSGI server on the way into
the TG stack is the PasteCascade. Paste’s Cascade app tries several
WSGI apps in order, if the first app returns an HTTP Not Found (404)
status code, it moves on to the second, and so on. In the default TG
configuration the Cascade does two things 1) tries the StaticFile
Server which serves up static files from your public directory, 2)
tries the main TurboGears application.

Infrastructure And Error Handling:

Registry Manager - sets up the request proxy, etc.
 Error Middleware - if the path goes to _debug handle the request.
 {{ lots of stuff }}
 Error Middlware - redirect to nice pages on HTTP error codes, and produce debug pages/email for python errors.

The next thing on the stack is the Registry Manager which sets up some
global objects that proxy to the current thread, and the current
request. This is what allows you to do from tg import request and
then use that to manipulate just the current request. It also has a
less-often used but still useful feature which allows you to put one
TurboGears application inside of another, and still have different
config objects, etc. If you hear anybody talking about “Stacked
Object Proxies” or SOP’s that’s what this is.

The next layer on the stack is the error handling middleware. This is
there to provide debugging helpers when python exceptions or other
application errors happen. In debug mode this provides you with the
nice interactive debugger, and in production mode it’s what logs
errors and sends out e-mails about the failures. Whenever a request
comes in that lives on the _debug path, the error handler
middleware looks up the info and responds directly.

Other than that error handling middleware doesn’t do much on the way
in to the stack, but on the way out it catches errors saves data, and
does the right thing when _debug requests come in for that info.

SQLAlchemy Helpers:

Inside the error handler, the next thing we setup is a couple of
database helpers:

Database Session Manager - creates a DBSession for the request
 Transaction Manager - regesters a TransactionManager for the request.
 {{ lots of stuff }}
 Transaction Manager - Commit the transaction
Database Session Manager - Clear the DBSession.

Inside the error handling middleware is a tiny little piece of
middleware that sets up a SQLAlchemy database session for this request
on the way in, and clears it out on the way out of the stack. This
means that in TG2 by default you get a new DBSession for every
request, and everything is cleared away when you’re done with it.
This keeps requests isolated, and matches the “stateless” pattern of
HTTP.

And inside that is the middleware portion of the automatic transaction
system. When a request has updated the DBSession in any way (the in
memory copies of database data) a transaction is automatically
registered, and the Transaction Manager will handle it. If a python
exception happens, an HTTP Error Code is returned,or
transaction.doom() is called during the request, the transaction
will be rolled back on the way out.

There’s a lot more to the transaction manager than just that, because
you can setup new TransactionManager classes for whatever you want.
You can write an e-mail module that does not send e-mail until the
database transaction is committed. And if you have a database that
supports two-phase commits you can write transactions that span
multiple data sources.

ToscaWidgets:

ToscaWidgets - nothing much on the way in.
 {{ lots of stuff }}
ToscaWidgets - inject resources into the generated

Nothing much on the way in. Inject JS, and CSS resources used by
widgets in the main app.

Core Middleware:

Cache - sets up the cache
 Session - sets up the web session
 Routes - parses the URL and adds info to environ

The middleware outside of Core Middleware is optional and can often be
configured out via special config values in app_cfg.py, and can be
manipulated in any way you can imagine by subclassing AppConfig and
replacing the methods that set it up.
TurboGears itself has code that requires that the core middleware
be in place, so you won’t want to mess with this stuff without a good
reason. This is particularly true of Routes which can only be
configured out of your app if you reimplement TGApp.
Please see
App Config General Options
for more information on how to modify the core middleware.

The Cache middleware sets up a reference to the threadlocal cache
manager that turbogears uses to interface to whatever backend you’re
using for caching. The cache manager is injected into the environ so
that it’s available to anything that happens in the request. In the
future it’s possible that this will no longer be middleware, and will
simply become another global object that is configured separately from
the WSGI stack.

The Session middleware also sets up a reference to a threadlocal
session manager, and at the moment both Session and Cache use the same
back-ends based on Beaker.

Finally the Routes middleware inspects the URL of the request, and
tries to map it to a series of “routes” which explain what controller
and controller method should be called to handle that request. The
Routes middleware then puts this information into the controller so
that the TGApp can call the right method.

By default TG is setup with one route, that goes to the
“routes_placeholder” method on your RootController in the root.py
module. This is a hint to TG’s object dispatch controller to take
over and do dispatch to the right controller method in root’s object
hierarchy.

User Defined Middleware:

You can define custom middlware that does whatever you want it to do
and pass into the application constructor in middleware.py.

To use a middleware before the TurboGears stack is processed you can
wrap the application returned by make_base_app function:

app = make_base_app(global_conf, full_stack=True, **app_conf)
app = MyMiddleware(app)
return app

To use a middleware that is TurboGears specific and wants to have the full
TurboGears stack available (session, authentication, database, etc...)
you can pass the middleware class to the make_base_app and it
will be created wrapping the application:

app = make_base_app(global_conf, full_stack=True, wrap_app=MyMiddleware, **app_conf)
return app

If you prefer to have more control over where your middleware is
placed in the stack, you can do that by subclassing AppConfig or
overriding methods on the base_config object.

TurboGears App:

Looks up a WSGIController object based on the info from Routes and
calls it. By default this is an ObjectDispatchController that’s pulled
into your app from lib/base so that you can override it if you need
to.

But if necessary, you can replace with something more application
specific.

ObjectDispatch Controller:

The ObjectDispatchController’s job is to take the WSGI interface and
adapt it to the way TG methods behave (dealing with templates and
returned dicts, etc), and to do object based dispatch like CherryPy
did in TurboGears 1.

Dispatch:

The ObjectDispatchController’s functionality is broken into three
basic pieces. The root PylonsController implements a WSGI interface,
and actually calls the controller methods with params from routes. TG
provides a DecoratedController. Decorated Controller allows
you to use TG1 style decorations (@expose(), @validate etc.)
on your controller methods, but does nothing for dispatch.

All of the dispatch is done by the Object Dispatch Controller and some associated
functions that help with lookup.

“Decoration”:

The @expose and @validate decorators in TG2 are not function wrappers
in the same way that they were in TG1. They merely register
information about how that method ought to be called in it’s
associated decorator diagram. This is brought up here because they
influence the way that the Controller calls your code and handles the
response. Expose determines how the dictonary returned by the
controller is rendered into a WSGI response. If you return a string,
or a WebOb webob.Response object, expose will not change
your returned results at all.

The @validate in turn makes sure the form post or get query
parameters are converted to python objects on the way in, or it will
redirect the request to an optional error handler method.

All this is covered in much more depth in the
Writing Controller Methods methods doc.

Controller Methods:

At this point we’ve arrived at your controller code, and it’s run.
The details of all of this are covered here: Writing Controller Methods

Hopefully this helps you understand the flow of the request through
the stack, and gives you some hints on how you can modify or customize
the stack to meet your needs.

For details on exactly how the stack is configured take a look at the
configuration docs at TurboGears 2 Configuration.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_static/nocomment.png

modules/pylons/i18n_translation.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Modules »

pylons.i18n.translation – Translation/Localization functions

Translation/Localization functions.

Provides gettext [http://docs.python.org/library/gettext.html#gettext] translation functions via an app’s
pylons.translator and get/set_lang for changing the language
translated to.

Module Contents

		
exception pylons.i18n.translation.LanguageError

		Exception raised when a problem occurs with changing languages

		
class pylons.i18n.translation.LazyString(func, *args, **kwargs)

		Has a number of lazily evaluated functions replicating a
string. Just override the eval() method to produce the actual value.

This method copied from TurboGears.

		
pylons.i18n.translation.lazify(func)

		Decorator to return a lazy-evaluated version of the original

		
pylons.i18n.translation.gettext_noop(value)

		Mark a string for translation without translating it. Returns
value.

Used for global strings, e.g.:

foo = N_('Hello')

class Bar:
 def __init__(self):
 self.local_foo = _(foo)

h.set_lang('fr')
assert Bar().local_foo == 'Bonjour'
h.set_lang('es')
assert Bar().local_foo == 'Hola'
assert foo == 'Hello'

		
pylons.i18n.translation.gettext(value)

		Mark a string for translation. Returns the localized string of
value.

Mark a string to be localized as follows:

gettext('This should be in lots of languages')

		
pylons.i18n.translation.ugettext(value)

		Mark a string for translation. Returns the localized unicode
string of value.

Mark a string to be localized as follows:

_('This should be in lots of languages')

		
pylons.i18n.translation.ngettext(singular, plural, n)

		Mark a string for translation. Returns the localized string of
the pluralized value.

This does a plural-forms lookup of a message id. singular is
used as the message id for purposes of lookup in the catalog, while
n is used to determine which plural form to use. The returned
message is a string.

Mark a string to be localized as follows:

ngettext('There is %(num)d file here', 'There are %(num)d files here',
 n) % {'num': n}

		
pylons.i18n.translation.ungettext(singular, plural, n)

		Mark a string for translation. Returns the localized unicode
string of the pluralized value.

This does a plural-forms lookup of a message id. singular is
used as the message id for purposes of lookup in the catalog, while
n is used to determine which plural form to use. The returned
message is a Unicode string.

Mark a string to be localized as follows:

ungettext('There is %(num)d file here', 'There are %(num)d files here',
 n) % {'num': n}

		
pylons.i18n.translation.set_lang(lang, set_environ=True, **kwargs)

		Set the current language used for translations.

lang should be a string or a list of strings. If a list of
strings, the first language is set as the main and the subsequent
languages are added as fallbacks.

		
pylons.i18n.translation.get_lang()

		Return the current i18n language used

		
pylons.i18n.translation.add_fallback(lang, **kwargs)

		Add a fallback language from which words not matched in other
languages will be translated to.

This fallback will be associated with the currently selected
language – that is, resetting the language via set_lang() resets
the current fallbacks.

This function can be called multiple times to add multiple
fallbacks.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/TGControllers.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		Writing Controller Methods »

The TGController Class

The TGController is the basic controller class that provides an easy
method for nesting of controller classes to map URL hierarchies.
There are however a few methods which provide a slightly different
method for dispatch. They are described below.

The Default Method

The developer may decide to provied a _default method within their
controller which is called when the dispatch mechanism cannot find
an appropriate method in your controllers to call. This
_default method might look something like this:

class WikiController(BaseController):

 @expose('mytgapp.wiki.new)
 def _default(self, *args):
 """
 Return a page to prompt the user to create a new wiki page."""
 """
 return dict(new_page_slug=args)s

The Lookup Method

_lookup and _default are called in identical situations: when
“normal” object traversal is not able to find an exposed method, it
begins popping the stack of “not found” handlers. If the handler is a
“_default” method, it is called with the rest of the path as positional
parameters passed into the default method.

The not found handler stack can also contain “lookup” methods, which
are different, as they are not actual controllers.

A lookup method takes as its argument the remaining path elements and
returns an object (representing the next step in the traversal) and a
(possibly modified) list of remaining path elements. So a blog might
have controllers that look something like this:

class BlogController(BaseController):

 @expose()
 def _lookup(self, year, month, day, id, *remainder):
 dt = date(int(year), int(month), int(day))
 blog_entry = BlogEntryController(dt, int(id))
 return blog_entry, remainder

class BlogEntryController(object):

 def __init__(self, dt, id):
 self.entry = model.BlogEntry.get_by(date=dt, id=id)

 @expose(...)
 def index(self):
 ...
 @expose(...)
 def edit(self):
 ...

 @expose()
 def update(self):

So a URL request to .../2007/6/28/0/edit would map first to the
BlogController’s _lookup method, which would lookup the date,
instantiate a new BlogEntryController object (blog_entry), and pass
that blog_entry object back to the object dispatcher, which uses the
remainder do continue dispatch, finding the edit method. And of course
the edit method would have access to self.entry, which was looked up
and saved in the object along the way.

In other situations, you might have a several-layers-deep “_lookup”
chain, e.g. for editing hierarchical data
(/client/1/project/2/task/3/edit).

The benefit over “_default” handlers is that you return an object
that acts as a sub-controller and continue traversing rather than
being a controller and stopping traversal altogether. This allows
you to use actual objects with data in your controllers.

Plus, it makes RESTful URLs much easier than they were in TurboGears 1.

Subclassing Controllers

When overriding a parent controller method you will usually have to expose it
again and place any validation or event hook it previously had.

While this is possible, it is not the best way to add additional behavior to
existing controllers. If they are implemented in an external
library or application, you will have to look at the code of the library,
see any template it exposed, any hook it registered and place them again.

If the library will change in any future release your code will probably
stop working.

To avoid this behavior and the issues it raises since TurboGears 2.2
it is possible to subclass controllers inheriting the configuration
the parent methods had.

The inherit parameter of the tg.decorators.expose decorator
enables this behavior:

class OriginalController(TGController):
 @expose('mylib.templates.index')
 def index(self):
 return dict()

 @expose('mylib.templates.about')
 def about(self):
 return dict()

 @expose('json')
 def data(self):
 return {'v':5}

class MyCustomizedController(OriginalController):
 @expose(inherit=True)
 def index(self, *args, **kw):
 dosomething()
 return super(MyCustomizedController, self).index(*args, **kw)

 @expose('myapp.templates.newabout', inherit=True)
 def about(self):
 return super(MyCustomizedController, self).about(*args, **kw)

 def _before_render_data(remainder, params, output):
 output['child_value'] = 'CHILDVALUE'

 @expose(inherit=True)
 @before_render(_before_render_data)
 def data(self, *args, **kw):
 return super(MyCustomizedController, self).data(*args, **kw)

Mount Points and Dispatch

Since TurboGears 2.1.4 it is possible to ask for various informations
about the request dispatchment and controllers mount points.

Those informations can be useful when writing controllers that
you plan to reuse in multiple applications or mount points,
making possible for example to generate all the urls knowing
where they are mounted.

For statically mounted controllers the exposed informations are:

		The mount_point property of a controller. If statically mounted
it will return where the controller is mounted. This is the
url to call when you want to access that controller.

		The mount_steps property of a controller. If statically mounted
it will return the complete list of parents of that controller.

In the case you are dispatching the request yourself, for example
through a _lookup method, the mount_point and mount_steps
informations won’t be available. In this case you can rely
on some other functions exposed by TG:

		The tg.request.controller_state object keeps track of all
the steps provided to dispatch the request.

		The tg.dispatched_controller() method when called inside
a request will return the last statically mounted controller.
This can be useful to detect which controller finished the
request dispatch using the _lookup method.

The application RootController can usually be retrieved from
tg.config['application_root_module'].RootController

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Extensions/Geo/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Extensions and Tools »

tgext.geo: Geographic Extensions for TurboGears

Overview

The Geographic Extensions for TurboGears makes is easy to add
GIS capabilities in a TurboGears2 application. A Web GIS application
typically consists of both server side and client side components.

Client Side Components

The client side component typically consists of a Web2.0 based map
with rich Ajax capabilities for panning, zooming, layer selection, etc.
The tw.openlayers ToscaWidget library makes it really simple to add
a map on a TG2 application. However, if the client side application
becomes complex and involves a lot of javascript work, it is advisable
to use the the OpenLayers library directly for greater flexibility.

Server Side Components

On the server side a GIS application needs to handle HTTP requests for
query, processing and manipulation of GIS objects. Several server side
GIS tools already exist in the python world and tgext.geo makes it easy
to integrate these tools for server side processing. The tools integrated
by tgext.geo are:

GeoAlchemy

GeoAlchemy [http://geoalchemy.org] is a SQLAlchemy extension for spatial databases.
Use this to define you model objects which have geometry fields.
The FeatureServer Tutorial explains the usage. For further details
refer to the GeoAlchemy docs.

FeatureServer

FeatureServer [http://featureserver.org] is a GIS server that supports publishing of GIS data
from multiple datasources including GeoAlchemy. FeatureServer can
publish GIS data in several formats such as JSON, GML, RSS, etc.

MapFish

MapFish [http://mapfish.org] is a pylons based GIS server. MapFish also has a rich client
library that uses the mapfish protocol. So, if you want a complete
WebGIS solution, MapFish is for you. MapFish model and controller
definitions can be added to TG2 application using the paster commands.
As of now MapFIsh model definitions do not use GeoAlchemy and support
only reflected tables. However, work is on for building future versions
of MapFish on GeoAlchemy.

TileCache

Serving raster data (satellite imagery, etc) is not supported by TG2 as
this is not a very common use case. Most of the time we are just
interested in requesting them from public / corporate servers and
displaying as background layers on our maps. However, in doing so we
could choose to cache the requested tiles (view elements) on our
servers (or in the cloud) in order to make our application more responsive.

TileCache [http://tilecache.org] is an excellent python library for achieving this. tgext.geo
provides a paster command to integrate TileCache in an existing TG2 app.
The details are available on the TileCache [http://tilecache.org] home page and on the TG2
TileCache Tutorial.

		tgext.geo.commands – tgext.geo Commands

		tgext.geo FeatureServer Tutorial

		tgext.geo MapFish Tutorial

		tgext.geo TileCache Tutorial

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

toc.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

Extended Table of Contents

Return to the index

Getting Started and Tutorials

		Getting Started
		TurboGears 2.2.2 Standard Installation
		Recommended Installation Environment

		System Package Installation

		Installation for the Impatient

		Explaining the Installation Process

		Running the Installed Environment

		Upgrading TurboGears

		Install a Database Driver

		What’s Next?

		Quickstarting A TurboGears 2.2.2 Project
		Create The Database

		Run The Server

		Using MongoDB

		What’s Next?

		TurboGears 2 At A Glance
		Introducing MVC (Model View Controller)

		Hello World Using Template

		Hello World Using A Static File

		Hello World Using A Controller

		Hello World Combining Template With Controller

		Hello World Using Flash

		What Was Covered

		TurboGears Book: 20 Minutes Wiki Tutorial [http://www.turbogears.org/book/part1/wiki20.html]

		Creating and Validating Forms
		Displaying Forms

		Validating Fields

		Validating Compound Fields

		Relocatable Widget Actions

		Automatic Form Generation

		Back to ToscaWidgets1

		Displaying Flash/Notice Messages
		Default Setup

		Storing Flash Messages

		Styling the Flash

		Caching with Flash Messages

		Advanced Tutorials
		Explore A Quickstarted Project
		Controllers

		Templates

		Public (Static Files)

		Models

		Lib

		Config

		Tests

		Websetup

		Alternate Installation Process
		32-bit Windows

		Mac OSX Install

		Linux Root Install

		Python 2.4 Installation

		Install Via PIP

		Source Install (Development Version)

		Database Schema Migrations
		Prerequisites

		Getting Started

		Integrating Migrations in the Development Process

		Additional Information and Help

		Pagination Quickstart For Turbogears2
		Prerequisites

		Basic Pagination

		Paginate Decorator

		Advanced Pagination

		DataGrid Tutorial
		Preparing Application

		Basic DataGrid

		Paginating DataGrid

		Sorting Columns

		Edit Column Button

		Caching
		Application-level Caching (Beaker)

		Template Caching

		Configuring Beaker

		Memcached

		HTTP-Level Caching

		Authentication and Authorization in TurboGears 2
		Overview

		The three pillars: Users, groups and permissions

		Getting started, quickly

		Beyond the quickstart

		Configuring and using the Logging System

		Moving From Other Frameworks
		Intro to TurboGears for CakePHP developers

		Old Tutorials
		The TurboGears 2 Wiki Tutorial

		A Movie Database (Models, Views, Controllers)

		Simple Widget Form Tutorial

		Using ToscaWidgets to Create Forms

		Manual Database Schema Migration in TurboGears 2

Working with TurboGears

		Tips and Recipes
		Core: Read These Pages!
		Authentication and Authorization in TurboGears 2

		FormEncode @validate, and TurboGears Validation

		Writing Controller Methods

		Genshi How-To

		TurboGears 2 Configuration

		Configuring and using the Logging System

		Handling Internationalization And Localization

		Modeling Your Application

		Handling HTTP Requests (Controllers)

		Automatic Forms/Controllers

		Templates/Views

		Javascript Libraries

		Old Recipes

		Testing
		Testing TurboGears Applications

		Installation and Deployment
		TurboGears 2.2.2 Standard Installation

		Alternate Installation Process

		Deployment

		Tools
		Profiling Your App

		ToolBox

		Command Line Reference

		TurboGears 2 Configuration

		Configuring and using the Logging System

		Command Line Scripts

		Scheduling Tasks

		Special Effects and Extensions
		Using PyAMF With TurboGears2

		Using FirePython With TurboGears2

		Using Authorize.net in a TurboGears Form

		tgext.geo: Geographic Extensions for TurboGears

		Real-time Web

		Performance and optimization
		Profiling Your App

		Template Performance

		Caching

		Next Steps

Getting To Know TurboGears

		About the TurboGears Project
		What’s New With The Latest Release
		What’s New In TurboGears 2

		General Project Information
		The Turbogears Way

		Upgrading Your TurboGears Project

		A Request’s Flow Through The TurboGears Stack

		Contributing To TurboGears 2

		Using BitBucket’s Mercurial Service with TurboGears

		TurboGears Licenses

		Documentation Generation Guide

		Setting up the TurboGears Test Environment and Testing

		Libraries and Modules Shipped With TurboGears
		Modules

		tg.decorators – Decorators

		tg.flash – Flash

		FormEncode

		webhelpers – helper functions for web applications

		Third-party components

TurboGears 2 Extensions and Tools

Read More about how you can extend your TurboGears2 application with Admin and
Geo capabilities.

		Extensions and Tools
		TurboGears Automatic CRUD Generation
		Overview
		What is CRUD?

		Um, REST?

		Before We Get Started

		Putting The CRUD Into REST
		EasyCrudRestController

		Creating our own CrudRestController

		Sprox

		Filling Our Table With Data

		Putting It All Together

		Forms
		Edit Form

		Declarative

		Crud Operations
		Overriding Crud Operations

		Adding Functionality

		Overriding Templates

		Removing Functionality

		Menu Items

		CRC: The Sweet Spot

		TurboGears Administration System
		Overview

		Adding AdminController to your TG application
		Using Multiple Databases

		Limiting the Models Shown in your Admin

		Securing your Admin

		Utilizing Translations from repoze.what

		Using AdminConfig
		Starting with a Blank Slate

		Overriding the Index Template

		Modifying CRUD Controller Types

		Overriding a Form

		Overriding a Table

		Um, where’d my Dojo go?

		Overriding All Form types for the CRUD Controllers

		Wait a minute, is this is _just_ an Admin tool?

		Pluggable Applications with TurboGears
		Supported Features

		Mounting a pluggable application

		Creating Pluggable Applications

		TGExt.Command

		Scheduling Tasks
		Installation

		Setup

		Scheduling Tasks

		tgext.geo: Geographic Extensions for TurboGears
		Overview

		Client Side Components

		Server Side Components
		GeoAlchemy

		FeatureServer

		MapFish

		TileCache

		Using Authorize.net in a TurboGears Form
		The Authorize Package

		Defining The Validator

		Defining The Form

		Using It In A Controller

Useful Utilities and Tools

		Utilities
		AutoGenerating Model Code with SQLAutocode

		Generating your own Private Python Package Index

Indices and tables

		Index

		Module Index

		Search Page

All To Do Items From The Docs

		All To Do Items From The Docs
		Questions

		Useful Links:

		Testing Notes and Links

		From Admin Through Creating Your Own Widgets

		Repoze Docs

		20 Minute Wiki Issues

		Apache/mod_wsgi

		Sprox Disabling ‘id’ Field Editing When Using AddRecordForm

		Using tg.config Variables

		On Spawning New Processes and Threads

		On Adding Robots.txt

		On How To Limit Routes To Specific Languages

		Serving Specific File Types

		Misc To Do Items From The Docs
		Configuration

		Authorization/Authentication

		ToscaWidgets

		Controllers

		Installation

		Database

		Templating

		Review

		General

		Other

Todo

Difficulty: Medium. Validate that toctree maxdepth values are appropriate

Todo

Difficulty: Medium. Validate that this toctree actually reflects what we want. Reduce it as necessary, reorg it, make it somewhat simpler.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/flexigrid.png
Movies

Add

D

15

10

14

Delete

Title

Ben Hur

Beowulf

Chariots of Fire

Gladiator

Mission Impossible

My Fair Lady

Rain Man

Rambo

Saturday Night Fevs

Description

Description of Ben Hur

A 3D action movie

Description of Movie

Story of a roman hero

Story of a Secret Agent

A dlassic love sory

Description

Story of a War Hero

Best of John Travolta

Year

1959

2007

1981

2000

1992

1964

1988

1981

1982

Genera

Historical

Action

Action

Historical

Action

Classic

Thriller

Action

Musical

4 [10 4 4 Pagelt of2 » M 2 Displaying 1to 10 of 15 items.

search.html

 Navigation

 		
 index

 		
 modules |

 		TurboGears 2.3.0b2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/simple_register.png
Username

Password

Verify

Subr

main/Extensions/Geo/FeatureServerTutorial.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Extensions and Tools »

 		tgext.geo: Geographic Extensions for TurboGears »

tgext.geo FeatureServer Tutorial

Introduction

FeatureServer is a simple Python-based geographic feature server. It
allows you to store geographic vector features in a number of
different backends, and interact with them – creating, updating, and
deleting – via a REST-based API. It is distributed under a BSD-like
open source license.

The text.geo.featureserver module enables easy integration of
featureserver into TurboGears2 apps by providing the following:

		GeoAlchemy Datasource - This allows geographic features to be stored
in any of the spatial databases supported by GeoAlchemy [http://geoalchemy.org].

		FeatureServer Controller - This creates a new controller that reads
the config and makes use of the FeatureServer API to dispatch
requests to featureserver.

About This Tutorial

In this tutorial we will create a TG2 app and use the tgext.geo
extension to configure, store, manipulate and retreive GIS features in
a PostGIS database.

Installation

It is assumed that a fresh virtualenv has been created and TG2
installed following the TurboGears 2.2.2 Standard Installation. Install
tgext.geo using easy_install:

(tg2env)$ easy_install -i http://www.turbogears.org/2.0/downloads/current/index/ tgext.geo

We assume that a PostgreSQL server is installed and ready for
use. Install PostGIS [http://postgis.refractions.net/] and create a new PostGIS [http://postgis.refractions.net/] enabled database
called gis. Refer to the PostGIS docs [http://postgis.refractions.net/documentation/] to achieve this. We also
need to install GeoAlchemy and the python db-api for postgres:

(tg2env)$ easy_install GeoAlchemy egenix-mx-base psycopg2

Download and install featureserver from the svn repo:

(tg2env) $ svn co http://svn.featureserver.org/trunk/featureserver featureserver
(tg2env) $ cd featureserver
(tg2env) $ python setup.py install

Creating A New TG2 App

Create a new TG2 app named “TGFeature” with gis capability:

(tg2env)$ paster quickstart TGFeature --geo
(tg2env)$ cd TGFeature
(tg2env)$ python setup.py develop

Model Definition For Features

We assume that we have to model a layer of roads in our
application. We open the tgfeature/model/__init__.py file in the
package and add the following model definition:

from datetime import datetime
from sqlalchemy import Column, Integer, Unicode, DateTime
from geoalchemy import GeometryColumn, LineString
from geoalchemy import GeometryDDL

class Road(DeclarativeBase):
 __tablename__ = 'roads'
 id = Column(Integer, primary_key=True)
 name = Column(Unicode, nullable=False)
 width = Column(Integer)
 created = Column(DateTime, default=datetime.now())
 geom = GeometryColumn(LineString(2))

GeometryDDL(Road.__table__)

Apart from the standard attributes, we have defined a spatial
attribute called geom as a GeometryColumn. We will use this
attribute to store geometry values of data type LineString in the
database. GeoAlchemy supports other geometry types such as Point,
Polygon and Mutiple Geometries. We also pass the dimension of the
geometry as a parameter. The Geometry type takes another parameter for
the SRID, the Spatial Reference ID. In this case we leave it to its
default value of 4326 which means that our geometry values will be
expressed in geographic latitude and longitude coordinate
system. There is a nice blogpost on SharpGIS [http://www.sharpgis.net/post/2007/05/Spatial-references2c-coordinate-systems2c-projections2c-datums2c-ellipsoids-e28093-confusing.aspx] that explains the
concept of SRID. EPSG:4326 is chosen as the default SRID by PostGIS
and other software primarily because it is based on the global
ellipsoid (called WGS84) which is not specific to a particular region
or continent.

We finally call the GeometryDDL DDL Extension that enables creation
and deletion of geometry columns just after and before table create
and drop statements respectively. The GeometryColumn, LineString and
GeometryDDL must be imported from the geoalchemy package.

Creating Tables In The Database

The database tables can now be created using the setup-app paster
command

$ (tg2env) paster setup-app development.ini

In case we need sample data to be inserted during application startup,
we must add the sample data into the setup script,
i.e. tgfeature/websetup.py prior to running the setup command. Let us
add some sample data.

from geoalchemy import WKTSpatialElement
wkt = "LINESTRING(-80.3 38.2, -81.03 38.04, -81.2 37.89)"
road1 = model.Road(name="Peter St", width=6, geom=WKTSpatialElement(wkt))
wkt = "LINESTRING(-79.8 38.5, -80.03 38.2, -80.2 37.89)"
road2 = model.Road(name="George Ave", width=8, geom=WKTSpatialElement(wkt))
model.DBSession.add_all([road1, road2])

FeatureServer Config

Now we need to configure our app by declaring certain parameters under
the [app:main] section of the ini file. In this case we use
development.ini as we are in development mode right now.

geo.roads.model=tgfeature.model
geo.roads.cls=Road
geo.roads.table=roads
geo.roads.fid=id
geo.roads.geometry=geom

The config parameters use a geo.<layer>.param=value format. This
allows additional layers to be defined within the same app as follows:

geo.lakes.model=tgfeature.model
geo.lakes.cls=Lake
geo.lakes.table=lakes
geo.lakes.fid=id
geo.lakes.geometry=geom

In this tutorial, however, we will use only the roads layer.

Using The FeatureServerController

We can now import and mount the FeatureServer Controller inside our
root controller.

from tgfeature.model import DBSession
from tgext.geo.featureserver import FeatureServerController

class RootController(BaseController):

 roads = FeatureServerController("roads", DBSession)

We pass two parameters here. The first one being the layer name. This
must be the same as layer name used in development.ini. The second
parameter is the sqlalchemy session. In case we were using the lakes
layer too, as shown in the sample config, we would create two
controller instances as:

class RootController(BaseController):

 roads = FeatureServerController("roads", DBSession)
 lakes = FeatureServerController("lakes", DBSession)

Testing The Server Using Curl

We are now ready to start and test out new geo-enabled TG2 app. Start
the server in development mode by running:

$(tg2env) paster serve --reload development.ini

Note the –reload option. This tells the server to reload the app
whenever there is a change in any of the package files that are in its
dependency chain. Now we will open up a new command window and test
the server using the curl utility.

Request the features in GeoJSON format (default)
$ curl http://localhost:8080/roads/all.json
or simply
$ curl http://localhost:8080/roads
{"crs": null, "type": "FeatureCollection", long GeoJSON output

Request the features in GML format
$ curl http://localhost:8080/8080/roads/all.gml
<wfs:FeatureCollection
 xmlns:fs="http://example.com/featureserver
 long GML output

Request the features in KML format
$ curl http://localhost:8080/roads/all.kml
<?xml version="1.0" encoding="UTF-8"?>
 <kml xmlns="http://earth.google.com/kml/2.0"
 long KML output

Now lets create a new feature using curl. Store the following json
data in a new file postdata.json:

{"features": [{
 "geometry": {
 "type": "LineString",
 "coordinates": [[-88.913933292993605, 42.508280299363101],
 [-88.8203027197452, 42.598566923566899],
 [-88.738375968152894, 42.723965012738901],
 [-88.611305904458604, 42.968073292993601],
 [-88.365525649681501, 43.140286668789798]
]
 },
 "type": "Feature",
 "id": 10,
 "properties": {"name": "Broad Ave", "width": 10}
}]}

Create a POST request using this data and send it to the server.

$(tg2env) curl -d @postdata.json http://localhost:8080/roads/create.json

This creates a new feature and returns back the features in json
format. To modify the feature edit the postdata.json file and change
the properties. Lets change the name property from Broad Ave to
Narrow St and the width property from 10 to 4. The modify url
should include the feature id as shown below:

$(tg2env) curl -d @postdata.json http://localhost:8080/roads/3.json

The data can be requested in JSON, GML, KML and ATOM formats by using
the apprpriate suffix, i.e. 3.json, 3.gml, 3.kml or 3.atom
respectively. JSON is the default content type resturned by
featureserver, so using it without any suffix (e.g. roads/3) returns
data in GeoJSON format. For deleting the feature simply send a DELETE
request with the feature id in the url:

$(tg2env) curl -X DELETE http://localhost:8080/roads/3.json

An OpenLayers Application Using FeatureServer

The server is now ready to be accessed by client applications for
storing, manipulating and deleting featues. OpenLayers [http://openlayers.org] is an open
source javascript web mapping application. It is quite mature and is
under active development. To develop an OpenLayers web application
using featureserver the developer is strongly recommended to have a
look at the demo application available with the featureserver source
code. Copy the demo app (index.html inside featureserver source code
directory) to the public folder under a different name:

$(tg2env) cp /path/to/featureserversource/index.html tgfeature/public/demo.html
$(tg2env) cp /path/to/featureserversource/json.html tgfeature/public/
$(tg2env) cp /path/to/featureserversource/kml.html tgfeature/public/

Now modify these files to change the following:

* change all references to featureserver.cgi to '' (null)
* change all references to scribble to 'roads' (layer)

Point your browser to http://localhost:8080/demo.html. You should now
be able to view, create and modify features using featureserver
running inside your TG2 app.

Adding Authentication and Authorization

TG2 supports authentication and authorization using the repoze.who and
repoze.what packages along with other packages in these namespaces. A
TG2 app created using the authentication and authorization option
(default) has these packages already included and configured as WSGI
middleware.

By default TG2 uses SQLAlchemy based authentication and authorization,
where the user credentials and authorization roles / permissions are
maintained in database tables. There are plugins available to support
other authentication mechanisms such as LDAP based auth, OpenID based
auth, etc. Refer to the Authentication and Authorization docs for
details.

At the moment only controller wide authorization control is available in
tgext.geo. In order to have authorization, pass a repoze.what authorization
predicate as an additional parameter to FeatureServerController:

from tg.i18n import ugettext as _, lazy_ugettext as l_
from repoze.what import predicates
from tgext.geo.featureserver import FeatureServerController

class RootController(BaseController):

 allow_only = predicates.has_permission('feature',
 msg=l_('Only for people with "feature" permission'))
 roads = FeatureServerController("roads", DBSession, allow_only)

Now we must go to the admin interface and define a new permission
called “feature”. Once defined, this permission must be granted to
groups and/or users to whom this new controller is now restricted.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/basicmoves_debug_expanded.png
Module genshi.template.base:320 in _eval view:
>> result = _eval_expr(data, ctxt, **vars)
Module genshi.template.base:286 in _eval_expr view
>>retval = expr.evaluate(ctxt)
Module genshi.template.eval: 180 in evaluate view
Module 7:16 in <Expression u'hello’> view
<< <body>
<h1 py:conten

<div id="getting_started">
Module genshi.template.eval:306 in lookup_nane &

ello'>Nello variable replaces this text</h1>

>>> data.get(*hello’, 'not defined')
"not defined'

| Execute || Expand |

__traceback_hide__ True
as <class 'genshi.template.eval .StrictLookup'>

data [{'defined': <function defined at 8x9850d84>, 'header': <function header at 0x9856f7c>, il
name “hello’

val <object object at Gxb7ce2548>

view

Module gensh.template.eval:405 in undefined view

UndefinedError: "hello” not defined

TURBOGEARS ONLINE ASSISTANCE Extra Features

>> Display the lines of code near each part of the traceback
‘Show a debug prompt to allow you to directly debug the code

at the traceback.

| Re-RET Dame |

_static/up-pressed.png

modules/pylons/test.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Modules »

pylons.test – Test related functionality

Test related functionality

Adds a Pylons plugin to nose [http://www.somethingaboutorange.com/mrl/projects/nose/] that loads
the Pylons app before scanning for doc tests.

This can be configured in the projects setup.cfg under a
[nosetests] block:

[nosetests]
with-pylons=development.ini

Alternate ini files may be specified if the app should be loaded using
a different configuration.

Module Contents

		
class pylons.test.PylonsPlugin

		Nose plugin extension

For use with nose to allow a project to be configured before nose
proceeds to scan the project for doc tests and unit tests. This
prevents modules from being loaded without a configured Pylons
environment.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/testing_core.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

Setting up the TurboGears Test Environment and Testing

Initial Environment Setup

Please follow the instructions on the install page to get your
environment started. Pay special attention to the virtualenv
setup. You want to do your TG development within a clean environment
that will not interfere with any existing projects you may have.

Package Installation

Because Turbogears allows the user to swap out so many different moving parts,
we need to be able to prove that we can support these components regularly
in order to provide a robust experience for our users.

Right now TG testing depends on lxml because of chameleon.genshi, a very fast
implementation of genshi that uses the lxml driver. This driver is written
in C, and therfore requires some linkage to work properly. Lot’s of folks
have problems getting this to work, but if you try this, it will often work:

$ STATIC_DEPS=true; easy_install lxml

You can then install chameleon.genshi successfully:

$ easy_install chameleon.genshi

Tests do have more dependencies than simply using TurboGears because
they use all the opional module and also some test specific utilities.
In order to install all of these, make sure that you have TurboGears2
registered with Setuptools, either by installing it or by seting it up
in development mode (setup.py develop) then ask Setuptools to
install the test dependencies:

$ easy_install ‘TurboGears2[core-testing]’

Testing

Automated unit tests are essential to make the future growth of the
project as error free as possible.

Although TurboGears2 uses Nose [http://somethingaboutorange.com/mrl/projects/nose/] you should run tests with setup.py:

(tg2dev)$ cd tg2
(tg2dev)$ python setup.py test

Sometimes Nose [http://somethingaboutorange.com/mrl/projects/nose/] may present false import errors, se we recommend running
setup.py as above if you get failed tests with ImportError.

With any luck, your tests will run and produce something like the following output:

--
 Ran 281 tests in 2.144s

 OK

As you can see, the tests really take very little time to run, so it makes sense
to run the tests any time you want to contribute code in order to make certain it
does not break any existing functionality.

Coverage

Adequate code coverage is a goal for the TurboGears project, as it is probably
the minimum you could do to make sure your code is well tested. Code coverage
testing is built into nose and easy to use. To test TurboGears and see the code
coverage output simply type:

$ nosetests --with-coverage --cover-package=tg

The end your output will look something like this:

TOTAL 1554 1407 90%
--
Ran 245 tests in 3.659s

OK

TurboGears does not currently have 100% coverage, and we realize this is an issue.
We’d love some help in this area, so if you have some time and want to learn
more about the internals of TurboGears, pick a few untested lines of code and
figure out how to supply sufficient tests to cover that code.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/WhatsNew.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

What’s New In TurboGears 2

The most significant change in TurboGears 2 is the decision to work
very, very closely with Pylons. We’ve basically built a copy of the
TurboGears 1.x API on top of Pylons/paste which allows our two
communities to work together on everything from internationalization
to database connection pooling.

Another significant change is that we’ve removed the tg-admin wrapper
and started explicitly using paster for administrative commands to
match what Pylons was doing. We’ve re-implemented the old tg-admin
commands as paster commands; for example, “tg-admin quickstart” is
replaced by “paster quickstart”.

The “Why” Of TurboGears 2

Lots of questions have been asked about why we’ve decided to create
TurboGears 2 the way we did, so let’s try to answer them as best we
can.

Why So Many Changes?

Well, there are a lot of changes, but perhaps not as many as it looks
like from the description. We were able to keep the controller API
very similar to TurboGears 1, and Genshi copied the Kid API, so while
we chose new components, we didn’t really change the way Controllers
and Templates look very much at all. Sure, there are some minor
changes here and there, but one member of the TurboGears 2 training
class at PyCon said “I didn’t notice a lot that was new in terms of
how you put a TurboGears application together.”

Why Not Just Merge With Pylons?

Well, Pylons is committed to being officially template engine
agnostic, ORM agnostic, etc. On the other hand TurboGears is
committed to providing a “Full-Stack” for web development. So, the
two communities have different, but compatible priorities. If you
think about it Pylons provides a great set of tools for building a
full-stack framework, and people had been asking for a full-stack
Pylons implementation for a long time. And TurboGears 2 provides
that.

There are a lot of benefits to having a full-stack. You can build
form helpers which do all sorts of interesting things (introspect
model objects to make web-based forms, automatically display form
errors, etc) because you can make some assumptions about what tools
will be available and what will be used. In particular, you can start
building pluggable website components much more easily, because you
are building on a known set of tools.

Why Not Use CherryPy 3?

This is something we really struggled with. CherryPy 3 is a huge
improvement over CherryPy 2, providing a much richer programming
experience, and huge performance gains. But TurboGears 1 was very
tightly coupled to the config system of CherryPy 2, which was entirely
rewritten in CherrPy 3. We tried to make a backwards compatible TG
based on CherryPy 3, but discovered that it was significantly more
difficult than we had expected.

At the same time there was a push to make TurboGears 2 more WSGI
based, and to take advantage of things like Routes middleware, and to
generally take advantage of the Pylons/WSGI revolution. We discovered
that Pylons had a lot of the same code as TurboGears (both of us had
Buffet implementations, both of us had SQLObject wrappers that did the
same thing, etc)

Why Genshi?

Well, Genshi is an intentional re-implementation of Kid, with an
almost identical API. But internally it’s simpler, faster, and
provides better error messages. The inclusion of a couple of new
features – includes and full x-path support – also make it
significantly more flexible.

Genshi has also developed a larger, more active community than Kid,
and is being used in lots of places outside of TurboGears so, unlike
Kid, it’s not at all likely to have to be taken over and maintained by
the TG core developers.

Why SQLAlchemy?

SQLAlchemy is arguably the best ORM available for Python. Some have even proclaimed
it the best ORM in any language. The fact is, writing your own ORM is hard, and
if we were to spend time doing that, we’d have no time to glue together everything
that makes TG great. Previously, TurboGears used SQLObject, which implements
the ActiveRecord [http://en.wikipedia.org/wiki/Active_record_pattern] pattern, whereas SQLAlchemy utilizes the Data Mapper Pattern.
We feel that the Data Mapper [http://www.martinfowler.com/eaaCatalog/dataMapper.html] Pattern is more flexible for the longevity of a project,
in that it gives you direct access to the Table Objects, allowing you to map
the Related Objects around it. For those who want everything summed up in a
single mapping class, SQLAlchemy provides a Declarative form of Object definition
which implements ActiveRecord, while still giving you access to your tables.

A concrete example of the flexibility of SQLAlchemy vs. SQLObject is
that it is very hard to have a user data type in SQLObject that has a
key based in part on foreign key fields of another object. So while
(for example) account transaction objects never exist independently of
account objects, it was very hard to build a data model embodying this
fact in SQLObject. This is not true of SQLAlchemy.

Design decisions aside, SA has an active community [http://groups.google.com/group/sqlalchemy], and has a well-maintained
codebase that is also well documented [http://www.sqlalchemy.org/docs/]. This makes it a perfect choice for
us because while we love giving you documentation, there is no way we
could provide the detail required to do Object Relational Mapping justice.

New Features Of TurboGears 2:

		Cache system

		Error report: interactive tracebacks through the web, custom error pages, and email alerts

		API Document generator through Sphinx

		could pass status code to flash message

		support crud interface generator

Compatibility

Areas of compatibility:

		Like TurboGears 1.1, TurboGears 2 supports Python 2.4 and above.

		TurboGears 1.x and TurboGears 2.2.2 can both be installed on the
same machine. They are different packages with different
namespaces. Right now there are no dependency conflicts. But
using virtualenv is highly recommended to eliminate the
possibility of future dependency conflicts.

		Object dispatch is implemented in TurboGears 2.2.2, so you can use
arguments and keywords in functions the same way you did in
TurboGears 1.x.

		Expose and error handling decorators are implemented in TurboGears 2.2.2,
you can use decorators just like TurboGears 1.x.

		Differences:

		
		CherryPy filters will not work in TurboGears 2.2.2. You can write
middleware to do what filters did in CherryPy2

		The @expose decorator has a slightly updated syntax for content
type declaration

		Object dispatch does not support dots in URLs the way TurboGears 1
did.

		CherryPy request and response objects are replaced with WebOb
request and response objects.

Command Changes

Use paster command instead of the old tg-admin command.

For example you now type paster quickstart rather than tg-admin
quickstart to start a project.

Here’s a full list of the old command line tools and their new
equivalents

		tg-admin quickstart —> paster quickstart

		tg-admin info —> paster tginfo

		tg-admin toolbox –> paster toolbox

		tg-admin shell –> paster shell

		tg-admin sql create –> paster setup-app development.ini

Project Layout Changes

Both controllers.py and model.py have been replaced by the controllers
and model folders. In other words they are now Python packages, in
just the way they were in TurboGears 1 if you used the ‘–template
tgbig’ option with quickstart.

		your root controller is not in controllers.py -> it has moved to controllers/root.py

		model.py -> model/__init__.py

		myproject_dev.cfg -> development.ini With a whole new structure based on paste.deploy

		app.cfg –> config/environment.py and to a lesser extent config/middleware.py

New Imports

		import turbogears -> import tg

		turbogears.config.get(‘sqlalchemy.dburi’) -> pylons.config[‘sqlalchemy.url’]

		pylons.tmpl_context provides a request local place to stick stuff

		pylons.request provides the rough equivalent of cherrypy.request

		pylons.response provides the equivalent of cherrypy.response

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/validation.png
D (@ 03 v caost0801moves T Giloors Q) @0

Welcome to TurboGears 2

The Python web metaframework

Create New Movie

st T

main/Config.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

TurboGears 2 Configuration

TurboGears 2 provides a configuration system that attempts to be both
extremely flexible for power users and very simple to use for standard
projects.

Overview

Like TurboGears 1, the application configuration is separated from the
deployment specific information. In TurboGears 2.2.2 there is a
config module, containing several configuration specific python files –
these are done in python (not as INI files), because they actually setup
the TurboGears 2.2.2 application and its associated WSGI middleware.
Python provides an incredibly flexible config system with all kinds of
tools to keep you from having to repeat yourself. But it comes with
some significant drawbacks, python is more complex than INI, and is less
declarative so can be less obvious.

But we believe these drawbacks are more than overcome by the power and
flexibility of python based configuration for the app because these
files are intended to be edited only by application developers, not by
those deploying the application. We’ve also worked hard to create an
environment that is generally declarative.

At the same time the deployment level configuration is done in simple
.ini files, in order to make it totally declarative, and easy for
deployers who may not be python programmers.

All of this is similar to Pylons and to TurboGears 1, but slightly
different from both.

Differences from TurboGears 1

In turbogears 1.x branches, the application specific configuration
variables were kept in a .ini file packaged inside the egg. For better
control over those variables, TurboGears 2.2.2 is now using a python
module that contains code.

The advantage of this new method is that the configuration can contain
complex python objects without adding a dependency on ConfigObj (which
was used in TG1).

One disadvantage of the new configuration system is that it does
not evaluate values in
the .ini files therefore all values are considered strings. This is
especially important when using boolean attributes and numbers as you
need to convert them before use inside your project. This will be
fixed in TurboGears 2.2 see ticket #2240 [http://trac.turbogears.org/ticket/2240]

Differences from Pylons

TurboGears 2.2.2 has done quite a bit of work to simplify the
config module in a standard Pylons quickstart, and to make the configuration
in those files as declarative as possible. This makes it easier to make small
updates to the config, and allows us to move some of the code into the
framework.

This is particularly important as it allows the framework to evolve
and change the middleware stack without forcing developers to
constantly update their code with every release.

Configuration in the INI files

A TurboGears quickstarted project will contain a couple of .ini files
which are used to define what WSGI app ought to be run, and to store
end-user created configuration values, which is just another way of
saying that the .ini files should contain deployment specific
options.

By default TurboGears provides a development.ini, test.ini,
and production.ini files. These are standard ini file formats.

These files are standard INI files, as used by PasteDeploy. The
individual sections are marked off with []‘s.

See also

Configuration file format and options are described in
great detail in the Paste Deploy documentation [http://pythonpaste.org/deploy/].

Let’s take a closer look at the development.ini file:

[DEFAULT]
debug = true
Uncomment and replace with the address which should receive any error reports
#email_to = you@yourdomain.com
smtp_server = localhost
error_email_from = paste@localhost

If want to add some configuration option (let’s say an administrator’s
email) here is how you would do so. First you would edit your
development.ini file and go to the end of the [app:main]
section.

You can then choose a sensible name for your configuration key and add
it to the section:

mail.from.administrator = someemail@somedomain.com

This would make sure this variable is now part of the configuration
and can be accessed from anywhere in your code. For example let’s
imagine that you wanted to get this config option from a controller’s
code:

import tg
admin_emailfrom = tg.config.get('mail.from.administrator', 'notconfigured@nodomain.com')

If the person who deployed your application forgot to add the variable
to his config file he would get the default value provided as the
second argument of the get() call.

Note

The tg.config object is available at import time but until the
configuration file is parsed, it only contains the system
defaults. If you need to perform startup time setup based on
supplied configuration, you should do so in
middleware.make_app() or in lib/app_globals.py.

Warning

If you set a value like enable_subsystem = false, it will be
loaded into python as the string ‘false’ which if used in a
conditional will give you a very wrong result

The correct way of loading boolean values for your use is

from paste.deploy.converters import asbool
if asbool(config['enable_subsystem']):
 ... sub systems is enabled...

The config module

Tip

A good indicator of whether an option should be set in the
config directory code vs. the configuration file is whether or
not the option is necessary for the functioning of the
application. If the application won’t function without the
setting, it belongs in the appropriate config/ directory
file. If the option should be changed depending on deployment, it
belongs in the ini files.

Our hope is that 90% of applications don’t need to edit any of the
config module files, but for those who do, the most common file to
change is app_config.py

from tg.configuration import AppConfig, Bunch
import wiki20
from wiki20 import model
from wiki20.lib import app_globals, helpers

base_config = AppConfig()
base_config.renderers = []

base_config.package = wiki20

#Set the default renderer
base_config.default_renderer = 'genshi'
base_config.renderers.append('genshi')

#Configure the base SQLALchemy Setup
base_config.use_sqlalchemy = True
base_config.model = wiki20.model
base_config.DBSession = wiki20.model.DBSession

app_cfg.py exists primarily so that middleware.py and environment.py
can import and use the base_config object.

The base_config object is an AppConfig() instance which allows
you to access its attributes like a normal object, or like a standard
python dictionary.

One of the reasons for this is that AppConfig() provides some
defaults in its __init__. But equally important it provides us
with several methods that work on the config values to produce the two
functions that set up your TurboGears app.

We’ve taken care to make sure that the entire setup of the
TurboGears 2.2.2 framework is done in code which you as the
application developer control. You can easily customize it to your needs.
If the standard config options we provide don’t do what you need, you
can subclass and override AppConfig to get exactly the setup you want.

The base_config object that is created in app_cfg.py should be
used to set whatever configuration values that belong to the
application itself and are required for all instances of this app, as
distinct from the configuration values that you set in the
development.ini or production.ini files that are intended to
be editable by those who deploy the app.

As part of the app loading process the base_config object will be
merged in with the config values from the .ini file you’re using to
launch your app, and placed in tg.config (also known as
pylons.config).

As we mentioned previously, in addition to the attributes on the
base_config object there are a number of methods which are used to
setup the environment for your application, and to create the actual
TurboGears WSGI application, and all the middleware you need.

You can override base_config‘s methods to further customize your
application’s WSGI stack, for various advanced use cases, like adding
custom middleware at arbitrary points in the WSGI pipeline, or doing
some unanticipated (by us) application environment manipulation.

And we’ll look at the details of how that all works in the advanced
configuration section of this document.

Configuring your application

Here’s are some of the more general purpose configuration attributes:

Configuration Attributes

The configuration object has a number of attributes that automate
the majority of what you need to do with the config object. These
shortcuts eliminate the need to provide your own setup methods
for configuring your TurboGears application.

Mimetypes

By default, only json/application and text/html are defined mimetypes.
If you would like to use additional mime-types you must register
them with your application’s config. You can accomplish this by
adding the following code your your app_cfg.py file:

base_config.mimetype_lookup = {'.ext':'my-mimetype'}

Hooks and Events

TurboGears allows you to attach callables to a wide set of events.
Most of those are available as both controller events and system
wide events.

To register a system wide even you can use the register_hook method
of the base_config object in your app_cfg.py file:

def on_startup():
 print 'hello, startup world'

def on_shutdown():
 print 'hello, shutdown world'

def before_render(remainder, params, output):
 print 'system wide before render'

... (base_config init code)

base_config.register_hook('startup', on_startup)
base_config.register_hook('shutdown', on_shutdown)
base_config.register_hook('before_render', before_render)

To register controller based hooks you can use the event decorators:

from tg.decorators import before_render

def before_render_cb(remainder, params, output):
 print 'Going to render', output

class MyController(TGController):
 @expose()
 @before_render(before_render_cb)
 def index(self, *args, **kw):
 return dict(page='index')

Available Hooks

		startup() - application wide only, called when the application starts

		shutdown() - application wide only, called when the application exits

		
		before_config(app) -> app - application wide only, called after constructing the application,

		but before setting up most of the options and middleware.
Must return the application itself.
Can be used to wrap the application into middlewares that have to be executed having the full TG stack available.

		
		after_config(app) -> app - application wide only, called after finishing setting everything up.

		Must return the application iself.
Can be used to wrap the application into middleware that have to be executed before the TG ones.
Can also be used to modify the Application by mounting additional subcontrollers inside the RootController.

		before_validate(remainder, params) - Called before performing validation

		before_call(remainder, params) - Called after valdation, before calling the actual controller method

		before_render(remainder, params, output) - Called before rendering a controller template, output is the controller return value

		after_render(response) - Called after finishing rendering a controller template

Static Files

base_config.serve_static – automatically set to True for you.
Set to False if you have set up apache, or nginx (or some other
server) to handles static files.

Request Extensions

base_config.disable_request_extensions – by default this is false.
This means that TG will take the request, and strip anything off the end
of the last element in the URL that follows ”.”. It will then take this
information, and assign an appropriate mime-type and store the data in the
tg.request.response_type and tg.request.response_ext variables. By enabling
this flag, you disable this behavior, rendering TG unable to determine the
mime-type that the user is requesting automatically.

Stand Alone

base_config.stand_alone – set this to False if you don’t want
error handling, HTTP status code error pages, etc. This is intended
for the case where you’re embedding the TG app in some other WSGI app
which handles these things for you.

Cookie Secret

The beaker.session.secret key of the base_config object
contains the secret used to store user sessions. Pylons automatically
generates a random secret for you when you create a project. If an
attacker gets his hands on this key, he will be able to forge a valid
session an use your application at though he was logged in. In the
event of a security breach, you can change this key to invalidate all
user sessions.

Authentication Character Set

Set base_config.sa_auth.charset to define the character encoding for your
user’s login. This is especially important if you expect your users to have
non-ascii usernames and passwords. To set it to utf-8, your add this to your
app_config.py file.:

base_config.sa_auth.charset = 'utf-8'

Advanced Configuration

Sometimes you need to go beyond the basics of setting configuration
options. We’ve created a number of methods that you can use to override the way
that particular pieces of the TurboGears 2.2.2 stack are configured.
The basic way you override the configuration within app.cfg looks something
like this:

from tg.configuration import AppConfig
from tw2.core.middleware import TwMiddleware

class MyAppConfig(AppConfig):

 def add_tosca2_middleware(self, app):

 app = TwMiddleware(app,
 default_engine=self.default_renderer,
 translator=ugettext,
 auto_reload_templates = False
)

 return app
base_config = MyAppConfig()

modify base_config parameters below

The above example shows how one would go about overridding the toscawidgets2
middleware. See the class definition below for more ideas on how you
could modify your own custom config

AppConfig General Options

		
class tg.configuration.AppConfig(minimal=False, root_controller=None)

		Class to store application configuration.

This class should have configuration/setup information
that is necessary for proper application function.
Deployment specific configuration information should go in
the config files (e.g. development.ini or deployment.ini).

AppConfig instances have a number of methods that are meant to be
overridden by users who wish to have finer grained control over
the setup of the WSGI environment in which their application is run.

This is the place to configure custom routes, transaction handling,
error handling, etc.

		
init_config(global_conf, app_conf)

		Initialize the config object.

Besides basic initialization, this method copies all the values
in base_config into the tg.config objects.

		
add_core_middleware(app)

		Add support for routes dispatch, sessions, and caching.
This is where you would want to override if you wanted to provide your
own routing, session, or caching middleware. Your app_cfg.py might look something
like this:

from tg.configuration import AppConfig
from routes.middleware import RoutesMiddleware
from beaker.middleware import CacheMiddleware
from mysessionier.middleware import SessionMiddleware

class MyAppConfig(AppConfig):
 def add_core_middleware(self, app):
 app = RoutesMiddleware(app, config['routes.map'])
 app = SessionMiddleware(app, config)
 app = CacheMiddleware(app, config)
 return app
base_config = MyAppConfig()

		
add_error_middleware(global_conf, app)

		Add middleware which handles errors and exceptions.

		
setup_tg_wsgi_app(load_environment=None)

		Create a base TG app, with all the standard middleware.

		load_environment

		A required callable, which sets up the basic evironment
needed for the application.

		setup_vars

		A dictionary with all special values necessary for setting up
the base wsgi app.

		
setup_helpers_and_globals()

		Add helpers and globals objects to the config.

Override this method to customize the way that app_globals
and helpers are setup.

		
make_load_environment()

		Return a load_environment function.

The returned load_environment function can be called to configure
the TurboGears runtime environment for this particular application.
You can do this dynamically with multiple nested TG applications
if necessary.

More Configuration Options

These configuration options have been broken into sub pages for easier digestion.

		Template Rendering Config Settings

		Customizing authentication and authorization

		Routes Config Settings

		ToscaWidgets Config Settings

		SQLAlchemy and Transaction Config Settings

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Deployment/FastCGI.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		Deployment »

FastCGI/WSGI – Running TurboGears 2.2.2 behind Apache

Warning

We recommend that, where possible, you use Apache Mod-WSGI
as that is part of the Standard Deployment Pattern

FastCGI is an appropriate choice when:

		mod_wsgi and mod_python are not available

		you cannot run the Pylons/Paste web-server directly on port 80 (likely
because Apache is already running on port 80)

		mod_fcgi and mod_rewrite are available (common)

Because TurboGears implements the WSGIServer interface, we can use
flup [http://trac.saddi.com/flup] to interface between FastCGI and Pylons. We’ll also show you
how to use VirtualEnv in this setup.

This document is closely analogous to _Pylon’s instructions for CGI:
http://wiki.pylonshq.com/display/pylonscookbook/Production+Deployment+Using+Apache,+FastCGI+and+mod_rewrite
but have a number of key differences.

Apache Configuration

Discussing what Apache directives should be set is beyond the scope of this
document, but mod_fastcgi and mod_rewrite should be enabled. Most webhosts
have the latter enabled by default; some require you to explicitly enable
FastCGI via their control panel (Dreamhost is one such host).

Installation

If you setup your own virtualenv according to the instructions on the
installation page, you will need to install flup [http://trac.saddi.com/flup], with:

$ easy_install flup

If you are not using virtualenv, check to see if flup is installed or not
with import flup.

Dispatch scripts

Keeping your TurboGears install in a web-accessible directory is strictly
unnecessary; the only files we will need to add to forward FastCGI are
dispatch.fcgi and an .htaccess file.

dispatch.fcgi

In the dispatch.fcgi file, you will need the following boilerplate code:

#!/usr/bin/env python
turbogears = '/usr/local/turbogears/myapp'
inifile = 'production.ini'
import sys, os
sys.path.insert(0, turbogears)
from paste.deploy import loadapp
wsgi_app = loadapp('config:' + turbogears + '/' + inifile
if __name__ == '__main__':
 from flup.server.fcgi import WSGIServer
 WSGIServer(wsgi_app).run()

There are three locations in this file that you may need to edit:

		The turbogears variable should be set to the location of your
TurboGears codebase, i.e. where you can find such files as development.ini
and setup.py

		The inifile variable should be set to the name of the configuration file
you would like to be loaded on this server.

		The shebang line (#!/usr/bin/env python) should be modified to use
the virtualenv Python interpreter, if you are using such an environment.

This loader file is different from the Pylons flup file, please be careful!
Also, you need to make this file executable, with:

$ chmod 0755 dispatch.fcgi

.htaccess

You will need to add the following lines to your .htaccess file:

Options +ExecCGI
AddHandler fastcgi-script .fcgi
RewriteEngine On
RewriteRule ^(dispatch\.fcgi/.*)$ - [L]
RewriteRule ^(.*)$ dispatch.fcgi/$1 [L]

You can also setup static content with an extra RewriteRule before the
last line:

RewriteRule ^(static/.*)$ - [L]

The first two lines (Options and AddHandler) may not be strictly necessary,
depending on your web server’s configuration.

Proxy Mount Point Fix

Using this method, Turbogears/Pylons wrongly thinks that dispatch.fcgi
is a part of the URL. See Configure Proxy Mount Point for how to fix
this in your production.ini.

Maintenance

Checking if it worked

The most obvious metric for success is whether or not your site displays
on your browser. However, you can also check with ps aux | grep dispatch
to see if your FastCGI executable is still running.

Rebooting

Because FastCGI processes are persistent, even when you update your Python
files the old code will still be running. Usually, the following command
from your shell will be sufficient to kill the process:

$ killall -u username dispatch.fcgi

If dispatch.fcgi is running as the Apache user, i.e. www-data, you’ll need
to create a short Python stub script to call from the web in order to execute
this command. (Also, your host is doing it wrong.)

Debugging

FastCGI is notoriously difficult to debug. There are variants of dispatch.fcgi
which add lots of informative debugging output; you can also rename the file
to dispatch.cgi and run as a CGI module (it will not be as fast, but will be
reloaded every request).

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/treeview1.png
= TurboGears2
‘Documentation
AP Reference:
‘Bug Tracker
Mailng Lt

Pybns

SQLAEhemy

main/Auth/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Authentication and Authorization in TurboGears 2

		Status:		Official

This documents describes how to implement authentication and authorization in
TG 2 applications.

Table of Contents

		Authentication and Authorization in TurboGears 2
		Overview

		The three pillars: Users, groups and permissions

		Getting started, quickly

		Beyond the quickstart

Overview

Authentication is the act verifying that somebody is really who she claims
to be, which is normally done using credentials (e.g., when you need to access
your email, you provide the email address and your password, or if you want
to check your bank account, you’ll probably have to provide you Id number and
your card’s PIN). In other words, finding who you are.

Authorization, on the other hand, is the act of granting access to given
resources depending on whether you have permission to use them. For example,
allowing registered members to leave comments on a blog, or allowing your
friends to see your pictures while others cannot.
In other words, finding what you may do.

TurboGears 2 applications may take advantage of a robust, extendable, pluggable
and easy-to-use system for authentication and authorization suitable for nearly
all situations in fact, you may extend it to suit your needs if it doesn’t,
which should be really simple in most situations. Such a system is made up of
independent components, well integrated into TurboGears:

		repoze.who, a framework for authentication in WSGI applications.
You normally don’t have to care about it because by default TurboGears 2.2.2
applications ship all the code to set it up (as long as you had selected
such an option when you created the project), but if you need something
more advanced you are at the right place.

You may store your users’ credentials where you want (e.g., in a database, an
LDAP server, an .htaccess file) and also store your authorization settings
in any type of source (e.g., in a database, Ini file) – if the back-end you
need is not available, you may create it yourself (which is usually very easy).
And don’t worry if you need to change the back-end afterwards: You would not
need to touch your code! Except, of course, the snippet that tells where the
data may be found.

The three pillars: Users, groups and permissions

TurboGears uses a common pattern based on the users (authenticated
or anonymous) of your web application, the groups they belong to and the
permissions granted to such groups. But you can extend it to check for many
other conditions (such as checking that the user comes from a given country,
based on her IP address, for example).

The authentication framework (repoze.who) only deals with the source(s)
that handle your users’ credentials. It will look for a way to match
your username and password to some user on your database and check if he can
login. While the TurboGears authorization layer fetches the actual user
that logged in, its groups and permissions and permits to check for them.

Getting started, quickly

To use authentication and authorization in a new project,
just answer “yes” during the paster quickstart process when it
asks you if you want authorization:

Do you need authentication and authorization in this project? [yes]

You’ll then get authentication and authorization code added for you, including
the SQLAlchemy-powered model definitions in {yourpackage}.model.auth
and the relevant settings in {yourpackage}.config.app_cfg. It also defines
the default users, groups and permissions in {yourpackage}.websetup, which
you may want to customize.

Before trying to login and try authorization with the rows defined in
{yourpackage}.websetup, you have to create the database; run the following
command from your project’s root directory:

paster setup-app development.ini

Beyond the quickstart

If you need more power than that provided by the quickstart, or if you just
want to customize some things, you may want to read the following pages:

		repoze.who – Authentication in TurboGears 2 applications

		Authorization in TurboGears 2 applications

		Customizing authentication and authorization

		Adding a custom login cleaner

		Using who.ini

		Adding OpenID Support

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

gettingtoknow.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

About the TurboGears Project

This document describes the internal workings of TurboGears, how
the system is constructed, how the pieces fit together, and how
to navigate the source-code for the project. Normally you will
want to read these pages in order to extend, debug, or change the
behaviour of TurboGears, or to start contributing to the project.

You will want to have read:

		Tutorials which describes how to get started with TurboGears

		Tips and Recipes which describes how to accomplish particular tasks with TurboGears

before diving into this material.

What’s New With The Latest Release

		What’s New In TurboGears 2
		The “Why” Of TurboGears 2

		New Features Of TurboGears 2:

		Compatibility

		Command Changes

		Project Layout Changes

		New Imports

General Project Information

		The Turbogears Way

		Upgrading Your TurboGears Project

		A Request’s Flow Through The TurboGears Stack

		Contributing To TurboGears 2

		Using BitBucket’s Mercurial Service with TurboGears

		TurboGears Licenses

		Documentation Generation Guide

		Setting up the TurboGears Test Environment and Testing

Libraries and Modules Shipped With TurboGears

		Modules
		pylons.commands – Command line functions

		pylons.configuration – Configuration object and defaults setup

		pylons.controllers – Controllers

		pylons.controllers.core – WSGIController Class

		pylons.controllers.util – Controller Utility functions

		pylons.controllers.xmlrpc – XMLRPCController Class

		pylons.decorators – Decorators

		pylons.decorators.cache – Cache Decorators

		pylons.decorators.rest – REST-ful Decorators

		pylons.decorators.secure – Secure Decorators

		pylons.error – Error handling support

		pylons.i18n.translation – Translation/Localization functions

		pylons.log – Logging for WSGI errors

		pylons.middleware – WSGI Middleware

		pylons.templating – Render functions and helpers

		pylons.test – Test related functionality

		pylons.util – Paste Template and Pylons utility functions

		pylons.wsgiapp – PylonsWSGI App Creator

		tg.decorators – Decorators

		tg.flash – Flash

		FormEncode
		Core API

		Validators

		Validator Modifiers

		HTML Parsing and Form Filling

		webhelpers – helper functions for web applications
		paginate: a module to help split up lists or results from ORM queries

		Package Contents

		Third-party components
		beaker – Caching

		routes – Route and Mapper core classes

		weberror – Weberror

		WebHelpers

		webob – WebOb

		VirtualEnv

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_static/comment.png

_images/ajaxform2.png
- Sample AJAX Form

Name

Email

Comment

Notty [
Submit

Fecieved Data:
Sanjv Singh
singhsanjivk@gmail.com
This is a test comment!
True

_images/editing_ss.png
SY

Welcome to TurboGears 2

bt The Python web metaframework

Editing User

User Name s
Email Address maperesononsncon
Display Name amie s

Groups.

Userld i

main/DatabaseMigration.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Database Schema Migrations

Since version 2.1.1 TurboGears has integrated migrations support
for each new quickstarted project. For previous versions or to
manually manage migrations please refer to Manual Database Schema Migration in TurboGears 2

TurboGears 2 relies on the sqlalchemy-migrate [http://code.google.com/p/sqlalchemy-migrate/] project to
automate database schema migration.

Prerequisites

This document assumes that you have an existing TurboGears >= 2.1.1 project
that uses the built-in support for SQLAlchemy. If you
are not yet at that stage, you may want to review the following:

		Quickstarting A TurboGears 2.2.2 Project

		Working With SQLAlchemy And Your Data Model

Additionally, it is assumed that you have reached a point in the
development life cycle where a change must be made to your current data
model. This could mean adding a column to an existing table, adding a
table, removing a table, or any number of other database schema
changes.

The examples in this document will be based on the The TurboGears 2 Wiki Tutorial, but
the information applies to any TurboGears 2 project.

Getting Started

TurboGears provides a paster migrate command to manage schema migration.
You can run paster migrate db_version to see the current version
of your schema:

$ paster migrate -c development.ini db_version
Migrations repository 'migration',
database url 'sqlite:////private/tmp/migr/devdata.db'

0

This is possible because when paster setup-app development.ini is ran
a migrate_version table is created in your database.
This table will keep the current version
of your schema to track when applying migrations is required.

If you examine your database, you should be able to see schema version tracking
table and check what it is the current version of your schema:

sqlite> .headers on
sqlite> select * from migrate_version;
repository_id|repository_path|version
migration|migration|0

This is exactly like running the paster migrate db_version command, both
should tell you the same database version. In this case as we just created
the project the reported version is 0.

Note that the repository_id column should uniquely identify your
project’s set of migrations. Should you happen to deploy multiple
projects in one database, you will be able to manage multiple schema
versions by changing the repository_id variable in the
migration/migrate.cfg of each project to a different value.

Integrating Migrations in the Development Process

With the database under version control and a repository for schema
change scripts, you are ready to begin regular development. We will
now walk through the process of creating, testing, and applying a
change script for your current database schema. Repeat these steps as
your data model evolves to keep your databases in sync with your
model.

Create Your First Change Script

The paster migrate script command will create an empty change script for you,
automatically naming it and placing it in your repository:

$ paster migrate script 'Initial Schema'

The command will return by just printing the migrations repository where it is
going to create the new script:

$ paster migrate script 'Initial Schema
Migrations repository 'migration',
database url 'sqlite:////private/tmp/migr/devdata.db'

$ ls migration/versions
001_Initial_Schema.py __init__.py

Edit the Script

Each change script provides an upgrade and downgrade method, and
we implement those methods by creating and dropping the pages_table
respectively:

from sqlalchemy import *
from migrate import *

metadata = MetaData()
pages_table = Table("pages", metadata,
 Column("id", Integer, primary_key=True),
 Column("pagename", Text, unique=True),
 Column("data", Text)
)

def upgrade(migrate_engine):
 # Upgrade operations go here. Don't create your own engine; use the engine
 # named 'migrate_engine' imported from migrate.
 metadata.bind = migrate_engine
 pages_table.create()

def downgrade(migrate_engine):
 # Operations to reverse the above upgrade go here.
 metadata.bind = migrate_engine
 pages_table.drop()

Test the Script

Anyone who has experienced a failed schema upgrade on a production
database knows how uniquely uncomfortable that situation can be.
Although testing a new change script is optional, it is clearly a good
idea. After you execute the following test command, you will ideally be
successful:

$ paster migrate test
Migrations repository 'migration',
database url 'sqlite:////private/tmp/migr/devdata.db'

Upgrading...
done
Downgrading...
done
Success

If you receive an error while testing your script, one of two issues
is probably the cause:

		There is a bug in the script

		You are testing a script that conflicts with the schema as it currently exists.

If there is a bug in your change script, you can fix the bug and rerun
the test.

Deploy the Script

The script is now ready to be deployed:

$ paster migrate upgrade

If your database is already at the most recent revision, the command
will produce no output. If migrations are applied, you will see
output similar to the following:

Migrations repository 'migration',
database url 'sqlite:////private/tmp/migr/devdata.db'

0 -> 1...
done

Keeping your websetup on sync

Each time you create a new migration you should consider keeping your
websetup in sync with it. For example if you create a new table inside
a migration when you will run paster setup-app on a new database
it will already have the new table as you probably declared it in your
model too but the migrations version will be 0. So trying to run any
migration will probably crash due to the existing table.

To prevent this your websetup script should always initialize the
database in the same state where it would be after applying all the
available migrations. To ensure this you will have to add at the end
of the websetup/bootstrap.py script a pool of commands to set the
schema version to the last one:

from migrate.versioning.schema import ControlledSchema
schema = ControlledSchema(config['pylons.app_globals'].sa_engine, 'migration')
print 'Setting database version to %s' % schema.repository.latest
schema.update_repository_table(0, schema.repository.latest)

Downgrading your schema

There are some cases in which downgrading your schema might be required.
In those cases you can perform the paster migrade downgrade command:

$ paster migrate downgrade 0
Migrations repository 'migration',
database url 'sqlite:////private/tmp/migr/devdata.db'

1 -> 0...
done

Additional Information and Help

		The sqlalchemy-migrate documentation [http://code.google.com/p/sqlalchemy-migrate/w/list].

		The TurboGears SQLAlchemy documentation [http://turbogears.org/2.1/docs/main/SQLAlchemy.html].

Many of the sqlalchemy-migrate developers are on the SQLAlchemy
mailing list. Problems integrating sqlalchemy-migrate into a
TurboGears project should be sent to the TurboGears mailing list [http://groups.google.com/group/turbogears].

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_static/menu_rpt.png

main/WSGIAppControllers.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		Writing Controller Methods »

Mounting WSGI Applications as TG Controllers

WSGI Apps As Controllers

TurboGears 2 also exposes a WSGI controller, which is a thin and
extensible wrapper to easily mount WSGI apps.

It exposes 3 methods __init__, default and delegate. From
those 99% of the time you will only need to modify __init__ and/or
delegate.

The normal usage is to extend this class with your own, use
__init__ to build your app and store it in self.app then
overwrite delegate if you need to modify the environment, the
response or any other mangling.

For an extensive list of examples please see tgext.wsgiapps.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

modules/thirdparty/virtualenv.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Third-party components »

VirtualEnv

VirtualEnv is a tool that you can use to keep your Python path
clean and tidy. It allows you to install new packages and all of
their dependencies into a clean working environment, thus eliminating
the possibility that installing turbogears or some other new package
will break your existing Python environment.

The other great advantage of VirtualEnv is that it allows you to run
multiple versions of the same package in parallel which is great for
running both the production version and the development version of an
application on the same machine.

People with a sys-admin background could consider VirtualEnv as a
variation of an OS jail (chroot) which is also good for security as
your installation is totally isolated. This makes VirtualEnv great for
deploying production sites.

We strongly advise you to install all your TurboGears apps inside a
VirtualEnv. If you ask for support without a VirtualEnv to isolate
your packages we will usually ask you to go get VirtualEnv before
proceeding further.

Installing VirtualEnv

On Windows:

easy_install virtualenv

On Unix:

$ sudo easy_install virtualenv

On Unix (non-root):

$ easy_install --install-dir=$HOME/lib/python2.5/ --script-dir=$HOME/bin/ virtualenv

will output something like:

Searching for virtualenv
Reading http://pypi.python.org/simple/virtualenv/
Best match: virtualenv 1.3.2
Downloading http://pypi.python.org/packages/2.5/v/virtualenv/virtualenv-1.3.2-py2.5.egg#md5=1db8cdd823739c79330a138327239551
Processing virtualenv-1.3.2-py2.5.egg
.....
Processing dependencies for virtualenv
Finished processing dependencies for virtualenv

Creating a VirtualEnv

Basic VirtualEnv usage is as follows:

$virtualenv example

Normally you will want to create a VirtualEnv which does not use system packages as
system packages can conflict with the TurboGears-installed packages.

$virtualenv --no-site-packages example

You may also want to create a VirtualEnv that uses a version of Python other than the
default Python on your platform.

$virtualenv -p python2.5 example

Activate Your VirtualEnv

First go inside the VirtualEnv:

$ cd tg2env

On Windows you activate a VirtualEnv with the command:

Scripts\activate.bat

On UNIX you activate a VirtualEnv with the command:

$ source bin/activate

If you are on Unix your prompt should change to indicate that you’re
in a VirtualEnv. It will look something like this:

(tg2env)username@host:~/tg2env$

The net result of activating your VirtualEnv is that your PATH
variable now points to the tools in tg2evn/bin and your python will
look for libraries in tg2evn/lib.

Therefore you need to reactivate your VirtualEnv every time you want
to work on your tg2env environment.

Deactivating (Escaping) VirtualEnv

On Win32, you deactivate the VirtualEnv via:

Scripts\deactivate.bat

and on Linux:

deactivate

Further Information

The VirtualEnv page on PyPI provides links to usage, documentation
and the like.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/index_ss.png
soe e L T S L
'op @ © o eIy D CreT—
e et

i ; Welcome to TurboGears 2
The Python web metaframework

TurboGears Admin

+ oz

modules/thirdparty/routes.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Third-party components »

routes – Route and Mapper core classes

routes.mapper

Mapper and Sub-Mapper

		
class routes.mapper.Mapper(controller_scan=<function controller_scan at 0x8380500>, directory=None, always_scan=False, register=True, explicit=True)

		Mapper handles URL generation and URL recognition in a web
application.

Mapper is built handling dictionary’s. It is assumed that the web
application will handle the dictionary returned by URL recognition
to dispatch appropriately.

URL generation is done by passing keyword parameters into the
generate function, a URL is then returned.

		
__init__(controller_scan=<function controller_scan at 0x8380500>, directory=None, always_scan=False, register=True, explicit=True)

		Create a new Mapper instance

All keyword arguments are optional.

		controller_scan

		Function reference that will be used to return a list of
valid controllers used during URL matching. If
directory keyword arg is present, it will be passed
into the function during its call. This option defaults to
a function that will scan a directory for controllers.

Alternatively, a list of controllers or None can be passed
in which are assumed to be the definitive list of
controller names valid when matching ‘controller’.

		directory

		Passed into controller_scan for the directory to scan. It
should be an absolute path if using the default
controller_scan function.

		always_scan

		Whether or not the controller_scan function should be
run during every URL match. This is typically a good idea
during development so the server won’t need to be restarted
anytime a controller is added.

		register

		Boolean used to determine if the Mapper should use
request_config to register itself as the mapper. Since
it’s done on a thread-local basis, this is typically best
used during testing though it won’t hurt in other cases.

		explicit

		Boolean used to determine if routes should be connected
with implicit defaults of:

{'controller':'content','action':'index','id':None}

When set to True, these defaults will not be added to route
connections and url_for will not use Route memory.

Additional attributes that may be set after mapper
initialization (ie, map.ATTRIBUTE = ‘something’):

		encoding

		Used to indicate alternative encoding/decoding systems to
use with both incoming URL’s, and during Route generation
when passed a Unicode string. Defaults to ‘utf-8’.

		decode_errors

		How to handle errors in the encoding, generally ignoring
any chars that don’t convert should be sufficient. Defaults
to ‘ignore’.

		minimization

		Boolean used to indicate whether or not Routes should
minimize URL’s and the generated URL’s, or require every
part where it appears in the path. Defaults to True.

		hardcode_names

		Whether or not Named Routes result in the default options
for the route being used or if they actually force url
generation to use the route. Defaults to False.

		
connect(*args, **kargs)

		Create and connect a new Route to the Mapper.

Usage:

m = Mapper()
m.connect(':controller/:action/:id')
m.connect('date/:year/:month/:day', controller="blog", action="view")
m.connect('archives/:page', controller="blog", action="by_page",
requirements = { 'page':'\d{1,2}' })
m.connect('category_list', 'archives/category/:section', controller='blog', action='category',
section='home', type='list')
m.connect('home', '', controller='blog', action='view', section='home')

		
create_regs(*args, **kwargs)

		Atomically creates regular expressions for all connected
routes

		
extend(routes, path_prefix='')

		Extends the mapper routes with a list of Route objects

If a path_prefix is provided, all the routes will have their
path prepended with the path_prefix.

Example:

>>> map = Mapper(controller_scan=None)
>>> map.connect('home', '/', controller='home', action='splash')
>>> map.matchlist[0].name == 'home'
True
>>> routes = [Route('index', '/index.htm', controller='home',
... action='index')]
>>> map.extend(routes)
>>> len(map.matchlist) == 2
True
>>> map.extend(routes, path_prefix='/subapp')
>>> len(map.matchlist) == 3
True
>>> map.matchlist[2].routepath == '/subapp/index.htm'
True

Note

This function does not merely extend the mapper with the
given list of routes, it actually creates new routes with
identical calling arguments.

		
generate(*args, **kargs)

		Generate a route from a set of keywords

Returns the url text, or None if no URL could be generated.

m.generate(controller='content',action='view',id=10)

		
match(url=None, environ=None)

		Match a URL against against one of the routes contained.

Will return None if no valid match is found.

resultdict = m.match('/joe/sixpack')

		
redirect(match_path, destination_path, *args, **kwargs)

		Add a redirect route to the mapper

Redirect routes bypass the wrapped WSGI application and instead
result in a redirect being issued by the RoutesMiddleware. As
such, this method is only meaningful when using
RoutesMiddleware.

By default, a 302 Found status code is used, this can be
changed by providing a _redirect_code keyword argument
which will then be used instead. Note that the entire status
code string needs to be present.

When using keyword arguments, all arguments that apply to
matching will be used for the match, while generation specific
options will be used during generation. Thus all options
normally available to connected Routes may be used with
redirect routes as well.

Example:

map = Mapper()
map.redirect('/legacyapp/archives/{url:.*}, '/archives/{url})
map.redirect('/home/index', '/', _redirect_code='301 Moved Permanently')

		
resource(member_name, collection_name, **kwargs)

		Generate routes for a controller resource

The member_name name should be the appropriate singular version
of the resource given your locale and used with members of the
collection. The collection_name name will be used to refer to
the resource collection methods and should be a plural version
of the member_name argument. By default, the member_name name
will also be assumed to map to a controller you create.

The concept of a web resource maps somewhat directly to ‘CRUD’
operations. The overlying things to keep in mind is that
mapping a resource is about handling creating, viewing, and
editing that resource.

All keyword arguments are optional.

		controller

		If specified in the keyword args, the controller will be
the actual controller used, but the rest of the naming
conventions used for the route names and URL paths are
unchanged.

		collection

		Additional action mappings used to manipulate/view the
entire set of resources provided by the controller.

Example:

map.resource('message', 'messages', collection={'rss':'GET'})
GET /message/rss (maps to the rss action)
also adds named route "rss_message"

		member

		Additional action mappings used to access an individual
‘member’ of this controllers resources.

Example:

map.resource('message', 'messages', member={'mark':'POST'})
POST /message/1/mark (maps to the mark action)
also adds named route "mark_message"

		new

		Action mappings that involve dealing with a new member in
the controller resources.

Example:

map.resource('message', 'messages', new={'preview':'POST'})
POST /message/new/preview (maps to the preview action)
also adds a url named "preview_new_message"

		path_prefix

		Prepends the URL path for the Route with the path_prefix
given. This is most useful for cases where you want to mix
resources or relations between resources.

		name_prefix

		Perpends the route names that are generated with the
name_prefix given. Combined with the path_prefix option,
it’s easy to generate route names and paths that represent
resources that are in relations.

Example:

map.resource('message', 'messages', controller='categories',
 path_prefix='/category/:category_id',
 name_prefix="category_")
GET /category/7/message/1
has named route "category_message"

		parent_resource

		A dict containing information about the parent
resource, for creating a nested resource. It should contain
the member_name and collection_name of the parent
resource. This dict will
be available via the associated Route object which can
be accessed during a request via
request.environ['routes.route']

If parent_resource is supplied and path_prefix
isn’t, path_prefix will be generated from
parent_resource as
“<parent collection name>/:<parent member name>_id”.

If parent_resource is supplied and name_prefix
isn’t, name_prefix will be generated from
parent_resource as “<parent member name>_”.

Example:

>>> from routes.util import url_for
>>> m = Mapper()
>>> m.resource('location', 'locations',
... parent_resource=dict(member_name='region',
... collection_name='regions'))
>>> # path_prefix is "regions/:region_id"
>>> # name prefix is "region_"
>>> url_for('region_locations', region_id=13)
'/regions/13/locations'
>>> url_for('region_new_location', region_id=13)
'/regions/13/locations/new'
>>> url_for('region_location', region_id=13, id=60)
'/regions/13/locations/60'
>>> url_for('region_edit_location', region_id=13, id=60)
'/regions/13/locations/60/edit'

Overriding generated path_prefix:

>>> m = Mapper()
>>> m.resource('location', 'locations',
... parent_resource=dict(member_name='region',
... collection_name='regions'),
... path_prefix='areas/:area_id')
>>> # name prefix is "region_"
>>> url_for('region_locations', area_id=51)
'/areas/51/locations'

Overriding generated name_prefix:

>>> m = Mapper()
>>> m.resource('location', 'locations',
... parent_resource=dict(member_name='region',
... collection_name='regions'),
... name_prefix='')
>>> # path_prefix is "regions/:region_id"
>>> url_for('locations', region_id=51)
'/regions/51/locations'

		
routematch(url=None, environ=None)

		Match a URL against against one of the routes contained.

Will return None if no valid match is found, otherwise a
result dict and a route object is returned.

resultdict, route_obj = m.match('/joe/sixpack')

routes.route

		
class routes.route.Route(name, routepath, **kargs)

		The Route object holds a route recognition and generation
routine.

See Route.__init__ docs for usage.

		
__init__(name, routepath, **kargs)

		Initialize a route, with a given routepath for
matching/generation

The set of keyword args will be used as defaults.

Usage:

>>> from routes.base import Route
>>> newroute = Route(None, ':controller/:action/:id')
>>> sorted(newroute.defaults.items())
[('action', 'index'), ('id', None)]
>>> newroute = Route(None, 'date/:year/:month/:day',
... controller="blog", action="view")
>>> newroute = Route(None, 'archives/:page', controller="blog",
... action="by_page", requirements = { 'page':'\d{1,2}' })
>>> newroute.reqs
{'page': '\\d{1,2}'}

Note

Route is generally not called directly, a Mapper instance
connect method should be used to add routes.

		
buildfullreg(clist, include_names=True)

		Build the regexp by iterating through the routelist and
replacing dicts with the appropriate regexp match

		
buildnextreg(path, clist, include_names=True)

		Recursively build our regexp given a path, and a controller
list.

Returns the regular expression string, and two booleans that
can be ignored as they’re only used internally by buildnextreg.

		
generate(_ignore_req_list=False, _append_slash=False, **kargs)

		Generate a URL from ourself given a set of keyword arguments

Toss an exception if this
set of keywords would cause a gap in the url.

		
generate_minimized(kargs)

		Generate a minimized version of the URL

		
generate_non_minimized(kargs)

		Generate a non-minimal version of the URL

		
make_full_route()

		Make a full routelist string for use with non-minimized
generation

		
make_unicode(s)

		Transform the given argument into a unicode string.

		
makeregexp(clist, include_names=True)

		Create a regular expression for matching purposes

Note: This MUST be called before match can function properly.

clist should be a list of valid controller strings that can be
matched, for this reason makeregexp should be called by the web
framework after it knows all available controllers that can be
utilized.

include_names indicates whether this should be a match regexp
assigned to itself using regexp grouping names, or if names
should be excluded for use in a single larger regexp to
determine if any routes match

		
match(url, environ=None, sub_domains=False, sub_domains_ignore=None, domain_match='')

		Match a url to our regexp.

While the regexp might match, this operation isn’t
guaranteed as there’s other factors that can cause a match to
fail even though the regexp succeeds (Default that was relied
on wasn’t given, requirement regexp doesn’t pass, etc.).

Therefore the calling function shouldn’t assume this will
return a valid dict, the other possible return is False if a
match doesn’t work out.

routes.util

Utility functions for use in templates / controllers

PLEASE NOTE: Many of these functions expect an initialized RequestConfig
object. This is expected to have been initialized for EACH REQUEST by the web
framework.

		
routes.util.url_for(*args, **kargs)

		Generates a URL

All keys given to url_for are sent to the Routes Mapper instance for
generation except for:

anchor specified the anchor name to be appened to the path
host overrides the default (current) host if provided
protocol overrides the default (current) protocol if provided
qualified creates the URL with the host/port information as
 needed

The URL is generated based on the rest of the keys. When generating a new
URL, values will be used from the current request’s parameters (if
present). The following rules are used to determine when and how to keep
the current requests parameters:

		If the controller is present and begins with ‘/’, no defaults are used

		If the controller is changed, action is set to ‘index’ unless otherwise
specified

For example, if the current request yielded a dict of
{‘controller’: ‘blog’, ‘action’: ‘view’, ‘id’: 2}, with the standard
‘:controller/:action/:id’ route, you’d get the following results:

url_for(id=4) => '/blog/view/4',
url_for(controller='/admin') => '/admin',
url_for(controller='admin') => '/admin/view/2'
url_for(action='edit') => '/blog/edit/2',
url_for(action='list', id=None) => '/blog/list'

Static and Named Routes

If there is a string present as the first argument, a lookup is done
against the named routes table to see if there’s any matching routes. The
keyword defaults used with static routes will be sent in as GET query
arg’s if a route matches.

If no route by that name is found, the string is assumed to be a raw URL.
Should the raw URL begin with / then appropriate SCRIPT_NAME data will
be added if present, otherwise the string will be used as the url with
keyword args becoming GET query args.

		
routes.util.redirect_to(*args, **kargs)

		Issues a redirect based on the arguments.

Redirect’s should occur as a “302 Moved” header, however the web
framework may utilize a different method.

All arguments are passed to url_for to retrieve the appropriate URL, then
the resulting URL it sent to the redirect function as the URL.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

modules/pylons/wsgiapp.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Modules »

pylons.wsgiapp – PylonsWSGI App Creator

WSGI App Creator

This module is responsible for creating the basic Pylons WSGI
application (PylonsApp). It’s generally assumed that it will be called
by Paste, though any WSGI server could create and call the WSGI app as
well.

Module Contents

		
class pylons.wsgiapp.PylonsApp(config=None, **kwargs)

		Pylons WSGI Application

This basic WSGI app is provided should a web developer want to
get access to the most basic Pylons web application environment
available. By itself, this Pylons web application does little more
than dispatch to a controller and setup the context object, the
request object, and the globals object.

Additional functionality like sessions, and caching can be setup by
altering the environ['pylons.environ_config'] setting to
indicate what key the session and cache functionality
should come from.

Resolving the URL and dispatching can be customized by sub-classing
or “monkey-patching” this class. Subclassing is the preferred
approach.

		
__call__(environ, start_response)

		Setup and handle a web request

PylonsApp splits its functionality into several methods to
make it easier to subclass and customize core functionality.

The methods are called in the following order:

		setup_app_env()

		load_test_env() (Only if operating in
testing mode)

		resolve()

		dispatch()

The response from dispatch() is expected to be
an iterable (valid PEP 333 [http://www.python.org/dev/peps/pep-0333] WSGI response), which is then
sent back as the response.

		
dispatch(controller, environ, start_response)

		Dispatches to a controller, will instantiate the controller
if necessary.

Override this to change how the controller dispatch is handled.

		
find_controller(controller)

		Locates a controller by attempting to import it then grab
the SomeController instance from the imported module.

Controller name is assumed to be a module in the controllers
directory unless it contains a ‘.’ or ‘:’ which is then assumed
to be a dotted path to the module and name of the controller
object.

Override this to change how the controller object is found once
the URL has been resolved.

		
load_test_env(environ)

		Sets up our Paste testing environment

		
register_globals(environ)

		Registers globals in the environment, called from
setup_app_env()

Override this to control how the Pylons API is setup. Note that
a custom render function will need to be used if the
pylons.app_globals global is not available.

		
resolve(environ, start_response)

		Uses dispatching information found in
environ['wsgiorg.routing_args'] to retrieve a controller
name and return the controller instance from the appropriate
controller module.

Override this to change how the controller name is found and
returned.

		
setup_app_env(environ, start_response)

		Setup and register all the Pylons objects with the registry

After creating all the global objects for use in the request,
register_globals() is called to register them
in the environment.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Session.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Web Session Usage

		Status:		Work in progress

Why Use Sessions?

Sessions are a common way to keep simple browsing data attached to a
user’s browser. This is generally used to store simple data that does
not need to be persisted in a database.

Sessions in TurboGears can be backed by the filesystem, memcache, the
database, or by hashed cookie values. By default, cookies are used
for storing the session data, which is only good for storing very
little amounts of data in the session since all data will be sent
back and forth within the cookie. If you are storing lots of data in
the session, Memcache is recommended.

Warning

Using cookies for storing the whole session’s content exposes
your application to possible exploits if the attacker gets to
know the secret key which is used for the encryption of the
cookies. Considering this, it is probably better to use the
filesystem storage if you don’t want to set up memcache.

Note

When using the filesystem backed storage, you must be aware of
the fact, that beaker does not clean up the session files
at all. You have to make sure to clean up the data directory on
a regular basis yourself.
Refer to the Beaker documentation [http://beaker.readthedocs.org/en/latest/sessions.html#removing-expired-old-sessions] for more details.

How To Use Sessions?

If you just quickstarted a TurboGears 2 application, the session
system is pre-configured and ready to be used.

By default we are using the Beaker session system. This system is
configured to use hashed cookies for session storage.

Each time a client connects, the session middleware (Beaker) will
inspect the cookie using the cookie name we have defined in the
configuration file.

If the cookie is not found it will be set in the browser. On all
subsequent visits, the middleware will find the cookie and make use of
it.

When using the cookie based backend, all data that you put into the
session will be pickled, hashed and encrypted by the middleware
when sending the response to the browser and vice-versa when
reading the request.

In the other backends, the cookie only contains a large random key
that was set at the first visit and has been associated behind the
scenes to a file in the file system cache. This key is then used to
lookup and retrieve the session data from the proper datastore.

OK, enough with theory! Let’s get to some real life (sort of)
examples. Open up your root controller and add the following import
at the top the file:

from tg import session

What you get is a Session instance that is always request-local, in
other words, it’s the session for this particular user. The session
can be manipulated in much the same way as a standard python
dictionary.

Here is how you search for a key in the session:

if session.get('mysuperkey', None):
 # do something intelligent
 pass

and here is how to set a key in the session:

session['mysuperkey'] = 'some python data I need to store'
session.save()

You should note that you need to explicitly save the session in order for your
keys to be stored in the session.

You can delete all user session with the delete() method of the
session object:

session.delete()

Even though it’s not customary to delete all user sessions on a production
environment, you will typically do it for cleaning up after
usability or functional tests.

Avoid automatic session extension

TurboGears by default automatically extends session life time
at every request if a session is already available. You can
avoid this behavior by changing your application configuration

beaker.session.tg_avoid_touch = true

This will also prevent TurboGears from causing an automatic
session save at every request.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/MultipleDatabases.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Using Multiple Databases In TurboGears

		Status:		RoughDoc

Table of Contents

		Using Multiple Databases In TurboGears
		Define your database urls in the [app:main] section of your .ini file(s)

		Change The Way Your App Loads The Database Engines

		Update Your Model’s __init__ To Handle Multiple Sessions And Metadata

		Tell Your Models Which Engine To Use

		Optional: Create And Populate Each Database In Websetup.py

The goal of this tutorial is to configure TurboGears to use multiple
databases. In this tutorial we will simply set up two different
databases engines that will use db session handlers of DBSession and
DBSession2, db metadata names of metadata and metadata2, and
DeclarativeBase objects of DeclarativeBase and DeclarativeBase2.

Define your database urls in the [app:main] section of your .ini file(s)

The first thing you will need to do is edit your .ini file to specify
multiple url options for the sqlalchemy configuration.

In myapp/development.ini (or production.ini, or whatever.ini you are
using), comment out the original sqlalchemy.url assignment and add the
multiple config options:

#sqlalchemy.url = sqlite:///%(here)s/devdata.db
sqlalchemy.first.url = sqlite:///%(here)s/database_1.db
sqlalchemy.second.url = sqlite:///%(here)s/database_2.db

Change The Way Your App Loads The Database Engines

Now we need to instruct the app to load the multiple databases
correctly. This requires telling base_config (in app_cfg.py) to load
our own custom AppConfig with the proper multi-db assignments and a
call to the model’s init_model method (more on that in the next step).

In myapp/config/app_cfg.py:

make sure these imports are added to the top
from tg.configuration import AppConfig, config
from pylons import config as pylons_config
from myapp.model import init_model

add this before base_config =
class MultiDBAppConfig(AppConfig):
 def setup_sqlalchemy(self):
 """Setup SQLAlchemy database engine(s)"""
 from sqlalchemy import engine_from_config
 engine1 = engine_from_config(pylons_config, 'sqlalchemy.first.')
 engine2 = engine_from_config(pylons_config, 'sqlalchemy.second.')
 # engine1 should be assigned to sa_engine as well as your first engine's name
 config['pylons.app_globals'].sa_engine = engine1
 config['pylons.app_globals'].sa_engine_first = engine1
 config['pylons.app_globals'].sa_engine_second = engine2
 # Pass the engines to init_model, to be able to introspect tables
 init_model(engine1, engine2)

#base_config = AppConfig()
base_config = MultiDBAppConfig()

Update Your Model’s __init__ To Handle Multiple Sessions And Metadata

Switching the model’s init from a single-db config to a multi-db
simply means we have to duplicate our DBSession and metata
assignments, and then update the init_model method to assign/configure
each engine correctly.

In myapp/model/__init__.py:

after the first maker/DBSession assignment, add a 2nd one
maker2 = sessionmaker(autoflush=True, autocommit=False,
 extension=ZopeTransactionExtension())
DBSession2 = scoped_session(maker2)

after the first DeclarativeBase assignment, add a 2nd one
DeclarativeBase2 = declarative_base()

uncomment the metadata2 line and assign it to DeclarativeBase2.metadata
metadata2 = DeclarativeBase2.metadata

finally, modify the init_model method to allow both engines to be passed (see previous step)
and assign the sessions and metadata to each engine
def init_model(engine1, engine2):
 """Call me before using any of the tables or classes in the model."""

DBSession.configure(bind=engine)
 DBSession.configure(bind=engine1)
 DBSession2.configure(bind=engine2)

 metadata.bind = engine1
 metadata2.bind = engine2

Tell Your Models Which Engine To Use

Now that the configuration has all been taken care of, you can
instruct your models to inherit from either the first or second
DeclarativeBase depending on which DB engine you want it to use.

For example, in myapp/model/spam.py (uses engine1):

from sqlalchemy import Table, ForeignKey, Column
from sqlalchemy.types import Integer, Unicode, Boolean
from myapp.model import DeclarativeBase

class Spam(DeclarativeBase):
 __tablename__ = 'spam'

 def __init__(self, id, variety):
 self.id = id
 self.variety = variety

 id = Column(Integer, autoincrement=True, primary_key=True)
 variety = Column(Unicode(50), nullable=False)

And then in myapp/model/eggs.py (uses engine2):

from sqlalchemy import Table, ForeignKey, Column
from sqlalchemy.types import Integer, Unicode, Boolean
from myapp.model import DeclarativeBase2

class Eggs(DeclarativeBase2):
 __tablename__ = 'eggs'

 def __init__(self, id, pkg_qty):
 self.id = id
 self.pkg_qty = pkg_qty

 id = Column(Integer, autoincrement=True, primary_key=True)
 pkg_qty = Column(Integer, default=12)

If you needed to use the DBSession here (or in your controllers), you
would use DBSession for the 1st engine and DBSession2 for the 2nd (see
the previous and next sections).

Optional: Create And Populate Each Database In Websetup.py

If you want your setup_app method to populate each database with data,
simply use the appropriate metadata/DBSession objects as you would in
a single-db setup.

In myapp/websetup.py:

def setup_app(command, conf, vars):
 """Place any commands to setup myapp here"""
 load_environment(conf.global_conf, conf.local_conf)
 # Load the models
 from myapp import model
 print "Creating tables for engine1"
 model.metadata.create_all()
 print "Creating tables for engine2"
 model.metadata2.create_all()

 # populate spam table
 spam = [model.Spam(1, u'Classic'), model.Spam(2, u'Golden Honey Grail')]
 # DBSession is bound to the spam table
 model.DBSession.add_all(spam)

 # populate eggs table
 eggs = [model.Eggs(1, 12), model.Eggs(2, 6)]
 # DBSession2 is bound to the eggs table
 model.DBSession2.add_all(eggs)

 model.DBSession.flush()
 model.DBSession2.flush()
 transaction.commit()
 print "Successfully setup"

Todo

Difficulty: Hard. At some point, we should also find a way to document how to
handle Horizontal and Vertical Partitioning [http://www.sqlalchemy.org/docs/05/session.html#partitioning-strategies]
properly, and document that in here, too.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/forkof.png
i bitbucket Home Reposiories + Account (inbox Plans Help Log out Gedesen) |7 ‘l

Overview | Downloads (0) Source | Changesets Wiki Issues (0)» Admin Followers (0) ForksiQueues (0)

R branches» ¢ tags » RSS

Aom e pullrequest & fork & paichqueue W follow | get source »

pedersen / hg-git
Fixes to make hg-git work on Python 2.3

Clone this repository (size: 302.1 KB): HTTPS / ss#

5 hg clone https://pedersengbitbucket .org/pedersen/ha-git/

Shortog (showing r178:94368a45fee (ip) - r1545c5840bbaa)

Age Author Hessage
2 weeks & Michael J. Pedersen These changes allow hg-git to work with Python 2.4, which is the default python. 0 30
6 weeks B scotty only look for renames if the file has changed 01 0

6 weeks B scotty fix to previously written tree hash calculation 01 0

_images/flexigrid1.png
Movies

Add

D

15

10

14

Delete

Title

Ben Hur

Beowulf

Chariots of Fire

Gladiator

Mission Impossible

My Fair Lady

Rain Man

Rambo

Saturday Night Fevs

Description

Description of Ben Hur

A 3D action movie

Description of Movie

Story of a roman hero

Story of a Secret Agent

A dlassic love sory

Description

Story of a War Hero

Best of John Travolta

Year

1959

2007

1981

2000

1992

1964

1988

1981

1982

Genera

Historical

Action

Action

Historical

Action

Classic

Thriller

Action

Musical

4 [10 4 4 Pagelt of2 » M 2 Displaying 1to 10 of 15 items.

_images/passwordverify.png
Username [QuakeMaster123

Password [+~

=3 Passwords do not match

main/QuickStart.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Getting Started »

Quickstarting A TurboGears 2.2.2 Project

		Status:		Work in progress

Table of Contents

		Quickstarting A TurboGears 2.2.2 Project
		Create The Database

		Run The Server

		Using MongoDB

		What’s Next?

We assume that you have TurboGears installed and, if you installed it
in a virtual environment as recommended, that your virtualenv is activated.
See TurboGears 2.2.2 Standard Installation to get to this point.

TurboGears 2 extends the paster command-line tool to provide a
suite of tools for working with TurboGears 2 projects. A few will be
touched upon in this tutorial, check the paster --help command for
a full listing.

The very first tool you’ll need is paster quickstart, which
initializes a TurboGears 2 project. You can go to whatever directory
you want and start a new TurboGears 2 project.

$ paster quickstart

The paster quickstart command will create a basic project
directory for you to use to get started on your TurboGears 2
application. You’ll be prompted for the name of the project (this is
the pretty name that human beings would appreciate), and the name of
the package (this is the less-pretty name that Python will like).

Here’s what our choices for this tutorial look like:

Enter project name: Helloworld
Enter package name [helloworld]: helloworld
Do you need authentication and authorization in this project? [yes]
...output...

This will create a new directory which contains a few files in a
directory tree, with some code already set up for you.

Let’s go in there and you can take a look around.

$ cd Helloworld

The setup.py file has a section which explicitly declares the
dependencies of your application. The quickstart template has a few
built in dependencies, and as you add new python libraries to your
application’s stack, you’ll want to add them here too.

Then in order to make sure all those dependencies are installed you
will want to run.

$ python setup.py develop

If you have just installed TurboGears and are in a relatively new
virtualenv, expect to see a bit of output about additional packages
being installed.

Create The Database

Most applications will use a database, and since we specified we are
using “authentication” in our quickstart, we need a place to store
users and permissions. Before you run your application for the first
time, you need to make sure the database is created and initialized.
The following command typically only needs to be run once.

$ paster setup-app development.ini

With the quickstart command from above, you will see quite a bit of
output which shows you the SQL commands that create the authentication
tables and setup a default user/password for you:

user: manager
password: managepass

You don’t need to understand all of this now, but here is a little
background about how “paster setup-app” knows what to do. By default,
the database is created using SQLite [http://www.sqlite.org], and the data is stored in a
file, devdata.db, in the top level of your project. The information
about what database driver is used is specified in the development.ini
file passed on the command line. The code which adds the initial data
rows is in helloword/web_setup.py. The command “paster setup-app”
ends up calling the function “setup_app” within this file.

Another key piece of TG2 application setup infrastructure is the
paster setup-app command which takes a configuration file and runs
your project’s websetup code in that context. This allows you to use
setup-app to create database tables, pre-populate require data into
your database, and otherwise make things nice for people first setting
up your app. If you take a look at your project’s quickstart, you
will see a websetup Python script. Inside of this script, you will see
a single functon, setup_app, that is called when paster setup-app
is run. Inside of this, you may do any setup you need to for your
application. The most common operations will be to add in basic data
to the database that is required to bootstrap your application.

Note

If it’s the first time you’re going to use the application,
and you told quickstart to include authentication+authorizaiton, you
will have to run setup-app to set it up (e.g., create a test
database).

$ paster setup-app development.ini

This will create the database using the information stored in the
development.ini file which by default makes single file SQLite
database in the local file system. In addition to creating the
database, it runs whatever extra database loaders or other setup are
defined in {yourproject}.websetup:setup_app.

In a quickstarted project with Authorization enabled setup-app creates
a couple of basic users, groups, and permissions for you to use as an
example. This code is found in {yourproject}.websetup:setup_app.
This code also shows how you can add new data automatically to the
database when the setup-app command is executed..

Run The Server

At this point your project should be operational, and you’re ready to
start up the app. To start a TurboGears 2 app, you need to be in the
top level of your project directory (Helloworld) and issue the
command paster serve to serve your new application.

$ paster serve development.ini

As soon as that’s done point your browser at http://localhost:8080/
and you’ll see a nice welcome page.

Note

If you’re exploring TurboGears 2 after using TurboGears 1
you may notice a few things:

		The old config file dev.cfg file is now development.ini.

		By default the paster serve command is not in auto-reload mode as
the CherryPy server used to be. If you also want your application to
auto-reload whenever you change a source code file just add the
--reload option to paster serve:

$ paster serve --reload development.ini

You might also notice that paster serve can be run from any directory
as long as you give it the path to the right ini file.

In order to run the server in development mode, where your Python files are
reloaded automatically when they are changed, you typically use the
following command.

paster serve --reload development.ini

If you take a look at the code that quickstart created you’ll see that
there isn’t much involved in getting up and running. In particular,
you’ll want to check out the files directly involved in displaying
this welcome page:

		development.ini contains the system configuration for development.

		helloworld/controllers/root.py contains the controller code to create the
data for the welcome page along with usage examples for various tg2
features.

		helloworld/templates/index.html is the template turbogears uses to render
the welcome page from the dictionary returned by the root controller. It’s
standard XHTML with some simple namespaced attributes.

		helloworld/public/ is the place to hold static files such as pictures,
JavaScript, or CSS files.

You can easily edit development.ini to change the default server port
used by the built-in web server:

[server:main]
...
port = 8080

Just change 8080 to 80, and you’ll be serving your app up on a
standard port (assuming your OS allows you to do this using your
normal account).

You might also wish to have paster listening on all IP addresses on
your machine. To do so, modify the line right above the port line (in
development.ini) to have the value 0.0.0.0, like so:

[server:main]
...
host = 0.0.0.0

Using MongoDB

TurboGears supports MongoDB [http://www.mongodb.org] out of the box by using the Ming [http://merciless.sourceforge.net/tour.html] ORM.
Ming [http://merciless.sourceforge.net/tour.html] was made to look like SQLAlchemy, so if you are proficient with
SQLAlchemy and MongoDB it should be easy for you to get used to the Ming [http://merciless.sourceforge.net/tour.html]
query language. This also makes easy to port a TurboGears SQLAlchemy based
application to MongoDB.

To create a project using MongoDB [http://www.mongodb.org] you just need to pass the --ming
option to the paster quickstart command.

$ paster quickstart --ming

The quickstarted project will provide an authentication and authorization
layer like the one that is provided for the SQLAlchemy version. This
means that you will have the same users and groups you had on the standard
quickstarted project and also that all the predicates to check for authorization
should work like before.

The main difference is that you won’t be able to use the application
without having a running MongoDB [http://www.mongodb.org] database on the local machine.

By default the application will try to connect to a server on port
27017 on local machine using a database that has the same name
of your package.

This can be changed by editing the development.ini file:

ming.url = mongodb://localhost:27017/
ming.db = myproject

Now that everything is in place to start using MongoDB [http://www.mongodb.org] as your
database server you just need to proceed the usual way by filling
your database.

$ paster setup-app development.ini

The quickstart command from above will create the authentication
collections and setup a default user/password for you:

user: manager
password: managepass

For more informations about Ming [http://merciless.sourceforge.net/tour.html] and MongoDB [http://www.mongodb.org] support please
refer to the Working With Ming And MongoDB section.

What’s Next?

		If you are new to TurboGears you should likely continue on to
Explore A Quickstarted Project

		You may wish to go directly to the Getting Started which provide hands-on
projects to guide you through learning TurboGears

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/passwordverify1.png
Username [QuakeMaster123

Password [+~

=3 Passwords do not match

deprecated/ToscaWidgets/Cookbook/FlexiGrid.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

JQuery FlexiGrid Widget

Installation

easy_install tw.jquery

Usage

The FlexiGrid widget supports the following parameters:

Mandatory Parameters:

		
		id The element id of the input field element. Multiple instanes

		of FlexiGrid can be used on the same page. These are referenced
distinctly on the form page by the id. This is also the element
id of the flexigrid table and all jQuery operations reference the
grid using this.

		
		fetchURL This is the url to be used for fetching the table data

		in JSON format using HTTP POST request.

		
		colModel This is a list of columns to be displayed in the

		grid. Each column is represented by a dictionary with the column
name, display name, column width and alignment as the keys as
shown below.

colModel = [
 {'display':'ID', 'name':'id', 'width':20, 'align':'center'},
 {'display':'Title', 'name':'title', 'width':80, 'align':'left'},
 {'display':'Description', 'name':'description', 'width':100, 'align':'left'},
 {'display':'Year', 'name':'year', 'width':40, 'align':'center'},
 {'display':'Genera', 'name':'genera', 'width':40, 'align':'center'}
]

Optional Parameters:

		title The table title.

		sortname The column on which rows are to be sorted

		sortorder The order of sort (Default : asc)

		usepager Whether pagination is to be used (Default : True)

		
		useRp Whether rows per page select box is displayed (Default :

		True)

		rp Rows per Page (Default : 25)

		
		searchitems List of columns to be displayed in the drop down

		list for searching matching records. This is a list of
dictionaries containing the attribute name and the display
name. This example shows a list of searchitems.

searchitems = [
 {'display':'Title', 'name':'title', 'isdefault':True},
 {'display':'Year', 'name':'year'},
 {'display':'Genre', 'name':'genera'}
]

		
		showTableToggleButton The entire grid can be collapsed and

		expanded conveniently using this button (Default : False)

		
		buttons A list of buttons that should appear on the table

		header. Each button is provided as a dictionary. For example:

from tw.api import js_callback

buttons=[
 {'name':'Add', 'bclass':'add', 'onpress': js_callback('add_record')},
 {'name':'Delete', 'bclass':'delete', 'onpress': js_callback('delete_record')},
 {'separator':True}
]

The onpress key takes a javascript callback function as the value
which is called when the button is pressed. In this example, the Add
and Delete buttons call the callback functions add_record() and
delete_record() respectively. These handlers must be coded separately
and included in the template.

		width The width of the grid in px

		height The height of the grid in px

For example the widget could be instantiated as:

from tw.jquery import FlexiGrid

grid = FlexiGrid(id='flex', fetchURL='fetch', title='Movies',
 colModel=colModel, useRp=True, rp=10,
 sortname='title', sortorder='asc', usepager=True,
 searchitems=searchitems,
 showTableToggleButton=True,
 buttons=buttons,
 width=500,
 height=200
)

Once the Widget is instantiated it can be served up to the user from
the controller:

@expose('samplegrid.templates.index')
def index(self):
 pylons.c.grid = grid
 return dict()

The widget can be displayed in the template by:

${tmpl_context.grid(value=value)}

Before displaying the grid it is necessary to setup the controller
method for serving the data using JSON as the data is fetched by the
grid before it is rendered. The parameters passed to the FlexiGrid
widget while instantiation are in turn passed to the controller method
by the javascript code of the widget. The controller method for
handling the JSON request would be:

@validate(validators={"page":validators.Int(), "rp":validators.Int()})
@expose('json')
def fetch(self, page=1, rp=25, sortname='title', sortorder='asc', qtype=None, query=None):
 offset = (page-1) * rp
 if (query):
 d = {qtype:query}
 movies = DBSession.query(Movie).filter_by(**d)
 else:
 movies = DBSession.query(Movie)
 total = movies.count()
 column = getattr(Movie.c, sortname)
 movies = movies.order_by(getattr(column,sortorder)()).offset(offset).limit(rp)
 rows = [{'id' : movie.id,
 'cell': [movie.id, movie.title, movie.description, movie.year, movie.genera]} for movie in movies]
 return dict(page=page, total=total, rows=rows)

While all keyword parameters are the same as those passed to the
widget during instantiation, the searchitems parameter is broken down
by the flexigrid js module. The qtype parameter is a string value
for the class attribute to be matched for searching and the query
parameter contains the search string provided by the User. The above
example provides equality match only.

Finally the FlexiGrid will be rendered as:

[image: example FlexiGrid Field]

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

modules/thirdparty/webhelpers_paginate.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Third-party components »

 		WebHelpers »

webhelpers – helper functions for web applications

paginate: a module to help split up lists or results from ORM queries

What is pagination?

This module helps dividing large lists of items into pages. The user
is shown one page at a time and can navigate to other pages. Imagine you
are offering a company phonebook and let the user search the entries. If
the search result contains 23 entries but you may want to display no
more than 10 entries at once. The first page contains entries 1-10, the
second 11-20 and the third 21-23. See the documentation of the “Page”
class for more information.

How do I use it?

One page of items is represented by the Page object. A Page gets
initialized with at least two arguments and usually three:

		The collection of items to pick a range from.

		The page number we want to display. (Default is 1: the first page.)

		A URL generator callback. (This tells what the URLs to other pages are.
It’s required if using the pager() method, although it may be omitted
under Pylons for backward compatibility. It is required for Pyramid.)

Here’s an interactive example.

First we’ll create a URL generator using the basic PageURL class, which
works with all frameworks and has no dependencies. It creates URLs by
overriding the ‘page’ query parameter.

Instantiate the URL generator, and call it to see what it does.
>>> url_for_page = PageURL("/articles/2013", {"page": "3"})
>>> url_for_page(page=2)
'/articles/2013?page=2'

Now we can create a collection and instantiate the Page:

Create a sample collection of 1000 items
>>> my_collection = range(1000)

Create a Page object for the 3rd page (20 items per page is the default)
>>> my_page = Page(my_collection, page=3, url=url_for_page)

The page object can be printed directly to get its details
>>> my_page
Page:
Collection type: <type 'list'>
(Current) page: 3
First item: 41
Last item: 60
First page: 1
Last page: 50
Previous page: 2
Next page: 4
Items per page: 20
Number of items: 1000
Number of pages: 50
<BLANKLINE>

Print a list of items on the current page
>>> my_page.items
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59]

The *Page* object can be used as an iterator:
>>> for my_item in my_page: print my_item,
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

The .pager() method returns an HTML fragment with links to surrounding
pages.
[The ">>" prompt is to hide untestable examples from doctest.]
>> my_page.pager()
1 2 [3] 4 5 .. 50 (this is actually HTML)

The pager can be customized:
>> my_page.pager('$link_previous ~3~ $link_next (Page $page of $page_count)')
1 2 [3] 4 5 6 .. 50 > (Page 3 of 50)

There are many parameters that customize the Page’s behavor. See the
documentation on Page and Page.pager().

URL generator

The constructor’s url argument is a callback that returns URLs to other
pages. It’s required when using the Page.pager() method except under
Pylons, where it will fall back to pylons.url.current (Pylons 1) and then
routes.url_for (Pylons 0.9.7). If none of these are available, you’ll get
an exception “NotImplementedError: no URL generator available”.

WebHelpers 1.3 introduces a few URL generators for convenience. PageURL is
described above. PageURL_WebOb takes a webobb.Request object, and is
suitable for Pyramid, Pylons, TurboGears, and other frameworks that have a
WebOb-compatible Request object. Both of these classes assume that the page
number is in the ‘page’ query parameter.

Here’s an example for Pyramid and other WebOb-compatible frameworks:

Assume ``request`` is the current request.
import webhelpers.paginate as paginate
current_page = int(request.params["page"])
q = SOME_SQLALCHEMY_QUERY
page_url = paginate.PageURL_WebOb(request)
records = paginate.Page(q, current_page, url=page_url)

If the page number is in the URL path, you’ll have to use a framework-specific
URL generator. For instance, in Pyramid if the current route is
“/articles/{id}/page/{page}” and the current URL is
“/articles/ABC/page/3?print=1”, you can use Pyramid’s “current_route_url”
function as follows:

Assume ``request`` is the current request.
import webhelpers.paginate as paginate
from pyramid.url import current_route_url
def page_url(page):
 return current_route_url(request, page=page, _query=request.GET)
q = SOME_SQLALCHEMY_QUERY
current_page = int(request.matchdict["page"])
records = Page(q, current_page, url=page_url)

This overrides the ‘page’ path variable, while leaving the ‘id’ variable and
the query string intact.

The callback API is simple.

		It must accept an integer argument ‘page’, which will be passed by name.

		It should return the URL for that page.

		If you’re using AJAX ‘partial’ functionality described in the Page.pager
docstring, the callback should also accept a ‘partial’ argument and, if
true, set a query parameter ‘partial=1’.

		If you use the ‘page_param’ or ‘partial_param’ argument to Page.pager,
the ‘page’ and ‘partial’ arguments will be renamed to whatever you specify.
In this case, the callback would also have to expect these other argument
names.

The supplied classes adhere to this API in their
.__call__ method, all except the fourth condition. So you can use their
instances as callbacks as long as you don’t use ‘page_param’ or ‘partial_param’.

For convenience in writing callbacks that update the ‘page’ query parameter, a
make_page_url function is available that assembles the pieces into a
complete URL. Other callbacks may find webhelpers.utl.update_params useful,
which overrides query parameters on a more general basis.

Can I use AJAX / AJAH?

Yes. See partial_param and onclick in Page.pager().

Notes

Page numbers and item numbers start at 1. This concept has been used
because users expect that the first page has number 1 and the first item
on a page also has number 1. So if you want to use the page’s items by
their index number please note that you have to subtract 1.

This module is the successor to the obsolete webhelpers.pagination
module. It is NOT API compatible.

This module is based on the code from
http://workaround.org/cgi-bin/hg-paginate that is known at the
“Paginate” module on PyPI. It was written by Christoph Haas
<email@christoph-haas.de>, and modified by Christoph Haas and Mike Orr for
WebHelpers. (c) 2007-2011.

Package Contents

		
class webhelpers.paginate.Page(collection, page=1, items_per_page=20, item_count=None, sqlalchemy_session=None, presliced_list=False, url=None, **kwargs)

		A list/iterator of items representing one page in a larger
collection.

An instance of the “Page” class is created from a collection of things.
The instance works as an iterator running from the first item to the
last item on the given page. The collection can be:

		a sequence

		an SQLAlchemy query - e.g.: Session.query(MyModel)

		an SQLAlchemy select - e.g.: sqlalchemy.select([my_table])

A “Page” instance maintains pagination logic associated with each
page, where it begins, what the first/last item on the page is, etc.
The pager() method creates a link list allowing the user to go to
other pages.

WARNING: Unless you pass in an item_count, a count will be
performed on the collection every time a Page instance is created.
If using an ORM, it’s advised to pass in the number of items in the
collection if that number is known.

Instance attributes:

		original_collection

		Points to the collection object being paged through

		item_count

		Number of items in the collection

		page

		Number of the current page

		items_per_page

		Maximal number of items displayed on a page

		first_page

		Number of the first page - starts with 1

		last_page

		Number of the last page

		page_count

		Number of pages

		items

		Sequence/iterator of items on the current page

		first_item

		Index of first item on the current page - starts with 1

		last_item

		Index of last item on the current page

		
Page.pager(format='~2~', page_param='page', partial_param='partial', show_if_single_page=False, separator=' ', onclick=None, symbol_first='<<', symbol_last='>>', symbol_previous='<', symbol_next='>', link_attr={'class': 'pager_link'}, curpage_attr={'class': 'pager_curpage'}, dotdot_attr={'class': 'pager_dotdot'}, **kwargs)

		Return string with links to other pages (e.g. “1 2 [3] 4 5 6 7”).

		format:

		Format string that defines how the pager is rendered. The string
can contain the following $-tokens that are substituted by the
string.Template module:

		$first_page: number of first reachable page

		$last_page: number of last reachable page

		$page: number of currently selected page

		$page_count: number of reachable pages

		$items_per_page: maximal number of items per page

		$first_item: index of first item on the current page

		$last_item: index of last item on the current page

		$item_count: total number of items

		$link_first: link to first page (unless this is first page)

		$link_last: link to last page (unless this is last page)

		$link_previous: link to previous page (unless this is first page)

		$link_next: link to next page (unless this is last page)

To render a range of pages the token ‘~3~’ can be used. The
number sets the radius of pages around the current page.
Example for a range with radius 3:

‘1 .. 5 6 7 [8] 9 10 11 .. 500’

Default: ‘~2~’

		symbol_first

		String to be displayed as the text for the %(link_first)s
link above.

Default: ‘<<’

		symbol_last

		String to be displayed as the text for the %(link_last)s
link above.

Default: ‘>>’

		symbol_previous

		String to be displayed as the text for the %(link_previous)s
link above.

Default: ‘<’

		symbol_next

		String to be displayed as the text for the %(link_next)s
link above.

Default: ‘>’

		separator:

		String that is used to separate page links/numbers in the
above range of pages.

Default: ‘ ‘

		page_param:

		The name of the parameter that will carry the number of the
page the user just clicked on. The parameter will be passed
to a url_for() call so if you stay with the default
‘:controller/:action/:id’ routing and set page_param=’id’ then
the :id part of the URL will be changed. If you set
page_param=’page’ then url_for() will make it an extra
parameters like ‘:controller/:action/:id?page=1’.
You need the page_param in your action to determine the page
number the user wants to see. If you do not specify anything
else the default will be a parameter called ‘page’.

Note: If you set this argument and are using a URL generator
callback, the callback must accept this name as an argument instead
of ‘page’.
callback, becaust the callback requires its argument to be ‘page’.
Instead the callback itself can return any URL necessary.

		partial_param:

		When using AJAX/AJAH to do partial updates of the page area the
application has to know whether a partial update (only the
area to be replaced) or a full update (reloading the whole
page) is required. So this parameter is the name of the URL
parameter that gets set to 1 if the ‘onclick’ parameter is
used. So if the user requests a new page through a Javascript
action (onclick) then this parameter gets set and the application
is supposed to return a partial content. And without
Javascript this parameter is not set. The application thus has
to check for the existence of this parameter to determine
whether only a partial or a full page needs to be returned.
See also the examples in this modules docstring.

Default: ‘partial’

Note: If you set this argument and are using a URL generator
callback, the callback must accept this name as an argument instead
of ‘partial’.

		show_if_single_page:

		if True the navigator will be shown even if there is only
one page

Default: False

		link_attr (optional)

		A dictionary of attributes that get added to A-HREF links
pointing to other pages. Can be used to define a CSS style
or class to customize the look of links.

Example: { ‘style’:’border: 1px solid green’ }

Default: { ‘class’:’pager_link’ }

		curpage_attr (optional)

		A dictionary of attributes that get added to the current
page number in the pager (which is obviously not a link).
If this dictionary is not empty then the elements
will be wrapped in a SPAN tag with the given attributes.

Example: { ‘style’:’border: 3px solid blue’ }

Default: { ‘class’:’pager_curpage’ }

		dotdot_attr (optional)

		A dictionary of attributes that get added to the ‘..’ string
in the pager (which is obviously not a link). If this
dictionary is not empty then the elements will be wrapped in
a SPAN tag with the given attributes.

Example: { ‘style’:’color: #808080’ }

Default: { ‘class’:’pager_dotdot’ }

		onclick (optional)

		This paramter is a string containing optional Javascript code
that will be used as the ‘onclick’ action of each pager link.
It can be used to enhance your pager with AJAX actions loading another
page into a DOM object.

In this string the variable ‘$partial_url’ will be replaced by
the URL linking to the desired page with an added ‘partial=1’
parameter (or whatever you set ‘partial_param’ to).
In addition the ‘$page’ variable gets replaced by the
respective page number.

Note that the URL to the destination page contains a ‘partial_param’
parameter so that you can distinguish between AJAX requests (just
refreshing the paginated area of your page) and full requests (loading
the whole new page).

[Backward compatibility: you can use ‘%s’ instead of ‘$partial_url’]

		jQuery example:

		“$(‘#my-page-area’).load(‘$partial_url’); return false;”

		Yahoo UI example:

		
		“YAHOO.util.Connect.asyncRequest(‘GET’,’$partial_url’,{

		success:function(o){YAHOO.util.Dom.get(‘#my-page-area’).innerHTML=o.responseText;}
},null); return false;”

		scriptaculous example:

		
		“new Ajax.Updater(‘#my-page-area’, ‘$partial_url’,

		{asynchronous:true, evalScripts:true}); return false;”

		ExtJS example:

		“Ext.get(‘#my-page-area’).load({url:’$partial_url’}); return false;”

		Custom example:

		“my_load_page($page)”

Additional keyword arguments are used as arguments in the links.
Otherwise the link will be created with url_for() which points
to the page you are currently displaying.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/password.png
QD @ GO @ [l mormscmsoommasirer) @G

The Python web metaframework

Create New Movie

Title

Description

Release Date 505 0655

Genre —

Directors

[

_images/autocomplete_small.png
My Fleld Name

NEBRASKA
NEVADA
NEW HAMPSHIRE

main/bitbucket_tutorial.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

Using BitBucket’s Mercurial Service with TurboGears

BitBucket [http://www.bitbucket.org/] is a service used heavily by the TurboGears team. It stores the
current copy of the TurboGears code that is in development, and makes it
easier for the developers to collaborate on changes. It allows for very
large changes to be done safely, in a sandbox, without affecting the main
development tree.

It does all this by using a new type of version control system called a
distributed version control system. In BitBucket [http://www.bitbucket.org/]‘s case, this distributed
version control system is named Mercurial [http://mercurial.selenic.com/wiki/]. An entire book [http://hgbook.red-bean.com/] has been
written on using Mercurial [http://mercurial.selenic.com/wiki/]. The Mercurial [http://mercurial.selenic.com/wiki/] website has many examples to
show what you can do.

For our needs, though, the actual bits that you need to know for BitBucket [http://www.bitbucket.org/]
and Mercurial [http://mercurial.selenic.com/wiki/] are small and easy. By the end of this tutorial, you should
be able to do the following items easily:

		Fork a project on BitBucket [http://www.bitbucket.org/]

		Make your local clone of your project

		Make changes to your local clone.

		Commit your changes.

		Push your changes back to BitBucket [http://www.bitbucket.org/]

		Notify the upstream maintainer of your changes, to get them included

		Keep your local fork up to date

All of that sounds like a lot, but you’d be surprised how easy it really
is.

Signup For Free Account

First, sign up for one of the free accounts on BitBucket [http://www.bitbucket.org/]. Since this could
change in future, I’m not including links or descriptions. If they ever
make it genuinely difficult, we’ll revisit this section.

Fork A Project

So, now you need to fork a project. You can always fork one of the
TurboGears projects [http://bitbucket.org/mramm/], but that is a bit of overkill when learning how to
use BitBucket [http://www.bitbucket.org/]. Instead, we’ve made a small repository especially for this
purpose.

Open https://bitbucket.org/pedersen/tg_bitbucket_tut/ in your browser. You
should get a screen that looks like this:

[image: ../_images/prefork.png]
Click the “Fork Link”, and give your new copy a name, description, and
finally hit submit. A few moments later, you will have a forked copy of the
project with which you can work.

Make Your Local Clone

Now that you have your fork, you need to copy it to your machine.
Fortunately, BitBucket [http://www.bitbucket.org/] even tells you the command to use to download it.
Just follow the onscreen command, and do so.

[image: ../_images/hgclone.png]

Make Changes To Your Local Clone

Using your favorite editor, we’re going to make a few changes. First, view
the file README. A very simple file, right? Well, the name isn’t so great.
Let’s rename it to have a useful extension:

hg mv README README.txt

That will rename the file to a nicer name.

Note that we have a file named “deleteme.txt”. Let’s see how to delete the
file next:

hg rm deleteme.txt

The file is now removed. We can always go back in time and retrieve the
file (that is, after all, the point of any version control system), but it
won’t be present in future unless we take steps to make it present.

Use your favorite text editor, and change the contents of the README.txt
file. Add in the following at the bottom of the file:

Mercurial is neat. Nice and simple, but gets the job done very well.

Finally, we need to add a file. Make a new file in the directory named
“added_stuff.txt”, and put the following into the file:

Just some random text to stuff in a file, so we can add a file into the
Mercurial tree.

Having made the file, we now need to tell Mercurial [http://mercurial.selenic.com/wiki/] to track the
file. This is done with the following command:

hg add added_stuff.txt

Now, with all of those file operations done, how do we store our work into
the repository? See the next section.

Commit Your Changes

Saving your changes to your local repository is accomplished via a simple
command.

hg commit

This will bring up an editor. Type up a commit message, describing the
changes, and why you made them. You’ll like having them around later, when
you start looking at the Mercurial [http://mercurial.selenic.com/wiki/] logs.

That’s all of it. That’s the basic day to day operations of storing all
your changes in your local copy. However, that does not cover sharing those
changes with the world. All your changes are still on your machine.

Push Your Changes To BitBucket [http://www.bitbucket.org/]

Now it’s time to publish your changes. You’ve been working on them for a
while, have been making commits to make sure you could always roll back to
an earlier time, and your work is finally ready to take on the world.
Sending those changes up to BitBucket [http://www.bitbucket.org/] is very easy. You run this command:

hg push

Your changes will now be visible in your repository on BitBucket [http://www.bitbucket.org/]. You can
tell other people to fork your repository, and in general share your work.
Frequently, though, you want to do more. If you’ve forked someone else’s
project, you want your changes included in their project. The next section
talks about doing just that.

Notify The Upstream Maintainer

We’re back into the browser now. Visit BitBucket [http://www.bitbucket.org/], and go to your project’s
repository page. You will see something that looks like this:

[image: ../_images/forkof.png]
Click the “fork of” link to take you back to the original project. Once on
the original project, click on “Pull Request” (see below).

[image: ../_images/pullrequest.png]
Fill in the note describing your changes, check off the names of the
project maintainers you wish to be notified, and change the repository to
be your repository that you want the upstream maintainer to read from.

[image: ../_images/pullform.png]
Click the “Send Request” button, and the upstream maintainer will be
notified via email that you have sent in a pull request, and given your
description of why they should pull from you.

When they accept it, your changes will become part of the official
repository on BitBucket [http://www.bitbucket.org/].

Keeping up to date

Of course, your upstream maintainer is going to be making changes, and
incorporating other people’s changes too - so you want to get those
periodically. You issue a pull request with the update flag for this:

hg pull -u http://bitbucket.org/pedersen/tg_2_1_docs/

Of course, this is a little bit to remember to type all the time. To make
it easier, you can add an alias to an hg config file, .hg/hgrc:

pedersen = http://bitbucket.org/pedersen/tg_2_1_docs

Then, you can simply type the following, to keep up to date:

hg pull -u pedersen

That’s it in a nutshell. Mercurial [http://mercurial.selenic.com/wiki/] offers much more than what is shown
here, but this is enough to get you started. I definitely recommend you
read the Mercurial book [http://hgbook.red-bean.com/], as it will show you how to further customize
Mercurial [http://mercurial.selenic.com/wiki/]‘s configuration to be exactly what you want it to be.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_static/up.png

_images/movie_form_2.png
New Movie

Movie Title

Year
Release Date

Genre

09-02-22

("choose

Action & Adventure

Please provide a short description of the plot:

Description

main/Deployment/Checkout.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		Deployment »

Deploy with a Source Code Checkout

Note

This is not part of the Standard Deployment Pattern, but is a commonly used
alternative because of it uses familiar tools for most developers.

Assuming you are otherwise using the Standard Deployment Pattern, the only change
involved in using a Source Code Checkout for your project instead of building
an egg is that you will check out the code (as the www-data user) and install
it using the develop option to setup.py.

$ cd /usr/local/turbogears
$ sudo -u www-data svn checkout file:///var/svn/myapp/production myapp
$ cd myapp
$ sudo -u www-data bash
$ mkdir python-eggs
$ source /usr/local/pythonenv/myapp/bin/activate
$ python setup.py develop
$ exit

by default modwsgi_deploy will have specified that production.ini is
in the root directory of this checkout. See Check In Your Config for
details on why you might not want that file to be checked into
your main repository.

Similarly, you will need to make sure that your Beaker session and cache
directories are not sub-directories of the source code checkout if you
are planning on deleting and re-checking-out the source for each release.
(See Check File-Storage Locations for details).

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Deployment/nginx/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		Deployment »

NGINX Web Server

Nginx is a very fast asynchronous web server. This means that it
handles all IO using non-blocking sockets rather than threads or
processes, which allows it to scale to extremely large numbers of
connected clients (on the order of 10,000 simultaneous clients).

Nginx support for WSGI applications (and TurboGears in particular)
is still very much experimental, but the following patterns may
work:

		can provide reverse-proxy/load-balancing
for multiple Paste web-servers

		TurboGears should be compatible with uWSGI [http://projects.unbit.it/uwsgi/wiki/RunOnNginx], which should be
compatible with Nginx, (this is a reverse-proxy setup as well)

		has FastCGI support [http://wiki.nginx.org/NginxSimplePythonFCGI] which, with some effort likely can be used
to host TurboGears 2.2.2

		Load Balancing TG with NGINX

Todo

Need to test and document these options better
if we’re going to keep them in the official documentation.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Auth/Customization.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		TurboGears 2 Configuration »

Customizing authentication and authorization

		Status:		Official

Here you will learn how to customize the way TurboGears configures
authentication and thus repoze.who indirectly for you.

This is all done from {yourproject}.config.app_cfg.base_config.sa_auth.

Customizing authentication settings

It’s very easy for you to customize authentication and identification settings
in repoze.who from {yourproject}.config.app_cfg.base_config.sa_auth.

Customizing how user informations, groups and permissions are retrieved

TurboGears provides an easy shortcut to customize how your authorization
data is retrieved without having to face the complexity of the underlying
authentication layer. This is performed by the TGAuthMetadata object
which is configured in your project config.app_cfg.base_config.

This object provides three methods which have to return respectively the
user, its groups and its permissions. You can freely change them as you wish
as they are part of your own application behavior.

Adavanced Customizations

For more advanced customizations or to use repoze plugins to implement
different forms of authentication you can freely customize the whole
authentication layer using through the {yourproject}.config.app_cfg.base_config.sa_auth
options.

The available directives are all optional:

		
		form_plugin: This is a replacement for the FriendlyForm plugin and will be

		always used as a challenger. If form_identifies option is True it will
also be appended to the list of identifiers.

		
		ìdentifiers: A custom list of repoze.who identifiers.

		By default it contains the form_plugin and the AuthTktCookiePlugin.

		
		challengers: A custom list of repoze.who challengers.

		The form_plugin is always appended to this list, so if you have
only one challenger you will want to change the form_plugin instead
of overridding this list.

		
		authmetadata: This is the object that TG will use to fetch authorization metadata.

		Changing the authmetadata object you will be able to change how TurboGears
fetches your user data, groups and permissions. Using authmetada a new
repoze.who metadata provider is created.

		
		mdproviders: This is a list of repoze.who metadata providers.

		If authmetadata is not None a metadata provider based on it will always
be appended to the mdproviders.

Customizing the model structure assumed by the quickstart

Your auth-related model doesn’t have to be like the default one, where the
class for your users, groups and permissions are, respectively, User,
Group and Permission, and your users’ user name is available in
User.user_name. What if you prefer Member and Team instead of
User and Group, respectively?

First of all we need to inform the authentication layer that our user is stored
in a different class. This makes repoze.who know where to look for the user
to check its password:

what is the class you want to use to search for users in the database
base_config.sa_auth.user_class = model.Member

Then we have to tell out authmetadata how to retrieve the user, its groups
and permissions:

from tg.configuration.auth import TGAuthMetadata

#This tells to TurboGears how to retrieve the data for your user
class ApplicationAuthMetadata(TGAuthMetadata):
 def __init__(self, sa_auth):
 self.sa_auth = sa_auth
 def get_user(self, identity, userid):
 return self.sa_auth.user_class.query.get(user_name=userid)
 def get_groups(self, identity, userid):
 return [team.team_name for team in identity['user'].teams]
 def get_permissions(self, identity, userid):
 return [p.permission_name for p in identity['user'].permissions]

base_config.sa_auth.authmetadata = ApplicationAuthMetadata(base_config.sa_auth)

Now our application is able to fetch the user from the Member table and
its groups from the Team table. Using TGAuthMetadata makes also possible
to introduce a caching layer to avoid performing too many queries to fetch
the authentication data for each request.

Disabling authentication and authorization

If you need more flexibility than that provided by the quickstart, or you are
not going to use repoze.who, you should prevent TurboGears from dealing
with authentication/authorization by removing (or commenting) the following
line from {yourproject}.config.app_cfg:

base_config.auth_backend = '{whatever you find here}'

Then you may also want to delete those settings like base_config.sa_auth.*
– they’ll be ignored.

Next Steps

		Adding OpenID Support – describes how to use a repoze.who plugin to
authenticate users via the OpenID mechanism

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

modules/thirdparty/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

Third-party components

		beaker – Caching

		routes – Route and Mapper core classes

		weberror – Weberror

		WebHelpers

		webob – WebOb

		VirtualEnv

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

modules/pylons/controllers.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Modules »

pylons.controllers – Controllers

This module makes available the
WSGIController and
XMLRPCController for easier importing.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Deployment/Daemon.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		Deployment »

Deploying as a Service/Daemon

If want to use TurboGears standalone (i.e. use the Paste web server as your
primary web-server), or behind a proxy, such as
Apache Mod-Proxy or the NGINX Web Server
you need to make sure that the TurboGears server is started automatically.
There are a number of options to accomplish this:

		Upstart [http://upstart.ubuntu.com/] – used on newer Linux hosts

		Sys-V Init – traditional Unix/Linux init system

		supervisord [http://supervisord.org/] – separate daemon with ability to monitor and restart

Which one you choose is likely up to your familiarity level with the
particular tool.

Note

For extremely small non-critical sites, it can sometimes be expedient
to use the screen tool to start a paster serve production.ini
process and then disconnect from the screen. This isn’t recommended,
as a power-cycle of the machine will require you to rush back from
your vacation to ssh in and re-start the server, but sometimes you
do this kind of thing just to get the job done now.

Todo

Provide sample init script

Todo

Provide sample upstart

Todo

Provide sample supervisord config

Todo

Difficulty: Hard. Document usage of http://pypi.python.org/pypi/wsgisvc to deploy as a Win32 service

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Templates/Genshi.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		Templating Options »

Genshi How-To

		Genshi was chosen as the default for two reasons.

		
		Genshi’s syntax is a mere augmentation of the kid [http://www.kid-templating.org/] templating language which was the default for
TurboGears from 0.8-1.0. Genshi is the new default since TurboGears 1.1
Genshi improves on Kid’s error reporting by providing better debug messages.

		By default, Genshi is forces (x)html compliance, and error if your template
does not provide valid (x)html.

Genshi is an XML template language based on kid [http://www.kid-templating.org/], which in turn was inspired by Zope’s TAL [http://wiki.zope.org/ZPT/TAL].

Genshi Templates look like XHTML. Here’s a sample Genshi template:

A Simple Genshi Template

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:py="http://genshi.edgewall.org/"
 xmlns:xi="http://www.w3.org/2001/XInclude">

<xi:include href="master.html" />

<head>
 <meta content="text/html; charset=UTF-8" http-equiv="content-type" py:replace="''"/>
 <title>Sample Template, for looking at template locals</title>
</head>

<body>
 <h1>All objects from locals():</h1>

 <div py:for="item in sorted(locals()['data'].keys())">
 ${item}: ${repr(locals()['data'][item])}</div>
</body>
</html>

This particular template does a couple of things, but its main function is to
take each variable that’s been made available in the template namespace and
display its name and its value.

Every template language in the world needs to provide a variable substitution
syntax, and the standard way in python seems to be ${item}, and that’s
exactly what you do in Genshi. Take a variable wrap it in curly braces and
throw a $ in front, and the value of the variable will be substituted in when
the template is rendered. Genshi is nice in that it allows you to use full
python expressions in the substitution.

So, in our above template when Genshi sees:

${repr(locals()['data'][item])}

it evaluates the python expression repr(locals()['data'][item]) and
provides the string representation of the proper item.

And if you look a line up, you’ll see where item is defined as one of the list
of keys in the dictionary representing the local variables. The way this works
is that py:for acts just like a standard python for loop, repeating the <div>
that it’s in (and its children if there were any) once for each item in the
dictionary.

In TurboGears 2 the template namespace is going to be populated with the items
you return in your controller’s return dictionary, along with a few extras.
This particular template can be very helpful when debugging a controller’s
return values, and is included in default quickstarted projects for you as
project_name/templates/debug.html.

The general way that Genshi works it that it allows you to add special
attributes to your xml elements, called Template Directives. Each of these
template directives should be given a value, which can be ANY python
expression. So, learning Genshi is pretty much about leaning how those
directives work, since the rest is just python. And like py:for, most of the
directives are very “python like”.

Available Processing Directives:

Here’s a list of all the Template Directives in Genshi, along with a brief
description.

		Genshi Directive
		Definition

		py:if
		Displays the element and its children if the condition is true.

		py:choose
		Used with py:when and py:otherwise to select one of several options to be rendered.

		py:when
		Used with py:choose – displays an element and its children when the condition is true.

		py:otherwise
		Used with py:when and py:choose, displays if non of the when clauses are true.

		py:for
		Repeats the element (and its children) for each item in some iterable

		py:with
		Lets you assign expressions to variables

		py:replace
		Replaces the element with the contents of the expression, stripping out the element itself.

		py:def
		Creates a re-usable “template function” that can be used to render template
snippets based on the arguments passed in.

		py:match
		given an XPath expression, it finds and replaces every element in the
template that matches the expression – with the content of the element
containing the py:match.

		py:strip
		Removes just the containing element (not its children) if the condition is true.

There are examples of how each of these template directives works on the Genshi
web site [http://genshi.edgewall.org/].

Genshi gotchas

Note

DO NOT USE ‘data’ as a key in the return dictionary of your controller. This
can provide a somewhat confusing AttributeError on the Context object.
Currently the error message provides no mention of ‘data’ being a reserved
word.

Dotted Lookup Support

Since TurboGears relies on dotted template support for it’s standard, this
standard also applies to Genshi. Therefore, all templates are referenced using
a dotted name, instead of slashes, and this applies to xincluded templates
within your template as well.

Local Support

Genshi support also includes support for local: in your template name. What this
allows you to do is to tell TurboGears to look for the referenced template in the
locally executing namespace, as apposed to a fully-dotted name. This allows you to
write extensions that can “plug in” to an existing TurboGears project by providing
direct access to a project’s master template. tgext.admin takes advantage of this; most
templates have the following code at the beginning of their files:

<%inherit file="local:templates.master"/>

Exposing a mako template

If you have your project’s default set to mako, don’t fret, you may still use
genshi within your app. Simply preface your template name with mako, producing
an expose decorator that might look like this:

@expose('genshi:mytgapp.templates.my_awesome_genshi_template')
def my_awesome_controller_method(self, **kw):
 ...

Further Reading

Genshi web site [http://genshi.edgewall.org/]

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/GlobalJSLib.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Adding a JavaScript Library Include to Every Page

In TurboGears 1.0, you could easily drop MochiKit into every page.
You just added an entry to your .cfg file, and the script import
would appear. In the past few years, a number of JavaScript libraries
have burst on the scene, and every developer has his or her
favorite. For TG2, we decided to leave the JavaScript Library
choice up to you.

Luckily, TG has provided wrappers for all of the major JS libraries,
including:

		JQuery

		Dojo

		Extjs

		Yui

		Mootools

		and yes, Mochikit

The easiest way to take advantage of these ToscaWidget wrapper libraries is to
install them, and then inject the main JavaScript widget into the WSGI
environment for every page. Let’s see how we do this with Dojo. First,
we need to install tw.dojo:

easy_install tw.dojo

Then, we want to modify the base controller in our project so that it injects
the js file link on every page call. Open up the mytgapp/lib/base.py file. Add
the import for your selected JS app at the top of the file, in our case, this is
dojo_js:

from tw.dojo import dojo_js

Next, modify the __call__ method of the BaseController. Call the inject method
inside the __call__ method:

dojo_js.inject()

You should now see a JavaScript link in your HTML:

<script type="text/javascript" src="/toscawidgets/resources/tw.dojo/static/1.3.2/min/dojo/dojo.js" djConfig="isDebug: false, parseOnLoad: true"></script>

That’s pretty much it. You have to figure out what library uses what name
for thier js widgets, but most of them are fairly obvious. The other alternative
is to put the file in your static directory, and add it directly to your master.html
template.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/form_omit.png
QP @) (o stk moseines

S

Welcome to TurboGears 2

T The Python web metaframework

Create New Movie

Title

Description

Release Date morseos |
Genre

_images/get_delete.png
R (@ GO @) oo

Welcome to TurboGears 2
The Python web metaframework

Delete Confirmation

e f— e Do e

T o i e e v ot o o o S0 VACPOTES 3000031
i s

_static/basicmoves_flash.png
7 Hello World

_images/form_order.png
QP @) (o stk moseines &

S

Welcome to TurboGears 2

T The Python web metaframework

Create New Movie

Title

Description

Genre

Direcors i wis
Release Date morseos

modules/thirdparty/webhelpers_feedgenerator.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Third-party components »

 		WebHelpers »

Generating RSS and Atom Feeds

The webhelpers.feedgenerator module provides an API for
programmatically generating syndication feeds from a Pylons
application (your TurboGears 2.2.2 application is a particular
configuration of Pylons).

The feed generator is intended for use in controllers, and generates
an output stream. Currently the following feeds can be created by
using the appropriate class:

		RssFeed

		RssUserland091Feed

		Rss201rev2Feed

		Atom1Feed

All of these format specific Feed generators inherit from the
SyndicationFeed() class and
you use the same API to interact with them.

Example controller method:

from helloworld.lib.base import BaseController
from tg.controllers import CUSTOM_CONTENT_TYPE
from webhelpers.feedgenerator import Atom1Feed
from pylons import response
from pylons.controllers.util import url_for

class CommentsController(BaseController):

 @expose(content_type=CUSTOM_CONTENT_TYPE)
 def atom1(self):
 """Produce an atom-1.0 feed via feedgenerator module"""
 feed = Atom1Feed(
 title=u"An excellent Sample Feed",
 link=url_for(),
 description=u"A sample feed, showing how to make and add entries",
 language=u"en",
)
 feed.add_item(title="Sample post",
 link=u"http://example.com/posts/sample",
 description="Testing.")
 response.content_type = 'application/atom+xml'
 return feed.writeString('utf-8')

To have your feed automatically discoverable by your user’s browser,
you will need to include a link tag to your template/document’s head.
Most browsers render this as a small RSS icon next to the address bar
on which the user can click to subscribe.

<head>
 <link rel="alternate" type="application/atom+xml" href="./atom1" />
</head>

Normally you will also want to include an in-page link to the RSS page
so that users who are not aware of or familiar with the automatic
discovery can find the RSS feed. FeedIcons [http://www.feedicons.com/] has a downloadable set
of icons suitable for use in links.

 Subscribe

The various feed generators will escape your content appropriately
for the particular type of feed.

		
class webhelpers.feedgenerator.SyndicationFeed(title, link, description, language=None, author_email=None, author_name=None, author_link=None, subtitle=None, categories=None, feed_url=None, feed_copyright=None, feed_guid=None, ttl=None, **kwargs)

		Base class for all syndication feeds. Subclasses should provide write()

		
__init__(title, link, description, language=None, author_email=None, author_name=None, author_link=None, subtitle=None, categories=None, feed_url=None, feed_copyright=None, feed_guid=None, ttl=None, **kwargs)

		

		
add_item(title, link, description, author_email=None, author_name=None, author_link=None, pubdate=None, comments=None, unique_id=None, enclosure=None, categories=(), item_copyright=None, ttl=None, **kwargs)

		Adds an item to the feed. All args are expected to be Python Unicode
objects except pubdate, which is a datetime.datetime object, and
enclosure, which is an instance of the Enclosure class.

		
add_item_elements(handler, item)

		Add elements on each item (i.e. item/entry) element.

		
add_root_elements(handler)

		Add elements in the root (i.e. feed/channel) element. Called
from write().

		
item_attributes(item)

		Return extra attributes to place on each item (i.e. item/entry) element.

		
latest_post_date()

		Returns the latest item’s pubdate. If none of them have a pubdate,
this returns the current date/time.

		
root_attributes()

		Return extra attributes to place on the root (i.e. feed/channel) element.
Called from write().

		
write(outfile, encoding)

		Outputs the feed in the given encoding to outfile, which is a file-like
object. Subclasses should override this.

		
writeString(encoding)

		Returns the feed in the given encoding as a string.

		
class webhelpers.feedgenerator.Enclosure(url, length, mime_type)

		Represents an RSS enclosure

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

deprecated/ToscaWidgets/FAQ.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		ToscaWidgets »

ToscaWidgets FAQ

General Questions

		Why use a Widget? My js/css code is so site specific I can’t see how widgets could help.

		Widgets provide reuseablity to your js and css
components. ToscaWidgets also allow you to share your widgets in
an open community. The ToscaWidgets package provides you with a
paster template to help you get started quickly with your own
widget library.

		OK, why ToscaWidgets then, aren’t TG Widgets the same?

		ToscaWidgets have a much more portable api, and can be used in any
WSGI app. This portability makes it possible to move your “view”
related code between TG1, TG2, Pylons, CherryPy, even Grok. There
are also some api differences between TG widgets, and ToscaWidgets,
most notably that all ToscaWidgets are ListWidgets, and therefore if
you have a widget with children, you do not have to explicitly
extend ListWidget like you do in TG. Lastly, TGWidgets are going to
be phased out for TG2, so there will no TGWidget support in TG2.

		I have a great widget, how do I share it with the community?

		Right now there is a library called twtools served at
http://twtools.googlecode.com. Your best bet is to find a library
in twtools which matches your implementation (jquery widgets go in
tw.jquery) or if your widget is a one off, create your own tw
package and submit it to twtools. In the near future there will be
support at www.toscawidgets.org for widget submission.

		ToscaWidgets seems to be lacking in Documentation. How can I validate its use? Is there a good level of support for this project?

		There is currently a ground-roots effort from leading TG developers
to get the Docs up to snuff. It is our hope that this question will
disappear from the FAQ by Q2 2008. The fact is that there is a lot
of complexity to capture about how TW works, and much of that
information is stored as doc strings in the code. If you check
beta.toscawidgets.org you will see a reasonable amount of
auto-created docs from those strings. Other ways you can learn more
about TW is to dig into the source code, which is reasonably
annotated. It is recommended that you read up on Metaclasses in
python first. There is also a message board at
http://groups.google.com/group/toscawidgets-discuss where you can
always ask a question. The board is fairly active, and our
developers have been trying to fill out the documentation after a
question has been asked. In short, we are working on it.

All Frameworks

No local packages or download links found for
RuleDispatch>=0.5a0.dev-r2306 error: Could not find suitable
distribution for Requirement.parse(‘RuleDispatch>=0.5a0.dev-r2306’)
~or~ DistributionNotFound: RuleDispatch>=0.5a0.dev-r2247

This is because RuleDispatch has not released a new version, despite
having made patches necessary for ToscaWidgets to work.

Generally you can resolve this problem by downloading the
rule-dispatch egg directly, like this:

easy_install http://dbsprockets.googlecode.com/files/RuleDispatch-0.5a0.dev-r2306.tar.gz

Usually this is followed by the PyProtocols error: No local packages
or download links found for PyProtocols==1.0a0dev-r2302 error: Could
not find suitable distribution for
Requirement.parse(‘PyProtocols==1.0a0dev-r2302’) ~or~
DistributionNotFound: PyProtocols>=1.0a0dev-r2302

Again, this can be downloaded and installed like this:

easy_install http://dbsprockets.googlecode.com/files/PyProtocols-1.0a0dev-r2302.zip

TG1.0 Specifically

TypeError: No object (name: ToscaWidgets per-request storage) has been
registered for this thread

Try this:

easy_install -U toscawidgets

After, make sure ToscaWidgets is turned ON by adding / changing this
line in the dev.cfg/prod.cfg or app.cfg:

toscawidgets.on = True

ValueError: need more than 2 values to unpack

Try this:

Just to make sure you have the latest version of Genshi, do this:

easy_install -U genshi

After, make sure Genshi is set as the default view by adding / changing this line in the dev.cfg/prod.cfg or app.cfg:

tg.defaultview = 'genshi'

Compatibility Issues

Grok

If you are going to use ToscaWidgets in a Grok application, you can as
long as your Grok app is a WSGI app. Grok has a way of doing this [http://grok.zope.org/documentation/tutorial/installing-and-setting-up-grok-under-mod-wsgi/installing-and-configuring-a-grok-site-under]

Then, you need to modify your grok.ini to include the ToscaWidgets middleware:

add:

[filter:tosca]
use=egg:toscawidgets#middleware
default_view=genshi

modify:

[pipeline:main]
pipeline = egg:Paste#cgitb
 egg:Paste#httpexceptions
 suppressZopeErrorHandling
 tosca
 bbb

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

modules/pylons/configuration.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Modules »

pylons.configuration – Configuration object and defaults setup

Configuration object and defaults setup

The PylonsConfig object is initialized in pylons projects inside the
config/environment.py module. Importing the config
object from module causes the PylonsConfig object to be created, and
setup in app-safe manner so that multiple apps being setup avoid
conflicts.

After importing config, the project should then call
init_app() with the appropriate options to setup
the configuration. In the config data passed with
init_app(), various defaults are set use with Paste
and Routes.

Module Contents

		
class pylons.configuration.PylonsConfig

		Pylons configuration object

The Pylons configuration object is a per-application instance
object that retains the information regarding the global and app
conf’s as well as per-application instance specific data such as
the mapper, and the paths for this instance.

The config object is available in your application as the Pylons
global pylons.config. For example:

from pylons import config

template_paths = config['pylons.paths']['templates']

There’s several useful keys of the config object most people will
be interested in:

		pylons.paths

		A dict of absolute paths that were defined in the applications
config/environment.py module.

		pylons.environ_config

		Dict of environ keys for where in the environ to pickup various
objects for registering with Pylons. If these are present then
PylonsApp will use them from environ rather than using default
middleware from Beaker. Valid keys are: session, cache

		pylons.strict_tmpl_context

		Whether or not the tmpl_context object should throw an
attribute error when access is attempted to an attribute that
doesn’t exist. Defaults to True.

		pylons.tmpl_context_attach_args

		Whethor or not Routes variables should automatically be
attached to the tmpl_context object when specified in a
controllers method.

		pylons.request_options

		A dict of Content-Type related default settings for new
instances of Request. May
contain the values charset and errors and
decode_param_names. Overrides the Pylons default values
specified by the request_defaults dict.

		pylons.response_options

		A dict of Content-Type related default settings for new
instances of Response. May
contain the values content_type, charset and
errors. Overrides the Pylons default values specified by
the response_defaults dict.

		routes.map

		Mapper object used for Routing. Yes, it is possible to add
routes after your application has started running.

		
init_app(global_conf, app_conf, package=None, paths=None)

		Initialize configuration for the application

		global_conf

		Several options are expected to be set for a Pylons web
application. They will be loaded from the global_config
which has the main Paste options. If debug is not
enabled as a global config option, the following option
must be set:

		error_to - The email address to send the debug error to

The optional config options in this case are:

		smtp_server - The SMTP server to use, defaults to
‘localhost’

		error_log - A logfile to write the error to

		error_subject_prefix - The prefix of the error email
subject

		from_address - Whom the error email should be from

		app_conf

		Defaults supplied via the [app:main] section from the Paste
config file. load_config only cares about whether a
‘prefix’ option is set, if so it will update Routes to
ensure URL’s take that into account.

		package

		The name of the application package, to be stored in the
app_conf.

Changed in version 1.0: template_engine option is no longer supported.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Templates/Jinja.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Why Jinja?

Jinja provides yet another template rendering solution for TurboGears, but it
has a couple of advantages for specific situations:

		It is super fast,

		It’s syntax was inspired by django-templates [http://docs.djangoproject.com/en/dev/ref/templates/api] and dojo’s DTL [http://dojotoolkit.org/book/dojo-book-0-9/part-5-dojox/dojox-dtl] so if you are migrating from Django it’s the natural choice.

		
		It lacks some of the most hated (anti)features of django templates.

		
		you can do template logic

		Autoescaping is off by default.

		It is sandboxable, so it’s possible to let non-trusted users edit the templates.

TurboGears features missing in Jinja

Dotted Notation

Currently Jinja does not support dotted notation so if you’re using
Jinja you will have to turn it off in app_cfg.py:

base_config.use_dotted_templatenames = False

This means you’ll write expose statements with path strings:

@expose('index.html')

The standard start location is assumed to be your templates directiory, so if
you have admin page templates under an admin directory inside templates you’d
do:

@expose('/admin/index.html')

Jinja1

The current TG renderer is for jinja2 and will not work with jinja1, jinja1 is deprecated and the author wants everyone to move to jinja2 :)

Using Jinja in TG2

TurboGears allows you to setup and use jinja templates by simply adding it to
the list of renderers to prepare in base_config:

base_config.renderers.append('jinja')

You can also set it as the default renderer by setting:

base_config.default_renderer = "jinja"

The Jinja docs [http://jinja.pocoo.org/2/documentation/templates] cover template syntax very well, so we’ll not repeat it here. Instead, we refer you
to their site.

Extensions

Jinja2 supports loading extensions to add new tags, this is supported on
TG2 by adding the import name to the extension list in base_config:

base_config.jinja_extensions = ['jinja2.ext.i18n', 'jinja2.ext.loopcontrols']

The setting jinja_extensions is a list of strings, each string is the import name
of one extension, in this example ‘jinja2.ext.i18n’ is a module in our
python installation (which comes with jinja2).

More on jinja extensions on the Jinja extension section [http://jinja.pocoo.org/docs/extensions/] from the jinja documents.

Filters

Jinja2 supports loading functions to add new filters, this is supported on
TG2 by adding the function directly to the filter dictionary in base_config,
where they key is the name the template will use to lookup the filter:

base_config.jinja_filters = {'my_filter': my_filter, 'other_filter_function': other_filter_function}

As you can see here we are using the functions directly, you can also have
jinja2 autoload your filters by creating a file called jinja_filters.py inside
the folder templatetools on you lib filter of you application. If you use the
jinja_filters.py file, try to keep module namespace pollution to a minimum, a
good alternative is to use the __all__ variable to hide all functions and imports
and only expose the filter functions to the auto importer mechanism.

More on jinja filters on the Jinja custom filter section [http://jinja.pocoo.org/docs/api/#custom-filters] from the jinja documents.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

deprecated/ToscaWidgets/Cookbook/OpenLayersMap.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		ToscaWidgets Cookbook »

OpenLayers [http://openlayers.org/] Map Widget

Introduction

OpenLayers [http://openlayers.org/] is a Javascript Toolkit for creating web mapping
applications. It is licensed under the BSD license and is used
extensively on various mapping applications.

An Openlayers Map typically consists of a map object consisting of a
viewport which is contained in a standard html DIV element. The map
contains one or more Layer objects which are also html DIVs in their
own right and render images based on data queried from one or more
servers. The layer data is obtained using one of the several web
mapping APIs that are commonly used on the Internet, like Google Maps
API, Yahoo Maps API or the APIs based on the Open Geospatial
Consortium (OGC) Specifications, e.g. Web Map Service (WMS), Web
Feature Service (WFS), Geography Markup Language (GML), etc. Apart
from the layers, a map would also have some map control objects like
the LayerSwitcher (for arranging the order of layers), PanZoomBar (for
panning and zooming), etc.

About This Tutorial

In this tutorial we create an OpenLayers [http://openlayers.org/] Map with several layers and
controls using the ToscaWidgets library for OpenLayers [http://openlayers.org/],
viz. tw.openlayers.

Installation

easy_install tw.openlayers

Creating The Layers:

First of all we create the layers required to be rendered in the
map. The layers should be created as a WidgetsList, which is described
as “syntactic sugar for declaring a list of widgets” by Alberto, the
creator of ToscaWidgets. The following code shows creation of layers
with 6 different layer objects. Three layers using data accessible
through OGC WMS and one each using Google, Yahoo and MS VirtualEarth
APIs. Note that the API Keys used below for Google and Yahoo must be
replaced with suitable keys generated for the site hosting the map:

from tw.api import WidgetsList, js_symbol
from tw.openlayers import WMS, Google, Yahoo, VirtualEarth

GOOGLE_API_KEY = 'ABQIAAAAPROe5rfmjTLGwsrGDo3yxhT2yXp_ZAY8_ufC3CFXhHIE1NvwkxS-_alF99xZR7Ix1DNJft1bfQlvaQ'
YAHOO_API_KEY = 'mgJlSabV34HNd3cxUHD3Bdn5hcIolDi7oS4_U1Zs55ym9Gpv3499TaVwy8Q-'
VE_API_KEY = ''

class MyLayers(WidgetsList):
 ol = WMS(name="OpenLayers WMS",
 url=['http://labs.metacarta.com/wms/vmap0'],
 options={'layers': 'basic'})
 nasa = WMS(name="NASA Global Mosaic",
 url=['http://t1.hypercube.telascience.org/cgi-bin/landsat7'],
 options={'layers': 'landsat7'})
 dmdemo = WMS(name="DM Solutions Demo",
 url=['http://www2.dmsolutions.ca/cgi-bin/mswms_gmap'],
 options={'layers': 'bathymetry,land_fn,park,drain_fn,drainage,prov_bound,fedlimit,rail,road,popplace',
 'transparent': True,
 'opacity': 0.4,
 'format': 'image/png'},
 display={'minResolution': 0.17578125,
 'maxResolution': 0.703125})
 google = Google(name="Google Maps", apikey=GOOGLE_API_KEY,
 options=dict(type=js_symbol('G_HYBRID_MAP')))
 yahoo = Yahoo(name="Yahoo Maps", apikey=YAHOO_API_KEY)
 ve = VirtualEarth(name="VE", apikey=VE_API_KEY, isBaseLayer = True)

The WMS layers take a url parameter. This is a list of urls running
the service. All the layers support an options and a display
parameter. These parameters are required for passing additional layer
options and display options. Checkout the OpenLayers [http://openlayers.org/] API Docs for the
various supported parameters.

Creating The Map Controls

Similar to the Layers, the map Controls are also created as a
WidgetsList. They are initialized as follows:

from tw.openlayers import LayerSwitcher, OverviewMap, PanZoomBar

cass MyControls(WidgetsList):
 ls = LayerSwitcher()
 ovm = OverviewMap()
 ovm = Navigation()
 pzm = PanZoomBar()

Creating The Map

Finally the Map object is created using the layers and the controls
created above and placed in the template context inside the controller
method:

from tw.openlayers import Map

map = Map(id='map', layers=MyLayers(), controls=MyControls())

class RootController(BaseController):

 @expose('samplemap.templates.index')
 def index(self):
 pylons.c.map = map
 return dict(page='index')

Calling The Map In The Template

The map is rendered in the template by calling it from the template
context:

${tmpl_context.map()}

The map can then be viewed in the browser. A screenshot is shown as
example:

[image: example OpenLayers Map]

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/ToolBox.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

ToolBox

		Status:		Work in progress

Table of Contents

		ToolBox
		Goal

		Terminology

		Features

		Basic Gadgets

		Spec

		Write A Simple Gadget

		Future Plans

Goal

A platform to share gadgets which helps the development.

Developer could release their own gadgets on pypi. The gadgets will
be auto-plugged into the TurboGears 2 toolbox through setuptools.

ToolBox itself is a TurboGears 2 Application. Developers could use the
same skills to develop a toolbox gadget as they do to createa a
TurboGears 2 application.

Terminology

		Gadget: The application working within toolbox. Some of them may
allow you to embed them into your application.

Features

		Provide ‘paster toolbox’ command to start.

		Provide a Gadget skeleton generator by paste script (not implement
yet)

		You could release your own gadgets on pypi.

		Could detect if toolbox runs inside a project.

		Able to select icons from Tango Icon
http://tango.freedesktop.org/Tango_Icon_Library

Basic Gadgets

ToolBox 2 Basic Gadgets are a minimum set of gadgets to provide some
basic functions.

		TGInfo gadget: browse tg2 related packages, similar to ‘paster
tginfo’ command

		TurboGears 2 API gadget: browse tg2 API

		ToolBox 2 API gadget: browse ToolBox2 API

		Design gadget (Project Browser), update from ToolBox template browser gadget.

		Admin gadget (the successor to catwalk) from dbsprockets module

Spec

		Setuptool-based plugin system

You could define gadget hooker in setup.py:

 [turbogears2.toolboxcommand]

- To specify the Gadget should be worked in a TurboGears 2 project,
 you could define attribute in Gadget::

 need_project = True

Write A Simple Gadget

Create a folder containing 2 files:

setup.py
gadget.py

in setup.py:

from setuptools import setup, find_packages

setup(
 name='HelloGadget',
 version="1.0",
 description='TurboGears2 Toolbox Gadget',
 author='Fred Lin',
 install_requires=[
 "ToolBox2",
],
 include_package_data=True,
 package_data={'':['gadget.py']},
 entry_points="""
 [turbogears2.toolboxcommand]
 hello = gadget:HelloGadget
 """
)

in gadget.py:

from toolbox2.lib.base import Controller
from tg import expose

class HelloGadget(Controller):
 """TurboGears ToolBox Gadget.
 Show Hello World in ToolBox
 """
 __label__ ="Hello"
 __version__ = "1.0"
 __author__ = "Fred Lin"
 __email__ = "mymail+tg2[at]gmail.com"
 __copyright__ = "Copyright 2008 Fred Lin"
 __license__ = "MIT"
 __group__ = "Help"
 __icon__ = "places/start-here.png"
 need_project = False

 @expose()
 def index(self):
 return 'Hello ToolBox'

Debugging

Run:

$ python setup.py develop

or:

$ python setup.py install

to register your project to setuptools. Then you could run ‘paster
toolbox’ to view your gadget!

Upload To Pypi

Run:

$ python setup.py register bdist_egg sdist --format=zip upload

to upload both egg and source code to pypi.

Remove Development Gadget

Run:

$ easy_install -m hello

Check ‘paster toolbox’ list and the hello gadget is gone.

Future Plans

		Widget Browser gadget by ToscaWidget (Browse widgets)

		upgrade MVC gadget with Source Highlight by ToscaWidget

		upgrade MVC gadget with Editor function inspired by web2py

		i18n Gadget

		With Authorization

		i18n

		Model Designer Gadget rewrite with ToscaWidgets

		Able to Custom tab

		able to Manage tab

		Able to custom app/tab

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Pagination/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Pagination Quickstart For Turbogears2

		Status:		Work in progress

Prerequisites

We start from an existing projects name paginatesample supposing a model that looks like:

class Movie(DeclarativeBase):
 __tablename__ = 'movie'

 id = Column(Integer, primary_key=True)
 title = Column(String(100), nullable=False)
 description = Column(Text, nullable=True)
 year = Column(Integer, nullable=True)
 genre = Column(Integer, nullable=True)
 release_date = Column(Date, nullable=True)

 def __str__(self):
 if self.year:
 return '"%s" (%d)' % (self.title, self.year)
 else:
 return '"%s"' % self.title

Populating The Database

To have some sample data to work with, let’s populate the database
with some movies. Add these lines to websetup.py (above
transaction.commit()):

movieDatas = [["Into the Wild", 2007],
 ["The Big Lebowsky", 1998],
 ["Pulp Fiction", 1994],
 ["Dead Man", 1995],
 ["Night on Earth", 1991],
 ["Genova", 2008],
 ["Snatch", 2000]]

movies = []
for data in movieDatas:
 movie = Movie()
 movie.title = data[0]
 movie.year = data[1]
 model.DBSession.add(movie)

After you set up your application and restart the server you should now have
seven movies listed.

paster setup-app development.ini
paster serve --reload development.ini

Basic Pagination

With a model and some data set up, add webhelpers.paginate to your
controller, and create an instance of paginate.Page that you pass
to the template.

Import paginate in your controllers/root.py and modify the
list() method to look like this:

from webhelpers import paginate

@expose("paginatesample.templates.movie_list")
def list(self, page=1):
 """List and paginate all movies in the database"""
 movies = DBSession.query(Movie)
 currentPage = paginate.Page(movies, page, items_per_page=5)
 return dict(movies=currentPage.items, page='paginatesample Movie list', currentPage=currentPage)

This creates and passes a paginate.Page object to our template, so
we can use it there to access a pager().

The subset of items that should be displayed for the current page we
get from currentPage.items and display them in the template like
we normally would.

Now the pagination can be displayed in the template like this:

Template code in templates/movie_list.html:

<p class="pagelist">${currentPage.pager()}</p>

Now we add some padding to the pagelist and make it centered.

Create a file pagination.css in your public/css/ directory with the
following contents and include it in style.css:

CSS in public/css/style.css:

@import url("pagination.css");

CSS in public/css/pagination.css:

.pagelist strong {
 padding: 5px;
}

p.pagelist {
 text-align: center;
}

Your movie listing should now look something like this:

[image: ../../_images/tg2pagination_fig1.png]

Paginate Decorator

TurboGears provides a convenient paginate() decorator that you can
combine with expose(). To use it, you simply have to pass it the
name of a collection to paginate. In controller/root.py:

from tg.decorators import paginate as paginatedeco
@expose("paginatesample.templates.movie_list_deco")
@paginatedeco("movies", items_per_page=5)
def decolist(self):
 """List and paginate all movies in the database using the
 paginate() decorator."""
 movies = DBSession.query(Movie)
 return dict(movies=movies, page='paginatesample Movie list')

In your template, you can now use the collection direction since it
will be trimed to only contain the current page. You will also have
have a basic page navigation with
${tmpl_context.paginators.movies.pager()}:

 <li py:for="movie in movies" py:content="movie">Movie title and year

<p class="pagelist">
 ${tmpl_context.paginators.movies.pager()}
</p>

Advanced Pagination

More Formatting

Demonstrating some more formating arguments:

${currentPage.pager(format='~3~', page_param='page', show_if_single_page=True)}

See
http://www.pylonshq.com/docs/en/0.9.7/thirdparty/webhelpers/paginate/
for more details.

Adding Parameters to Links

You can pass any number of arguments to the pager function and they will be used to create
the links to the other pages.

For example with the following code:

${currentPage.pager(param1='hi', param2='man')}

the resulting links will be:

		/list?page=1¶m1=hi¶m2=man

		/list?page=2¶m1=hi¶m2=man

and so on...

By default the url used to generate links will be the same of the page
where the paginated data will be visible, this can be changed by passing
the link argument to the pager function:

${currentPage.pager(link='/otherlink', param1='hi', param2='man')}

and the resulting link will be generated by using the provided url:

		/otherlink?page=1¶m1=hi¶m2=man

Adding Previous And Next Links

Let’s add previous and next links:

Modify the pagelist in templates/movie_list.html to look like
this:

<p class="pagelist">
 <<<
 ${currentPage.pager(format='~3~', page_param='page', show_if_single_page=True)}
 >>>
</p>

Functional, but not very pretty:

[image: ../../_images/tg2pagination_fig2.png]

Adding Some Arrow Images

Let’s add some images:

[image: ../../_images/arrow-left.png]
[image: ../../_images/arrow-right.png]

Note

These images are public domain - feel free to use them any way
you like. Different sizes and the source *.psd are included
in the project file.)

Change the pagelist code in templates/movie_list.html:

<p class="pagelist">

 ${currentPage.pager(format='~3~', page_param='page', show_if_single_page=True)}

</p>

Add this to the CSS in public/css/pagination.css:

a.prevPage {
 background: url("/images/icons/png/32x32/arrow-left.png") no-repeat;
 padding-left: 18px;
 padding-right: 18px;
 padding-top: 12px;
 padding-bottom: 15px;
 text-decoration: none;
 }

.nextPage {
 background: url("/images/icons/png/32x32/arrow-right.png") no-repeat;
 padding-left: 18px;
 padding-right: 18px;
 padding-top: 12px;
 padding-bottom: 15px;
 text-decoration: none;
 }

And this is what the end result looks like:

[image: ../../_images/tg2pagination_fig3.png]

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_static/poedit.png
Fchier _Edtion _Catalogus _ Affichage Marque-pages _ Ads

eRIsz &

orna Trasion]

G2 Tac repository

[pepat Tac deto2

12.% trackits, 127 chaines (0 trachites approximativement, 0 marqueurs incorrects, 111 a tradtire)

building_docs.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

Documentation Generation Guide

Setting up for Documentation Development

Here we explain how to download the development documentation, and setup
your environment to compile it.

The docs are written in reStructuredText [http://docutils.sourceforge.net/rst.html] (.rst files), a simple markup
language often used to document python projects. We use Sphinx [http://sphinx.pocoo.org/] to generate
html from the rst files.

Since this documentation is for the 2.1 development branch of Turbogears,
we also need to download the source in order to generate documentation from
the modules.

If you are interested in helping with the turbogears docs, we recommend you
touch base with mpedersen on the IRC channel #turbogears. He appreciates any
help you can give, and can help you get setup so he can more easily incorporate
your modifications. Below is the recommended setup to help work with the
latest documentation efforts.

Prerequisite

We assume you have the following basic pieces in place:

		Python >= 2.5

		virtualenv

		easy_install

Please see BasicInstall [http://pylonsbook.com/en/1.0/deployment.html#setting-up-a-virtual-python-environment] if you do not have these.

We also use Mercurial [http://mercurial.selenic.com/wiki/Download], which is a fast, lightweight source control management
system. You can download it from the link in this file, or if you have
ubuntu:

sudo apt-get install mercurial

Setup

We recommend using a virtualenv for documentation development. While you
can work without the virtualenv, we do not recommend it, do not support,
and do not document the methods to do so.

First, we setup the virtualenv and install the Turbogears 2.1 development
branch, after first downloading it using Mercurial [http://mercurial.selenic.com/wiki/Download]. I include a step
for installing Mercurial, which you can skip if you already have it.

Below, we chose to use the name “tgdocs” for our virtualenv directory, and
used a subdirectory under that “src” for our work directory.
You could use different names if you must.

virtualenv --no-site-packages tgdocs
cd tgdocs
source bin/activate
easy_install mercurial
mkdir src
cd src
hg clone http://bitbucket.org/turbogears/tg-dev/
cd tg-dev
python setup.py develop
cd ..
hg clone http://bitbucket.org/turbogears/tgdevtools-dev/
cd tgdevtools-dev
python setup.py develop
cd ..

Note

Under Windows, you use “Scripts\activate.bat” to activate
your virtualenv. See BasicInstall [http://pylonsbook.com/en/1.0/deployment.html#setting-up-a-virtual-python-environment] if you need help with that.
Also, in order to install Mercurial from source, you will need MinGW
and set LIBRARY_PATH=C:\Programme\Python25\libs in activate.bat.
Installing gettext and make from GnuWin32 will also be useful for
compiling Mercurial and building the TurboGears docs.

We need several additional packages to support documentation development:

		mapfish

		tgext.geo relies on MapFish, so we install it.

		python_memcached

		This is requirement for the way we generate docs, provides memcache module

		sphinx

		Sphinx [http://sphinx.pocoo.org/] is the tool used to generate html from the rst files.

		sqlalchemy

		This is required for the documentation to avoid generating warnings when
it is built.

		tgext.geo

		We generate docs from some related packages, this is not installed by default

Here is the command to download these packages. Again, I’m assuming you are
still in the virtualenv.

easy_install sqlalchemy python_memcached tgext.geo mapfish sphinx

After this, you should be able to verify your TurboGears 2.2.2 installation with

paster tginfo

Finally, we are ready to set up the documentation. If you feel ready and
willing to assist with the documentation efforts, I hope you have contacted
mpedersen via IRC (see above). In order to help with the documentation,
you get a bitbucket [http://bitbucket.org/account/signup/] account, and create a fork of mpedersen’s base
documentation repository. This way, mpedersen can more easily merge your
changes in with the new documenation.

Note

you may set up the documentation without creating your
own fork of mpedersen’s repository, but if you’ve made it this far,
why not go all the way and contribute back to the effort?

mpedersen wrote a nice Using BitBucket’s Mercurial Service with TurboGears, which has screen shots and
further explanation on how to fork and get and post updates with bitbucket. We
try to provide the basic information here, but you can work through that
tutorial for additional details.

You need an account on bitbucket [http://bitbucket.org/account/signup/] in order to fork a repository. It
is a painless process, which can be done by following the link to the
bitbucket [http://bitbucket.org/account/signup/] home page. Once you are logged in at bitbucket, go to the
mpedersen repository [http://bitbucket.org/pedersen/tg_2_1_docs], and click ‘fork’.

I recommend adding an extension to your fork like ‘-yourname’, substituting
yourname, of course. Then you can get your repository with:

hg clone http://bitbucket.org/yourname/tg_2_1_docs-yourname/
cd tg_2_1_docs-yourname/docs
make html

Note

don’t forget to substitute ‘-yourname’ for what you used.
The new html documentation should be in the _build/html directory.

Note

On Windows, if you haven’t installed a “make” command
(e.g. from GnuWin32), use the following commands to build manually.
The first command only needs to be run once - to create the
destination directories. You may also want to read about one person’s
WindowsInstall [http://www.blog.pythonlibrary.org/?p=230].

mkdir _build\html _build\doctrees
sphinx-build -b html -d _build\doctrees. _build\html

If you want to grab mpedersen’s latest changes, later within your work directory

hg pull -u mpedersen repository [http://bitbucket.org/pedersen/tg_2_1_docs]

To merge in your changes:

hg commit
hg push

Note

push requires a login to bitbucket. You may also find you need to
commit any local changes you’ve made first (it gives a “not updating”
warning if this is the case).

The above commands update your repository. In order to get your changes
into the “main” repository that mpedersen maintains, you need to initiate
a “pull request”. You can read more about using bitbucket in this tutorial:
Using BitBucket’s Mercurial Service with TurboGears.

Status

You can check on the current status of todo items by typing

hg locate -0 | xargs -0 grep 'todo::'|wc -l

at the command prompt in the highest level directory of the doc repository.

Thank you very much for helping out with the turbogears documentation
efforts!

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/TGandPyAMF.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Using PyAMF With TurboGears2

		Status:		Work in progress

Table of Contents

		Using PyAMF With TurboGears2
		Installing Stuff:

		Creating The PyAMF Gateway:

		Setup A Controller That Uses The GatewayController WSGI App:

		Create A Flex Client

PyAMF provides a simple way to talk to Flex [http://www.flex.org/] applications using the
binary AMF protocol. The main advantages of AMF are that it:

		Provides native Flash ActionScript representations of your data,
so instantiating it on the client side is almost instantaneous.

		Is understood by the RemoteObject in Flex, so it is very easy to
implement remote procedure calls from the Flex client.

PyAMF provides serialization of a variety of native python types, from
strings, lists, and dictionaries to datetime objects, elementtree
elements, and custom classes. And a lot of this is automatic, and
very cool. Return a dictionary from your PyAMF service, and you’ll
get an ActionScript hash/object on the other side.

PyAMF provides a simple WSGI Application that can be used to setup RPC
style service easily in Python. And because TG2 supports WSGI from
top to bottom, it’s very simple to setup a TG2 app that contains
web-services for your flex applications. All you need to do is:

		Install a bunch of stuff and setup a TG2 app

		Create a PyAMF gateway for your services

		Create a custom route to mount your services in your TG2 app

		Build a Flex client that consumes those services

		...

		Profit

Installing Stuff:

If you haven’t installed TG2, you’ll need to do that first (see
TurboGears 2.2.2 Standard Installation). You’ll need TurboGears version 2.1 or higher
for this to work. All released versions of TG2 should work, but early
SVN versions may need to be updated. Once you’ve got an up-to-date
version of TG2, you’ll need to install PyAMF, which you can do by:

easy_install pyamf

After that’s done, you can create a new TG2 project in the normal
way:

paster quickstart pyamftest
...
cd pyamftest
paster serve development.ini --reload

Your project should now be started, and you should be able to browse
to it at http://127.0.0.1:8080

Creating The PyAMF Gateway:

Now, you’re ready to start creating a PyAMF gateway for your Flex app.
The first thing to do is to create a new mygateway.py file wherever
you want it:

from pyamf.remoting.gateway.wsgi import WSGIGateway

Class Services(object):

 def echo(data):
 return "Turbogears gateway says:" + str(data)

 def sum(a, b):
 return a + b

 def scramble(text):
 from random import shuffle
 s = [x for x in text]
 shuffle(s)
 return ''.join(s)

Expose our services:
services = {"Services" : Services()}

Gateway = WSGIGateway(services)

This sets up a GatewayController WSGI app that has three services that
can be called from flex: echo, sum, and scramble, which each do
exactly what they say they do.

Setup A Controller That Uses The GatewayController WSGI App:

Then you can import your GatewayController into root.py:

from tg.controllers import WSGIAppController
from mygateway import Gateway

Now all you have to do is add a method that delegates to the wsgi
app:

gateway = WSGIAppController(Gateway)

Of course, you’ll need to the WSGIAppController from tg, and your
Gateway from wherever you put it. But once you’ve done those
things you’ll have a AMF Gateway mounted at /gateway which you can use
from flex.

Create A Flex Client

Now we’re ready for the big time event, we can create a brand new Flex
client which talks to our TG2 hosted PyAMF services. This little
tutorial pretty much assumes that you know how to use Flex and just
want to see how to connect it to a TurboGears app. If that’s not the
case you may want to run through one of the Flex tutorials before you
try this next step.

Here’s the MXML:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" horizontalAlign="left">
<mx:RemoteObject id="remoteObj" endpoint="http://127.0.0.1:8080/gateway/" destination="Services"
 result="displayResult(event)" fault="remoteFault(event)">
 <mx:method name="scramble" result="scrambleResult(event)"/>
</mx:RemoteObject>
<mx:Button click="remoteObj.echo('Hello, There!')" label="Hello"/>
<mx:HBox width="100%">
 <mx:Button click="remoteObj.sum(new Number(a.text), new Number(b.text))" label="Sum"/>
 <mx:TextInput id="a" text="47"/>
 <mx:TextInput id="b" text="99"/>
</mx:HBox>
<mx:HBox width="100%">
 <mx:Button click="remoteObj.scramble(c.text)" label="Scramble"/>
 <mx:TextInput id="c" text="She sells seashells by the seashore" width="100%"/>
</mx:HBox>
<mx:Text id="result" width="100%" height="100%"/>

<mx:Script>
<![CDATA[
import mx.utils.ObjectUtil;
import mx.rpc.events.ResultEvent;
import mx.rpc.events.FaultEvent;

private function displayResult(re:ResultEvent): void {
 result.text += ObjectUtil.toString(re.result) + "\n";
}

private function scrambleResult(re:ResultEvent): void {
 c.text = re.result as String;
}

private function remoteFault(fault:FaultEvent): void {
 result.text = ObjectUtil.toString(fault);
}
]]>
</mx:Script>
</mx:Application>

You can paste that into a new Flex Builder project (or use the free
SDK to create a project with the text editor of your choice). You can
then put the HTML and SWF files generated by the builder into your TG2
project’s static directory (wherever you want them to be available) at
which point you should be able to browse there, get your Flex app, and
use it to connect to the web services you just created.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_static/basicmoves_oops.png
Traceback Extra Data Template Source
WebError Traceback:

~» UndefinedError: "hello" not defined

Viewas: Interactive | Text | XML (full)
URL: http://localhost:8080/

Module weberror.evalexception:431 in respond @ view

>> app._iter = self.application(environ, detect_start_response)
Module tg.configuration:643 in wrapper @ view

>> return app(environ, start_response)

Module tg.configuration:543 in remover @ view

>> return app(environ, start_response)

Module repoze.tm:19 in __call__ @ view

>>_result = seff.application(environ, save_status_and_headers)
Module repoze. who.middleware:107 in __call__ @ view
>> app._iter = app(environ, wrapper.wrap_start_response)
Module tw.core.middleware:36 in _call_ & view

>> return seff.wsgi_app(environ, start_response)

Module tw.core.middleware:59 in wsgi_app & _ view

>> resp = req.get_response(sel.application)

Module webob:1325 in get_response @ view
o

main/AuthorizeTutorial.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Extensions and Tools »

Using Authorize.net in a TurboGears Form

Table of Contents

		Using Authorize.net in a TurboGears Form
		The Authorize Package

		Defining The Validator

		Defining The Form

		Using It In A Controller

The goal of this tutorial is to get a tw.forms form to go through two
layers of validation before passing:

		Use the validation packages provided by tw.forms and formencode

		If the first layer of validation passes, try to run the
authorize.net charge using the authorize package. If this returns a
response code of 1 (approved) then all validation has
passed. Otherwise, invalidate the form and flash the authorize.net
error.

The Authorize Package

The authorize package handles authorize.net requests, and can be found
here [http://www.adroll.com/labs] or by typing: easy_install
authorize

Defining The Validator

First we will need to define our ProcessCard() class which will be the
chained FancyValidator for processing the card:

from formencode import FancyValidator, Invalid
from authorize import aim as aim_api

FancyValidator to process the Credit Card using the authorize package
class ProcessCard(FancyValidator):
 def _to_python(self, value, state):
 # Setup the aim Api object.
 aim = aim_api.Api(AUTHNET_LOGIN, AUTHNET_KEY, is_test=False)

 # Create a transaction against a credit card
 result_dict = aim.transaction(
 amount=u"16.00",
 card_num=unicode(value['card_number']),
 exp_date=unicode(value['card_expiry']),
 # ...and others...
)

 if result_dict['code'] == '1':
 # success
 return value
 else:
 # failure
 raise Invalid(result_dict['reason_text'], value, state)

Defining The Form

Next we’ll define our form class that will end up being passed to the
view. This example defines the form using ToscaWidgets1, but it should
be fairly simple to adapt it to ToscaWidgets2 which is now the default:

from tw.api import WidgetsList

class AuthnetForm(twf.TableForm):
 submit_text='Process Card'

 # specify chained validators
 validator = twf.validators.Schema(
 chained_validators = [
 twf.validators.CreditCardValidator('card_type','card_number'),
 twf.validators.CreditCardSecurityCode('card_type','card_cvv'),
 # you could also add an expiry validator, but authnet will handle this for you
 ProcessCard()
]
)

 # specify form fields
 class fields(WidgetsList):
 name = twf.TextField(validator=twf.validators.String(not_empty=True))
 # ...and others like address, city, state, zip...
 spacer = twf.Spacer(suppress_label=True)
 card_type = twf.SingleSelectField(options=[('visa', 'Visa'),
 ('mastercard', 'Master Card'),
 ('discover', 'Discover'),
 ('amex', 'American Express')], validator=twf.validators.NotEmpty)
 card_expiry = twf.CalendarDatePicker(date_format="%m/%Y", validator=twf.validators.NotEmpty)
 card_number = twf.TextField(label_text='Card #', validator=twf.validators.NotEmpty)
 card_cvv = twf.TextField(label_text='CVV Code', validator=twf.validators.NotEmpty)

Using It In A Controller

Now all you have to do is set up your controller class methods to use
the form:

Assign a name to the form
authnet_form = AuthnetForm('authnet_form', action='/authnet/process/')

class AuthnetController(BaseController):
 @expose('authnet.templates.index')
 def index(self, **kw):
 if '_the_form' in tmpl_context.form_errors:
 # if we have top-level form errors, use flash() to display them
 flash(tmpl_context.form_errors['_the_form'], 'error')
 # Use ${form()} to print the form in your template
 return dict(form=authnet_form)

 @validate(authnet_form, error_handler=index)
 @expose()
 def process(self, **kw):
 # if validation passes, this method will run (specified by form action)
 return 'Card was successfully charged!'

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

modules/pylons/error.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Modules »

pylons.error – Error handling support

Custom EvalException support

Provides template engine HTML error formatters for the Template tab of
EvalException.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

deprecated/ToscaWidgets/forms.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Using ToscaWidgets to Create Forms

Introduction

One of the most useful features of ToscaWidgets is the ability to create forms
with requisite validation with a simple declarative syntax. Using existing
form widgets, it is relatively easy to add forms to your application to manage
your database interactions.

The overall process for creating a form is as follows:

		Create widgets for each field in the form.

		Create a form widget passing in the field widgets as children.

		If you are creating an edit form, extract the row data from the
database.

		Call the widget in your template, passing in row data when
appropriate.

An example project has been attached so that you can try this
easily.

Tutorial

For this tutorial, we will be implementing a form to add a movie to a
movie database. Let’s create a new example project to try this out:

$ paster quickstart -s -n ToscaSample

Confirm the package name toscasample. We need authentication and
authorization for this sample project, so make sure to say yes. If you
don’t, then the database model will not be generated, and the rest of
this tutorial will not work.

Let’s start with a simple SQLAlchemy model that has only a Movie
object. Add the following line at the bottom of
model/__init__.py:

from movie import Movie

Now create a new Python module model/movie.py as follows:

"""The Movie database class"""

from sqlalchemy import Column
from sqlalchemy.types import Date, Integer, String, Text

from toscasample.model import DeclarativeBase

class Movie(DeclarativeBase):

 __tablename__ = 'movie'

 id = Column(Integer, primary_key=True)
 title = Column(String(100), nullable=False)
 description = Column(Text, nullable=True)
 year = Column(Integer, nullable=True)
 genre = Column(Integer, nullable=True)
 release_date = Column(Date, nullable=True)
 picture_filename = Column(u'picture_filename', String)

 def __str__(self):
 if self.year:
 return '"%s" (%d)' % (self.title, self.year)
 else:
 return '"%s"' % self.title

Our movie has a smattering of the different standard data types so
that we can show off some simple ToscaWidgets form widgets.

To setup your database you should run the following:

$ paster setup-app development.ini

This will create the database schema in the database referenced in
your development.ini configuration file.

A very Basic Form

We now want to create a simple input form widget for the model object.
In order to arrange our code more clearly, we create a new subpackage
widgets in our project by adding a new subdirectory widgets
with an empty __init__.py file in it. The widgets subdirectory
should be on the same level as the controllers and model
subdirectories. Inside the widgets subdirectory, we create a
module movie_form.py containing the following very simple form
widget:

"""Movie Form"""

from tw.api import WidgetsList
from tw.forms import TableForm, CalendarDatePicker, SingleSelectField, TextField, TextArea

class MovieForm(TableForm):

 class fields(WidgetsList):
 title = TextField()
 year = TextField()
 release_date = CalendarDatePicker()
 genre_options = [x for x in enumerate((
 'Action & Adventure', 'Animation', 'Comedy',
 'Documentary', 'Drama', 'Sci-Fi & Fantasy'))]
 genre = SingleSelectField(options=genre_options)
 description = TextArea()

create_movie_form = MovieForm("create_movie_form")

In ToscaWidgets, every widget can have child widgets. This is
particularly useful for forms, which are generally made up of form
field widgets. A simple way of defining forms is the declarative
notation as used above.

Note that the standard Form widget does not have any associated
template, so we’re using the TableForm widget that already
provides a template with a very simple table layout.

Displaying The Form

We will now need a page template for displaying our form. Don’t
confuse this page template (describing how our form is embedded in a
web page) with the form template (describing the layout of the form
fields inside the form). For now we will use the default form
template that comes with TableForm. We will later also see how to
use our own form template.

Note that we’re using Genshi templates here, but we could just as well
use another templating engine such as Mako.

For displaying our input form, we create a page template
new_form.html in the main templates directory that will be
usable as input page for other model objects, too:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:py="http://genshi.edgewall.org/"
 xmlns:xi="http://www.w3.org/2001/XInclude">

<xi:include href="master.html" />

<head>
 <meta content="text/html; charset=UTF-8" http-equiv="content-type" py:replace="''"/>
 <title>New ${modelname}</title>
</head>

<body>

<h1>New ${modelname}</h1>

<div py:replace="tmpl_context.form(value)">Input Form</div>

</body>
</html>

Finally, We will also need a controller for displaying our input form.
The controller module needs to import the instance of this form that
we have already created in widgets.movie_form, and the template
context object that will allow us to pass the form from the controller
to the page template. So we add the following at the top of
controllers/root.py:

from tg import tmpl_context
from toscasample.widgets.movie_form import create_movie_form

Then we add an exposed method new() to the RootController
class in the same controller file:

@expose('toscasample.templates.new_form')
def new(self, **kw):
 """Show form to add new movie data record."""
 tmpl_context.form = create_movie_form
 return dict(modelname='Movie', value=kw)

To run the application, surf to http://localhost:8080/new – you will see a form that looks like
this:

[image: ../../_images/movie_form_1.png]

Loading Options From The Database

Suppose we do not want to use hardcoded genre_options, but load
these options on the fly from the database. This is possible by
passing the options to the form widget at render time. To do this, you
would load the options in your controller method from an imaginary
MovieGenera model class and pass them to the template like this:

@expose('toscasample.templates.new_form')
def new(self, **kw):
 """Form to add new movie data record."""
 tmpl_context.form = create_movie_form
 return dict(modelname='Movie',
 genre_options=model.DBSession.query(model.MovieGenera.id, model.MovieGenera.title),
 page='ToscaSample New Movie')

Then in the page template you would display the form like this:

<div py:replace="tmpl_context.form(
 child_args=dict(genre=dict(options=genre_options)))">Input Form</div>

Simple Customization

Now, let’s take a look at what we can do to customize the form to our
liking.

Each field has a set of attributes which we can change to suit our
needs. For example, perhaps you are not satisfied with the text area
which is the default in ToscaWidgets forms. You can change the
attributes of the text area simply by passing in a dictionary of
attributes to the attr parameter in the field definition. Simple
text fields also provide a size attribute.

You may have noticed that our form already contained labels next to
the input fields. These have been automatically generated from the
field names by capitalization and replacing underscores with blanks.
If this is not what you want, you can override these automatically
generated labels using the label_text attribute.

Another problem with this form is that if you are using SQLite, the
date is in the wrong format. Let’s give the CalendarDatePicker a
date_format argument, and then our form will be viable.

In order to arrange the field elements more clearly, you can use the
Label and Spacer widgets, or you can group fields that belong
together in a FieldSet container widget.

You can also change the text on the submit button with the
submit_text parameter.

After such customization, our widget.movie_form module may now
look like this:

"""Movie Form"""

from tw.forms import (TableForm, CalendarDatePicker, Label,
 SingleSelectField, Spacer, TextField, TextArea)

class MovieForm(TableForm):

 genre_options = [x for x in enumerate((
 'Action & Adventure', 'Animation', 'Comedy',
 'Documentary', 'Drama', 'Sci-Fi & Fantasy'))]

 fields = [
 TextField('title', label_text='Movie Title'),
 Spacer(),
 TextField('year', size=4),
 CalendarDatePicker('release_date', date_format='%y-%m-%d'),
 SingleSelectField('genre', options=genre_options),
 Spacer(),
 Label(text='Please provide a short description of the plot:'),
 TextArea('description', attrs=dict(rows=3, cols=25)),
 Spacer()]

 submit_text = 'Save Movie'

create_movie_form = MovieForm("create_movie_form")

The declarative notation we used earlier is a bit cumbersome in
combination with spacers or labels, so we provided the fields simply
as a list.

These changes result in the following new look of our form:

[image: ../../_images/movie_form_2.png]
You will notice the different appearance and that that our date field
now has dashes in it instead of slashes.

Customizing With CSS And Form Templates

We will now add some CSS and a modified template to our form in order
to provide “tooltip-like” help texts for the individual form fields.

ToscaWidget forms already come with a help_text attribute. So
let’s add some help texts in our widget.movie_form module and see
what will happen:

"""Movie Form"""

from tw.forms import (TableForm, CalendarDatePicker,
 SingleSelectField, Spacer, TextField, TextArea)

class MovieForm(TableForm):

 genre_options = [x for x in enumerate((
 'Action & Adventure', 'Animation', 'Comedy',
 'Documentary', 'Drama', 'Sci-Fi & Fantasy'))]

 fields = [
 TextField('title', label_text='Movie Title',
 help_text='Please enter the full title of the movie.'),
 Spacer(),
 TextField('year', size=4,
 help_text='Please enter the year this movie was made.'),
 CalendarDatePicker('release_date', date_format='%y-%m-%d',
 help_text='Please pick the exact release date.'),
 SingleSelectField('genre', options=genre_options,
 help_text = 'Please choose the genre of the movie.'),
 Spacer(),
 TextArea('description', attrs=dict(rows=3, cols=25),
 help_text = 'Please provide a short description of the plot.'),
 Spacer()]

 submit_text = 'Save Movie'

create_movie_form = MovieForm("create_movie_form")

The result is not very appealing. Our help texts are simply inserted
as span elements after their corresponding field elements:

[image: ../../_images/movie_form_3.png]
What we really want is that our help texts will only appear if the
user hovers with the mouse over the respective field.

One possible way to achieve this effect is to set the hover_help
attribute of the form widget to true:

class MovieForm(TableForm):

 hover_help = True

This will cause the help texts to be created as title attributes,
which will give the “tooltip-like” behavior in most modern browsers:

[image: ../../_images/movie_form_4.png]
We want to go a step further and have our own kind of tooltips on a
colored background with a triangle acting as a pointer to the field.

To realize this, the default span element for the help texts is not
enough; we need an additional span element for the pointer triangle.
This is the point where we need to customize the default TableForm
template. So we create another templates package inside our
widgets package and copy the default Genshi template
table_form.html from tw.forms.templates into this new
toscasample.widgets.templates package. The only change that we
make is to replace the following line:

with these lines that provide our additional span element:

We also create a CSS file tooltips.css that we put into the
public/css directory of our project:

.fieldhelp {
	display: block;
	position: absolute;
	visibility: hidden;
	z-index: 99;
}

.fieldcol:hover .fieldhelp {
	visibility: visible;
}

.fieldcol:hover .fieldhelp:hover {
	visibility: hidden;
}

.fieldhelp_top {
	border-bottom: 18pt solid #fc3;
	border-left: 9pt solid transparent;
	border-right: 9pt solid transparent;
	display: block;
	font-size: 0;
	line-height: 0;
	width: 0;
}

.fieldhelp_main {
	background-color: #fc3;
	padding: 2pt 4pt;
}

We can now specify our custom template and CSS file in the
template and css attributes of our form widget. The
widget.movie_form module will look as follows after this step:

"""Movie Form"""

from tw.api import CSSLink
from tw.forms import (TableForm, CalendarDatePicker,
 SingleSelectField, Spacer, TextField, TextArea)
from tg import url

class MovieForm(TableForm):

 template = "toscasample.widgets.templates.table_form"
 css = [CSSLink(link=url('/css/tooltips.css'))]

 genre_options = [x for x in enumerate((
 'Action & Adventure', 'Animation', 'Comedy',
 'Documentary', 'Drama', 'Sci-Fi & Fantasy'))]

 fields = [
 TextField('title', label_text='Movie Title',
 help_text='Please enter the full title of the movie.'),
 Spacer(),
 TextField('year', size=4,
 help_text='Please enter the year this movie was made.'),
 CalendarDatePicker('release_date', date_format='%y-%m-%d',
 help_text='Please pick the exact release date.'),
 SingleSelectField('genre', options=genre_options,
 help_text = 'Please choose the genre of the movie.'),
 Spacer(),
 TextArea('description', attrs=dict(rows=3, cols=25),
 help_text = 'Please provide a short description of the plot.'),
 Spacer()]

 submit_text = 'Save Movie'

create_movie_form = MovieForm("create_movie_form")

This was all that needed to be done to get the following nice effect
when you hover with the mouse over one of the input fields:

[image: ../../_images/movie_form_5.png]

Adding a File Upload

Now let’s add a file upload to see how that works. We will add a new
file field to our form, and then on the serverside we will gather
the data from the file form and save it to a file in the public directory
on the server. This file could later be served up and displayed on our
movie page.

The first thing we need to do is add the file field to our form.
First, add FileField to our import:

from tw.forms import (TableForm, CalendarDatePicker,
 SingleSelectField, Spacer, TextField, TextArea, FileField)

Then, add the field to the fields parameter of our widget:

FileField('picture_filename',
 help_text = 'Please provide a picture for this movie.'),
Spacer()

Our form now looks like this:

[image: ../../_images/movie_form_7.png]
Now, if you look at the source for your page you will see that the enctype
has changed in our form.:

<form id="create_movie_form" action="create" method="post" class="required movieform" enctype="multipart/form-data">

If you happen to be looking at this reference for pointers on how to
upload files, then this is important to note if you are not using
ToscaWidgets. enctype="multipart/form-data" is needed in order
to tell the web server that the form contains a multipart message,
including a file to upload.

Now we can modify our create method to save our new file to the public directory,
noting the filename in the database. First, we need to locate our public directory:

import shutil
import os
from pkg_resources import resource_filename

public_dirname = os.path.join(os.path.abspath(resource_filename('toscasample', 'public')))
movies_dirname = os.path.join(public_dirname, 'movies')

Then we change the create code to save our filename to the database and our file to
the public directory.

@validate(create_movie_form, error_handler=new)
@expose()
def create(self, **kw):
 movie = Movie()
 movie.title = kw['title']
 movie.year = kw['year']
 movie.release_date = kw['release_date']
 movie.description = kw['description']
 movie.genre = kw['genre']

 #save the filename to the database
 movie.picture_filename = kw['picture_filename'].filename
 DBSession.add(movie)
 DBSession.flush()

 #write the picture file to the public directory
 movie_path = os.path.join(movies_dirname, str(movie.id))
 try:
 os.makedirs(movie_path)
 except OSError:
 #ignore if the folder already exists
 pass

 movie_path = os.path.join(movie_path, movie.picture_filename)
 f = file(movie_path, "w")
 f.write(kw['picture_filename'].value)
 f.close()

 flash("Movie was successfully created.")
 redirect("list")

Now if you check the public directory after an insert you will see
the file has been written. This file could be used in the listing
or display of the movie information, since it has been placed
in the public directory.

More Form Fields

ToscaWidgets [http://toscawidgets.org] contains some more form useful form fields. These can be
classified into basic fields, selection fields and buttons. Fieldsets
and forms themselves are actually realized as form fields that can
contain a list of other form fields.

The ToscaWidgets [http://toscawidgets.org] documentation has a list of all available form
fields [http://toscawidgets.org/documentation/tw.forms/modules/fields/].

Form Validation

Form validation is a very powerful way to make sure that the data
entered by users is formatted in a predictable manner long before
database interaction happens. When data entered into a form does not
match that which is required, the user should be redirected back to
the form to re-enter their data. A message indicating the problem
should be displayed for all fields which are in error at the same
time. ToscaWidgets takes advantage of the work done in FormEncode [http://www.formencode.org] to
do its validation.

The first thing we need to do is add a validator to each of the fields
that we would like to have validated. Each form field takes a
validator argument. The form itself is then passed into a method
decorator which checks to see whether the data coming in from the
client validates against the validator defined in the widget. Our new
widget.movie_form module with validation looks something like
this:

"""Movie Form"""

from tw.api import CSSLink
from tw.forms import (TableForm, CalendarDatePicker,
 SingleSelectField, Spacer, TextField, TextArea)
from tw.forms.validators import Int, NotEmpty, DateConverter
from tg import url

class MovieForm(TableForm):

 template = "toscasample.widgets.templates.table_form"
 css = [CSSLink(link=url('/css/tooltips.css'))]
 show_errors = True

 genre_options = [x for x in enumerate((
 'Action & Adventure', 'Animation', 'Comedy',
 'Documentary', 'Drama', 'Sci-Fi & Fantasy'))]

 fields = [
 TextField('title', validator=NotEmpty,
 label_text='Movie Title',
 help_text='Please enter the full title of the movie.'),
 Spacer(),
 TextField('year', validator=Int(min=1900, max=2100), size=4,
 help_text='Please enter the year this movie was made.'),
 CalendarDatePicker('release_date', validator=DateConverter(),
 help_text='Please pick the exact release date.'),
 SingleSelectField('genre', options=genre_options,
 help_text = 'Please choose the genre of the movie.'),
 Spacer(),
 TextArea('description', attrs=dict(rows=3, cols=25),
 help_text = 'Please provide a short description of the plot.'),
 Spacer()]

 submit_text = 'Save Movie'

create_movie_form = MovieForm("create_movie_form", action='create')

Note that we removed the date format from the CalendarDatePicker
again. This is because the DateConverter will take whatever date is
entered in the box and convert it to a datetime object, which is much
better understood by SQLAlchemy than a date string.

Also note that we did not import the validators from
formencode.validators directly, but we imported them from
tw.forms.validators instead. You should always do this if you work
with tw.forms, since it makes sure that you will get versions of
the FormEncode validators that play well with the tw.forms module
(the validators used in our example are the same, though).

Our controller now gets a new validator decorator for the creation of
the movie entry. But first we need to import a couple of things at
the beginning of our controllers/root.py file:

from tg import tmpl_context, redirect, validate
from toscasample.model import metadata, DBSession, Movie
from toscasample.widgets.movie_form import create_movie_form

Then we can add an exposed create() method to the
RootController class in the same controller file, directly after
the new() method:

@validate(create_movie_form, error_handler=new)
@expose()
def create(self, **kw):
 """Create a movie object and save it to the database."""
 movie = Movie()
 movie.title = kw['title']
 movie.year = kw['year']
 movie.release_date = kw['release_date']
 movie.description = kw['description']
 movie.genre = kw['genre']
 DBSession.add(movie)
 flash("Movie was successfully created.")
 redirect("list")

Note that we have created the create_movie_form instance with
action='create' so that this controller method will be called when
the submit button at the button of the form is pressed.

The resulting form on a bad entry will give you a output like this:

[image: ../../_images/movie_form_6.png]
In short, there are many things you can do with validators, but the
above example gives you a basic understanding of how validators can be
used to check user input.

When the form validation passes, the create() method redirects to
an exposed list() method for displaying the list of movies, but we
haven’t created that method yet. It can look like this:

@expose("toscasample.templates.movie_list")
def list(self):
 """List all movies in the database"""
 return dict(movies=DBSession.query(Movie),
 page='ToscaSample Movie list')

To show the movie list, we also need to add a template named
movie_list.html in our main templates directory, which can contain
as little as this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:py="http://genshi.edgewall.org/"
 xmlns:xi="http://www.w3.org/2001/XInclude">

<xi:include href="master.html" />

<head>
 <meta content="text/html; charset=UTF-8" http-equiv="content-type" py:replace="''"/>
 <title>Movie List</title>
</head>

<body>

<h1>Movie List</h1>

 <li py:for="movie in movies" py:content="movie">Movie title and year

<p>Add a Movie</p>

</body>
</html>

As an exercise, you can try to make the movies in the list editable by
adding an update() controller method. This method must read the
corresponding data record and pass it to a template similar to
new_form.html, except that you must call the form widget with the
data that has been passed by the controller. You can also let the
new() method return None as data and use the same page template
for both controllers.

More Validators

The FormEncode [http://www.formencode.org] documentation has a list of all available
validators [http://formencode.org/module-formencode.validators.html].

But remember to import these validators indirectly through
tw.forms.validators if you’re using them to validate ToscaWidget
form fields, because some of them (most notably UnicodeString)
have adapted versions which interoperate better with ToscaWidgets
forms. The tw.forms.validators module also provides some
additional validators [http://toscawidgets.org/documentation/tw.forms/modules/validators.html] that you may find useful.

You can also build compound validators [http://www.formencode.org/Validator.html#compound-validators] (schemas) corresponding to
fieldsets or whole forms.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

deprecated/Wiki20/JSONMochiKit.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Adding JSON with MochiKit to the The TurboGears 2 Wiki Tutorial

Todo

Difficulty: Medium. This info is just copied over from the TG1 wiki tutorial, and needs to be vetted, expanded, and edited.

This part of the tutorial is not technically AJAX. The “X” in AJAX
stands for XML. I’m going to use JSON [http://www.json.org/] instead. JSON is easy and
lightweight and efficient to use for all browsers. To use JSON for
this TurboGears example, we just have to tell TurboGears that we want
to use it via a second @expose() decorator.

@expose("wiki20.templates.pagelist")
@expose("json")
def pagelist(self):
 pages = [page.pagename for page in Page.select(orderBy=Page.q.pagename)]
 return dict(pages=pages)

Now, if you point your browser at
http://localhost:8080/pagelist?tg_format=json, you’ll see your
pagelist in JSON format. Here’s an example of how the JSON output
looks like:

{"tg_flash": null, "pages": ["FrontPage", "SandBox", "MyPage"]}

This easy conversion to JSON is the other use for returning a dictionary. In
standard CherryPy methods, you can return a string containing the rendered
page. You can do that with TurboGears as well, but a free JSON interface is a
pretty good reason to do it the TurboGears way. You can return as many formats
as you like by stacking more @expose() decorators. Check out the @expose
reference article for details.

Todo

Difficulty: Medium. update the expose reference article for tg2

from MochiKit import *

For the client side of this tutorial, we’ll be using MochiKit, the
official javascript framework of TurboGears. The two are only loosely
coupled, as opposed to prototype/Rails, but we find MochiKit to
provide a very elegant Python-inspired API while avoiding
monkeypatches on the JavaScript datatypes.

To keep this from turning into a Javascript tutorial (it’s pretty long
as-is because we don’t expect Pythonistas to be Javascript masters),
we’re just going to Ajaxify one call by changing our “view complete
page list” link to pull in the pagelist and include it right in the
page you’re viewing.

The first thing we need to do is have MochiKit included in all of our
pages. This can be done by editing the master.kid file or by
having TurboGears add it as a widget. We’ll use the latter technique
here.

Open the wiki20/config/app.cfg. This file controls
environment-independent settings like identity and output
encoding. Search through the file for the tg.include_widgets
setting, uncomment it, and modify it like so:

tg.include_widgets = ['turbogears.mochikit']

As the name indicates, we actually are using TurboGears’ widget infrastructure
to do the inclusion. Widgets are an advanced feature and are out of scope for
this tutorial, but they’re essentially self-contained bundles of HTML+behavior
code that make building forms a snap. One of the things they can do is include
javascript in a page and the turbogears.mochikit takes advantage of this to
provide a javascript library. The cogbin [http://www.turbogears.org/cogbin/] has other javascript libraries
packed up as widgets that can be used the same way.

After making this configuration change, restart the server. The
auto-reload functionality only detects changes to python files.

Prep The Page

Now that we have MochiKit, we’re ready to modify our template. We’ll
practice good style by progressively enhancing our pagelist link in
master.kid:

<div id="footer">
<p>View the
 complete list of pages.
</p>
<div id="pagelist_results"></div>

It doesn’t look like much, but all we need is an id on our link
and a place to put the results. By doing it this way (instead of
setting href="#" and doing an onclick handler) we keep our
page usable in all browsers, whether they have JavaScript enabled or
not.

The Main Event

In the interest of expediency (and because we’re substituting URLs
with Kid), we’ll add the handler to a <script> tag in the head
rather than in its own file.

<style type="text/css" media="screen">
@import "/static/css/style.css";
</style>
<script type="text/javascript">
addLoadEvent(function(){
 connect($('pagelist'),'onclick', function (e) {
 e.preventDefault();
 var d = loadJSONDoc("${std.url('/pagelist', tg_format='json')}");
 d.addCallback(showPageList);
 });
});
</script>
</head>

We’re exercising a lot of MochiKit features here. The connect()
function is used to connect the onclick event of our pagelist link
(MochiKit does a getElementById if the first argument to connect is a
string) to our anonymous handler function. We could do the same thing
by setting onclick directly on the link itself, but this allows us
to connect as many onclick handlers as we like and makes
maintenance simpler.

The handler function itself calls e.preventDefault() to prevent
the click from causing us to navigate away from the page and kicks off
our replacement behavior. A call to e.stop() would work just as
well and would prevent further event propagation [http://www.quirksmode.org/js/events_order.html] from happening,
ensuring that only the behavior you specify for the event happens. For
onclick replacements, your humble tutorial writer prefers
preventDefault in order to ensure that analytics packages continue
working.

MochiKit includes the loadJSONDoc function for doing an
asynchronous XMLHttpRequest and converting the result from JSON into a
JavaScript object. That’s all there is to ‘AJAX’, really. Makes you
wonder what all the fuss is about. Notice we’re using Kid substitution
to ensure the url passed to loadJSONDoc is accurate, just like we
would anywhere else.

Dealing With The Consequences

loadJSONDoc returns a Deferred object. The idea with a
Deferred is that we know that our request for the pagelist will
happen some time in the future, but we don’t know when. A
Deferred is a placeholder that allows us to specify what happens
when the result comes in. We have a very simple requirement here: call
a function called showPageList, which we’ll write now:

<script type="text/javascript">
addLoadEvent(function(){
 connect('pagelist','onclick', function (e) {
 e.preventDefault();
 var d = loadJSONDoc("${std.url('/pagelist', tg_format='json')}");
 d.addCallback(showPageList);
 });
});
function showPageList(result) {
 var currentpagelist = UL(null, map(row_display, result["pages"]));
 replaceChildNodes("pagelist_results", currentpagelist);
}
</script>

When loadJSONDoc gets its result, it will pass it along to
showPageList. The nice thing about this process is that result
is the same dictionary our pagelist method returned in Python!
Even though we have our list, we still need to convert it to HTML and
insert it into the page. In most javascript frameworks, you’d do this
by concatenating HTML snippets or DOM nodes, but MochiKit provides a
better way.

The first line of showPageList shows off MochiKit.DOM, which
provides a conveniently named set of functions for creating common
HTML elements. The UL() function is creating a new
element with no attributes (indicated by the null in the first
argument). The second argument is for the element’s children, which we
expect to be elements but instead find this strange map()
beast. The results are dumped into the pagelist_results element
using replaceChildNodes().

As for that second argument, map() works exactly like it does in
Python. The function row_display (which we’ll write next) is
called for every item in result["pages"].

If you’re not used to functional programming this can be somewhat mind
bending, but it’s basically a short way to write a for loop. Here’s
what map() looks like (the actual implementation is more complex
because it’s more robust):

// ILLUSTRATION ONLY, NOT PART OF THE TUTORIAL
function map(func, list){
 var toReturn = [];
 for(var i = 0; i < list.length; i++){
 toReturn.push(func(list[i]));
 }
 return toReturn;
}

As mentioned, we need a row_display function which will turn a
WikiWord title into a element containing a link to the
corresponding page.

function showPageList(result) {
 var currentpagelist = UL(null, map(row_display, result["pages"]));
 replaceChildNodes("pagelist_results", currentpagelist);
}
function row_display(pagename) {
 return LI(null, A({"href" : "${std.url('/')}" + pagename}, pagename))
}
</script>

The row_display() function further demonstrates
MochiKit.DOM. Notice that we’re actually setting the href
attribute for the <A> element. The std.url() is another
instance of Kid substitution sneaking in. It’s replaced before any
Javascript is run. The contents of the <A> itself are the page
name. MochiKit is smart and does the right thing here by inserting the
pagename string as text content.

Whew! that was a lot of explanation for 6 lines of code. This
parent/map(formatter_function, children) pattern is very common when
working with MochiKit.DOM. You’ll see a similar example in the
official MochiKit documentation.

Sweet Success

Voila! If you go to your front page [http://localhost:8080/] and click on the page list
link, you’ll see the page list right there in the page.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/get_all.png
Welcome to TurboGears 2
‘The Python web metaframework

Movie Listing

sk o the 1985 Do Brown vt v 1955, Mary Wly
BICKOME L idetaly preents i prens fom mectin, pting -6 Robert Zameckis,

o S IO s

scton Davi Fincher,
A\ computer hckeseams from mystrous rbels ost the

The Mauin e niture of s reity and s 1ol n e war gt e acton A26 Wachowskl
Convalers of . Ly Wachawsi,

T, rstitrion o s rined g nd el s bowing Budais comedy el Coen,
e g

1985-04-03

1999-10-14

1999-03-31

modules/thirdparty/formencode_api.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

FormEncode

FormEncode is a validation and form generation package. The validation
can be used separately from the form generation. The validation works
on compound data structures, with all parts being nestable. It is
separate from HTTP or any other input mechanism.

These module API docs are divided into section by category.

Core API

formencode.api

These functions are used mostly internally by FormEncode.

Core classes for validation.

		
formencode.api.is_validator(obj)

		Returns whether obj is a validator object or not.

		
class formencode.api.Invalid(msg, value, state, error_list=None, error_dict=None)

		This is raised in response to invalid input. It has several
public attributes:

		msg:

		The message, without values substituted. For instance, if
you want HTML quoting of values, you can apply that.

		substituteArgs:

		The arguments (a dictionary) to go with msg.

		str(self):

		The message describing the error, with values substituted.

		value:

		The offending (invalid) value.

		state:

		The state that went with this validator. This is an
application-specific object.

		error_list:

		If this was a compound validator that takes a repeating value,
and sub-validator(s) had errors, then this is a list of those
exceptions. The list will be the same length as the number of
values – valid values will have None instead of an exception.

		error_dict:

		Like error_list, but for dictionary compound validators.

		
__init__(msg, value, state, error_list=None, error_dict=None)

		

		
unpack_errors(encode_variables=False, dict_char='.', list_char='-')

		Returns the error as a simple data structure – lists,
dictionaries, and strings.

If encode_variables is true, then this will return a flat
dictionary, encoded with variable_encode

		
class formencode.api.Validator(*args, **kw)

		The base class of most validators. See IValidator for more, and
FancyValidator for the more common (and more featureful) class.

Messages

		
classmethod all_messages()

		Return a dictionary of all the messages of this validator, and
any subvalidators if present. Keys are message names, values
may be a message or list of messages. This is really just
intended for documentation purposes, to show someone all the
messages that a validator or compound validator (like Schemas)
can produce.

@@: Should this produce a more structured set of messages, so
that messages could be unpacked into a rendered form to see
the placement of all the messages? Well, probably so.

		
if_missing

		alias of NoDefault

		
classmethod subvalidators()

		Return any validators that this validator contains. This is
not useful for functional, except to inspect what values are
available. Specifically the .all_messages() method uses
this to accumulate all possible messages.

		
class formencode.api.FancyValidator(*args, **kw)

		FancyValidator is the (abstract) superclass for various validators
and converters. A subclass can validate, convert, or do both.
There is no formal distinction made here.

Validators have two important external methods:

		.to_python(value, state):

		Attempts to convert the value. If there is a problem, or the
value is not valid, an Invalid exception is raised. The
argument for this exception is the (potentially HTML-formatted)
error message to give the user.

		.from_python(value, state):

		Reverses .to_python().

These two external methods make use of the following four
important internal methods that can be overridden. However,
none of these have to be overridden, only the ones that
are appropriate for the validator.

		._to_python(value, state):

		This method converts the source to a Python value. It returns
the converted value, or raises an Invalid exception if the
conversion cannot be done. The argument to this exception
should be the error message. Contrary to .to_python() it is
only meant to convert the value, not to fully validate it.

		._from_python(value, state):

		Should undo ._to_python() in some reasonable way, returning
a string.

		.validate_other(value, state):

		Validates the source, before ._to_python(), or after
._from_python(). It’s usually more convenient to use
.validate_python() however.

		.validate_python(value, state):

		Validates a Python value, either the result of ._to_python(),
or the input to ._from_python().

You should make sure that all possible validation errors are
raised in at least one these four methods, not matter which.

Subclasses can also override the __init__() method
if the declarative.Declarative model doesn’t work for this.

Validators should have no internal state besides the
values given at instantiation. They should be reusable and
reentrant.

All subclasses can take the arguments/instance variables:

		if_empty:

		If set, then this value will be returned if the input evaluates
to false (empty list, empty string, None, etc), but not the 0 or
False objects. This only applies to .to_python().

		not_empty:

		If true, then if an empty value is given raise an error.
(Both with .to_python() and also .from_python()
if .validate_python is true).

		strip:

		If true and the input is a string, strip it (occurs before empty
tests).

		if_invalid:

		If set, then when this validator would raise Invalid during
.to_python(), instead return this value.

		if_invalid_python:

		If set, when the Python value (converted with
.from_python()) is invalid, this value will be returned.

		accept_python:

		If True (the default), then .validate_python() and
.validate_other() will not be called when
.from_python() is used.

These parameters are handled at the level of the external
methods .to_python() and .from_python already;
if you overwrite one of the internal methods, you usually
don’t need to care about them.

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		noneType:

		The input must be a string (not None)

		
base64encode(value)

		Encode a string in base64, stripping whitespace and removing
newlines.

		
if_empty

		alias of NoDefault

		
if_invalid

		alias of NoDefault

		
if_invalid_python

		alias of NoDefault

		
validate_other(value, state=None)

		A validation method that doesn’t do anything.

		
validate_python(value, state=None)

		A validation method that doesn’t do anything.

formencode.schema

The FormEncode schema is one of the most important parts of using
FormEncode, as it lets you organize validators into parts that can be
re-used between schemas. Generally, a single schema will represent an
entire form, but may inherit other schemas for re-usable validation
parts (i.e., maybe multiple forms all requires first and last name).

		
class formencode.schema.Schema(*args, **kw)

		A schema validates a dictionary of values, applying different
validators (be key) to the different values. If
allow_extra_fields=True, keys without validators will be allowed;
otherwise they will raise Invalid. If filter_extra_fields is
set to true, then extra fields are not passed back in the results.

Validators are associated with keys either with a class syntax, or
as keyword arguments (class syntax is usually easier). Something
like:

class MySchema(Schema):
 name = Validators.PlainText()
 phone = Validators.PhoneNumber()

These will not be available as actual instance variables, but will
be collected in a dictionary. To remove a validator in a subclass
that is present in a superclass, set it to None, like:

class MySubSchema(MySchema):
 name = None

Note that missing fields are handled at the Schema level. Missing
fields can have the ‘missing’ message set to specify the error
message, or if that does not exist the schema message
‘missingValue’ is used.

Messages

		badDictType:

		The input must be dict-like (not a %(type)s: %(value)r)

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		missingValue:

		Missing value

		noneType:

		The input must be a string (not None)

		notExpected:

		The input field %(name)s was not expected.

		singleValueExpected:

		Please provide only one value

		
class formencode.schema.SimpleFormValidator(*args, **kw)

		This validator wraps a simple function that validates the form.

The function looks something like this:

>>> def validate(form_values, state, validator):
... if form_values.get('country', 'US') == 'US':
... if not form_values.get('state'):
... return dict(state='You must enter a state')
... if not form_values.get('country'):
... form_values['country'] = 'US'

This tests that the field ‘state’ must be filled in if the country
is US, and defaults that country value to ‘US’. The validator
argument is the SimpleFormValidator instance, which you can use to
format messages or keep configuration state in if you like (for
simple ad hoc validation you are unlikely to need it).

To create a validator from that function, you would do:

>>> from formencode.schema import SimpleFormValidator
>>> validator = SimpleFormValidator(validate)
>>> validator.to_python({'country': 'US', 'state': ''}, None)
Traceback (most recent call last):
 ...
Invalid: state: You must enter a state
>>> sorted(validator.to_python({'state': 'IL'}, None).items())
[('country', 'US'), ('state', 'IL')]

The validate function can either return a single error message
(that applies to the whole form), a dictionary that applies to the
fields, None which means the form is valid, or it can raise
Invalid.

Note that you may update the value_dict in place, but you cannot
return a new value.

Another way to instantiate a validator is like this:

>>> @SimpleFormValidator.decorate()
... def MyValidator(value_dict, state):
... return None # or some more useful validation

After this MyValidator will be a SimpleFormValidator
instance (it won’t be your function).

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		noneType:

		The input must be a string (not None)

Validators

Validator/Converters for use with FormEncode.

		
class formencode.validators.Bool(*args, **kw)

		Always Valid, returns True or False based on the value and the
existance of the value.

If you want to convert strings like 'true' to booleans, then
use StringBool.

Examples:

>>> Bool.to_python(0)
False
>>> Bool.to_python(1)
True
>>> Bool.to_python('')
False
>>> Bool.to_python(None)
False

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		noneType:

		The input must be a string (not None)

		
class formencode.validators.CIDR(*args, **kw)

		Formencode validator to check whether a string is in correct CIDR
notation (IP address, or IP address plus /mask).

Examples:

>>> cidr = CIDR()
>>> cidr.to_python('127.0.0.1')
'127.0.0.1'
>>> cidr.to_python('299.0.0.1')
Traceback (most recent call last):
 ...
Invalid: The octets must be within the range of 0-255 (not '299')
>>> cidr.to_python('192.168.0.1/1')
Traceback (most recent call last):
 ...
Invalid: The network size (bits) must be within the range of 8-32 (not '1')
>>> cidr.to_python('asdf')
Traceback (most recent call last):
 ...
Invalid: Please enter a valid IP address (a.b.c.d) or IP network (a.b.c.d/e)

Messages

		badFormat:

		Please enter a valid IP address (a.b.c.d) or IP network (a.b.c.d/e)

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		illegalBits:

		The network size (bits) must be within the range of 8-32 (not %(bits)r)

		illegalOctets:

		The octets must be within the range of 0-255 (not %(octet)r)

		leadingZeros:

		The octets must not have leading zeros

		noneType:

		The input must be a string (not None)

		
class formencode.validators.CreditCardValidator(*args, **kw)

		Checks that credit card numbers are valid (if not real).

You pass in the name of the field that has the credit card
type and the field with the credit card number. The credit
card type should be one of “visa”, “mastercard”, “amex”,
“dinersclub”, “discover”, “jcb”.

You must check the expiration date yourself (there is no
relation between CC number/types and expiration dates).

>>> cc = CreditCardValidator()
>>> sorted(cc.to_python({'ccType': 'visa', 'ccNumber': '4111111111111111'}).items())
[('ccNumber', '4111111111111111'), ('ccType', 'visa')]
>>> cc.to_python({'ccType': 'visa', 'ccNumber': '411111111111111'})
Traceback (most recent call last):
 ...
Invalid: ccNumber: You did not enter a valid number of digits
>>> cc.to_python({'ccType': 'visa', 'ccNumber': '411111111111112'})
Traceback (most recent call last):
 ...
Invalid: ccNumber: You did not enter a valid number of digits
>>> cc().to_python({})
Traceback (most recent call last):
 ...
Invalid: The field ccType is missing

Messages

		badLength:

		You did not enter a valid number of digits

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		invalidNumber:

		That number is not valid

		missing_key:

		The field %(key)s is missing

		noneType:

		The input must be a string (not None)

		notANumber:

		Please enter only the number, no other characters

		
class formencode.validators.CreditCardExpires(*args, **kw)

		Checks that credit card expiration date is valid relative to
the current date.

You pass in the name of the field that has the credit card
expiration month and the field with the credit card expiration
year.

>>> ed = CreditCardExpires()
>>> sorted(ed.to_python({'ccExpiresMonth': '11', 'ccExpiresYear': '2250'}).items())
[('ccExpiresMonth', '11'), ('ccExpiresYear', '2250')]
>>> ed.to_python({'ccExpiresMonth': '10', 'ccExpiresYear': '2005'})
Traceback (most recent call last):
 ...
Invalid: ccExpiresMonth: Invalid Expiration Date

ccExpiresYear: Invalid Expiration Date

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		invalidNumber:

		Invalid Expiration Date

		noneType:

		The input must be a string (not None)

		notANumber:

		Please enter numbers only for month and year

		
class formencode.validators.CreditCardSecurityCode(*args, **kw)

		Checks that credit card security code has the correct number
of digits for the given credit card type.

You pass in the name of the field that has the credit card
type and the field with the credit card security code.

>>> code = CreditCardSecurityCode()
>>> sorted(code.to_python({'ccType': 'visa', 'ccCode': '111'}).items())
[('ccCode', '111'), ('ccType', 'visa')]
>>> code.to_python({'ccType': 'visa', 'ccCode': '1111'})
Traceback (most recent call last):
 ...
Invalid: ccCode: Invalid credit card security code length

Messages

		badLength:

		Invalid credit card security code length

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		noneType:

		The input must be a string (not None)

		notANumber:

		Please enter numbers only for credit card security code

		
class formencode.validators.DateConverter(*args, **kw)

		Validates and converts a string date, like mm/yy, dd/mm/yy,
dd-mm-yy, etc. Using month_style you can support
'mm/dd/yyyy' or 'dd/mm/yyyy'. Only these two general
styles are supported.

Accepts English month names, also abbreviated. Returns value as a
datetime object (you can get mx.DateTime objects if you use
datetime_module='mxDateTime'). Two year dates are assumed to
be within 1950-2020, with dates from 21-49 being ambiguous and
signaling an error.

Use accept_day=False if you just want a month/year (like for a
credit card expiration date).

>>> d = DateConverter()
>>> d.to_python('12/3/09')
datetime.date(2009, 12, 3)
>>> d.to_python('12/3/2009')
datetime.date(2009, 12, 3)
>>> d.to_python('2/30/04')
Traceback (most recent call last):
 ...
Invalid: That month only has 29 days
>>> d.to_python('13/2/05')
Traceback (most recent call last):
 ...
Invalid: Please enter a month from 1 to 12
>>> d.to_python('1/1/200')
Traceback (most recent call last):
 ...
Invalid: Please enter a four-digit year after 1899

If you change month_style you can get European-style dates:

>>> d = DateConverter(month_style='dd/mm/yyyy')
>>> date = d.to_python('12/3/09')
>>> date
datetime.date(2009, 3, 12)
>>> d.from_python(date)
'12/03/2009'

Messages

		badFormat:

		Please enter the date in the form %(format)s

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		dayRange:

		That month only has %(days)i days

		empty:

		Please enter a value

		fourDigitYear:

		Please enter a four-digit year after 1899

		invalidDate:

		That is not a valid day (%(exception)s)

		invalidDay:

		Please enter a valid day

		invalidYear:

		Please enter a number for the year

		monthRange:

		Please enter a month from 1 to 12

		noneType:

		The input must be a string (not None)

		unknownMonthName:

		Unknown month name: %(month)s

		wrongFormat:

		Please enter the date in the form %(format)s

		
class formencode.validators.DateValidator(*args, **kw)

		Validates that a date is within the given range. Be sure to call
DateConverter first if you aren’t expecting mxDateTime input.

earliest_date and latest_date may be functions; if so,
they will be called each time before validating.

after_now means a time after the current timestamp; note that
just a few milliseconds before now is invalid! today_or_after
is more permissive, and ignores hours and minutes.

Examples:

>>> from datetime import datetime, timedelta
>>> d = DateValidator(earliest_date=datetime(2003, 1, 1))
>>> d.to_python(datetime(2004, 1, 1))
datetime.datetime(2004, 1, 1, 0, 0)
>>> d.to_python(datetime(2002, 1, 1))
Traceback (most recent call last):
 ...
Invalid: Date must be after Wednesday, 01 January 2003
>>> d.to_python(datetime(2003, 1, 1))
datetime.datetime(2003, 1, 1, 0, 0)
>>> d = DateValidator(after_now=True)
>>> now = datetime.now()
>>> d.to_python(now+timedelta(seconds=5)) == now+timedelta(seconds=5)
True
>>> d.to_python(now-timedelta(days=1))
Traceback (most recent call last):
 ...
Invalid: The date must be sometime in the future
>>> d.to_python(now+timedelta(days=1)) > now
True
>>> d = DateValidator(today_or_after=True)
>>> d.to_python(now) == now
True

Messages

		after:

		Date must be after %(date)s

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		before:

		Date must be before %(date)s

		date_format:

		%%A, %%d %%B %%Y

		empty:

		Please enter a value

		future:

		The date must be sometime in the future

		noneType:

		The input must be a string (not None)

		
class formencode.validators.DictConverter(*args, **kw)

		Converts values based on a dictionary which has values as keys for
the resultant values.

If allowNull is passed, it will not balk if a false value
(e.g., ‘’ or None) is given (it will return None in these cases).

to_python takes keys and gives values, from_python takes values and
gives keys.

If you give hideDict=True, then the contents of the dictionary
will not show up in error messages.

Examples:

>>> dc = DictConverter({1: 'one', 2: 'two'})
>>> dc.to_python(1)
'one'
>>> dc.from_python('one')
1
>>> dc.to_python(3)
Traceback (most recent call last):

Invalid: Enter a value from: 1; 2
>>> dc2 = dc(hideDict=True)
>>> dc2.hideDict
True
>>> dc2.dict
{1: 'one', 2: 'two'}
>>> dc2.to_python(3)
Traceback (most recent call last):

Invalid: Choose something
>>> dc.from_python('three')
Traceback (most recent call last):

Invalid: Nothing in my dictionary goes by the value 'three'. Choose one of: 'one'; 'two'

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		chooseKey:

		Enter a value from: %(items)s

		chooseValue:

		Nothing in my dictionary goes by the value %(value)s. Choose one of: %(items)s

		empty:

		Please enter a value

		keyNotFound:

		Choose something

		noneType:

		The input must be a string (not None)

		valueNotFound:

		That value is not known

		
class formencode.validators.Email(*args, **kw)

		Validate an email address.

If you pass resolve_domain=True, then it will try to resolve
the domain name to make sure it’s valid. This takes longer, of
course. You must have the pyDNS [http://pydns.sf.net] modules
installed to look up DNS (MX and A) records.

>>> e = Email()
>>> e.to_python(' test@foo.com ')
'test@foo.com'
>>> e.to_python('test')
Traceback (most recent call last):
 ...
Invalid: An email address must contain a single @
>>> e.to_python('test@foobar')
Traceback (most recent call last):
 ...
Invalid: The domain portion of the email address is invalid (the portion after the @: foobar)
>>> e.to_python('test@foobar.com.5')
Traceback (most recent call last):
 ...
Invalid: The domain portion of the email address is invalid (the portion after the @: foobar.com.5)
>>> e.to_python('test@foo..bar.com')
Traceback (most recent call last):
 ...
Invalid: The domain portion of the email address is invalid (the portion after the @: foo..bar.com)
>>> e.to_python('test@.foo.bar.com')
Traceback (most recent call last):
 ...
Invalid: The domain portion of the email address is invalid (the portion after the @: .foo.bar.com)
>>> e.to_python('nobody@xn--m7r7ml7t24h.com')
'nobody@xn--m7r7ml7t24h.com'
>>> e.to_python('o*reilly@test.com')
'o*reilly@test.com'
>>> e = Email(resolve_domain=True)
>>> e.resolve_domain
True
>>> e.to_python('doesnotexist@colorstudy.com')
'doesnotexist@colorstudy.com'
>>> e.to_python('test@nyu.edu')
'test@nyu.edu'
>>> # NOTE: If you do not have PyDNS installed this example won't work:
>>> e.to_python('test@thisdomaindoesnotexistithinkforsure.com')
Traceback (most recent call last):
 ...
Invalid: The domain of the email address does not exist (the portion after the @: thisdomaindoesnotexistithinkforsure.com)
>>> e.to_python(u'test@google.com')
u'test@google.com'
>>> e = Email(not_empty=False)
>>> e.to_python('')

Messages

		badDomain:

		The domain portion of the email address is invalid (the portion after the @: %(domain)s)

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		badUsername:

		The username portion of the email address is invalid (the portion before the @: %(username)s)

		domainDoesNotExist:

		The domain of the email address does not exist (the portion after the @: %(domain)s)

		empty:

		Please enter an email address

		noAt:

		An email address must contain a single @

		noneType:

		The input must be a string (not None)

		socketError:

		An error occured when trying to connect to the server: %(error)s

		
class formencode.validators.Empty(*args, **kw)

		Invalid unless the value is empty. Use cleverly, if at all.

Examples:

>>> Empty.to_python(0)
Traceback (most recent call last):
 ...
Invalid: You cannot enter a value here

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		noneType:

		The input must be a string (not None)

		notEmpty:

		You cannot enter a value here

		
class formencode.validators.FieldsMatch(*args, **kw)

		Tests that the given fields match, i.e., are identical. Useful
for password+confirmation fields. Pass the list of field names in
as field_names.

>>> f = FieldsMatch('pass', 'conf')
>>> sorted(f.to_python({'pass': 'xx', 'conf': 'xx'}).items())
[('conf', 'xx'), ('pass', 'xx')]
>>> f.to_python({'pass': 'xx', 'conf': 'yy'})
Traceback (most recent call last):
 ...
Invalid: conf: Fields do not match

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		invalid:

		Fields do not match (should be %(match)s)

		invalidNoMatch:

		Fields do not match

		noneType:

		The input must be a string (not None)

		notDict:

		Fields should be a dictionary

		
class formencode.validators.FieldStorageUploadConverter(*args, **kw)

		Handles cgi.FieldStorage instances that are file uploads.

This doesn’t do any conversion, but it can detect empty upload
fields (which appear like normal fields, but have no filename when
no upload was given).

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		noneType:

		The input must be a string (not None)

		
class formencode.validators.FileUploadKeeper(*args, **kw)

		Takes two inputs (a dictionary with keys static and
upload) and converts them into one value on the Python side (a
dictionary with filename and content keys). The upload
takes priority over the static value. The filename may be None if
it can’t be discovered.

Handles uploads of both text and cgi.FieldStorage upload
values.

This is basically for use when you have an upload field, and you
want to keep the upload around even if the rest of the form
submission fails. When converting back to the form submission,
there may be extra values 'original_filename' and
'original_content', which may want to use in your form to show
the user you still have their content around.

To use this, make sure you are using variabledecode, then use
something like:

<input type="file" name="myfield.upload">
<input type="hidden" name="myfield.static">

Then in your scheme:

class MyScheme(Scheme):
 myfield = FileUploadKeeper()

Note that big file uploads mean big hidden fields, and lots of
bytes passed back and forth in the case of an error.

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		noneType:

		The input must be a string (not None)

		
class formencode.validators.FormValidator(*args, **kw)

		A FormValidator is something that can be chained with a Schema.

Unlike normal chaining the FormValidator can validate forms that
aren’t entirely valid.

The important method is .validate(), of course. It gets passed a
dictionary of the (processed) values from the form. If you have
.validate_partial_form set to True, then it will get the incomplete
values as well – check with the “in” operator if the form was able
to process any particular field.

Anyway, .validate() should return a string or a dictionary. If a
string, it’s an error message that applies to the whole form. If
not, then it should be a dictionary of fieldName: errorMessage.
The special key “form” is the error message for the form as a whole
(i.e., a string is equivalent to {“form”: string}).

Returns None on no errors.

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		noneType:

		The input must be a string (not None)

		
class formencode.validators.IndexListConverter(*args, **kw)

		Converts a index (which may be a string like ‘2’) to the value in
the given list.

Examples:

>>> index = IndexListConverter(['zero', 'one', 'two'])
>>> index.to_python(0)
'zero'
>>> index.from_python('zero')
0
>>> index.to_python('1')
'one'
>>> index.to_python(5)
Traceback (most recent call last):
Invalid: Index out of range
>>> index(not_empty=True).to_python(None)
Traceback (most recent call last):
Invalid: Please enter a value
>>> index.from_python('five')
Traceback (most recent call last):
Invalid: Item 'five' was not found in the list

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		integer:

		Must be an integer index

		noneType:

		The input must be a string (not None)

		notFound:

		Item %(value)s was not found in the list

		outOfRange:

		Index out of range

		
class formencode.validators.Int(*args, **kw)

		Convert a value to an integer.

Example:

>>> Int.to_python('10')
10
>>> Int.to_python('ten')
Traceback (most recent call last):
 ...
Invalid: Please enter an integer value
>>> Int(min=5).to_python('6')
6
>>> Int(max=10).to_python('11')
Traceback (most recent call last):
 ...
Invalid: Please enter a number that is 10 or smaller

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		integer:

		Please enter an integer value

		noneType:

		The input must be a string (not None)

		tooHigh:

		Please enter a number that is %(max)s or smaller

		tooLow:

		Please enter a number that is %(min)s or greater

		
class formencode.validators.IPhoneNumberValidator

		

		
class formencode.validators.MACAddress(*args, **kw)

		Formencode validator to check whether a string is a correct hardware
(MAC) address.

Examples:

>>> mac = MACAddress()
>>> mac.to_python('aa:bb:cc:dd:ee:ff')
'aabbccddeeff'
>>> mac.to_python('aa:bb:cc:dd:ee:ff:e')
Traceback (most recent call last):
 ...
Invalid: A MAC address must contain 12 digits and A-F; the value you gave has 13 characters
>>> mac.to_python('aa:bb:cc:dd:ee:fx')
Traceback (most recent call last):
 ...
Invalid: MAC addresses may only contain 0-9 and A-F (and optionally :), not 'x'
>>> MACAddress(add_colons=True).to_python('aabbccddeeff')
'aa:bb:cc:dd:ee:ff'

Messages

		badCharacter:

		MAC addresses may only contain 0-9 and A-F (and optionally :), not %(char)r

		badLength:

		A MAC address must contain 12 digits and A-F; the value you gave has %(length)s characters

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		noneType:

		The input must be a string (not None)

		
class formencode.validators.MaxLength(*args, **kw)

		Invalid if the value is longer than maxLength. Uses len(),
so it can work for strings, lists, or anything with length.

Examples:

>>> max5 = MaxLength(5)
>>> max5.to_python('12345')
'12345'
>>> max5.from_python('12345')
'12345'
>>> max5.to_python('123456')
Traceback (most recent call last):
 ...
Invalid: Enter a value less than 5 characters long
>>> max5(accept_python=False).from_python('123456')
Traceback (most recent call last):
 ...
Invalid: Enter a value less than 5 characters long
>>> max5.to_python([1, 2, 3])
[1, 2, 3]
>>> max5.to_python([1, 2, 3, 4, 5, 6])
Traceback (most recent call last):
 ...
Invalid: Enter a value less than 5 characters long
>>> max5.to_python(5)
Traceback (most recent call last):
 ...
Invalid: Invalid value (value with length expected)

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		invalid:

		Invalid value (value with length expected)

		noneType:

		The input must be a string (not None)

		tooLong:

		Enter a value less than %(maxLength)i characters long

		
class formencode.validators.MinLength(*args, **kw)

		Invalid if the value is shorter than minlength. Uses len(), so
it can work for strings, lists, or anything with length. Note
that you must use not_empty=True if you don’t want to
accept empty values – empty values are not tested for length.

Examples:

>>> min5 = MinLength(5)
>>> min5.to_python('12345')
'12345'
>>> min5.from_python('12345')
'12345'
>>> min5.to_python('1234')
Traceback (most recent call last):
 ...
Invalid: Enter a value at least 5 characters long
>>> min5(accept_python=False).from_python('1234')
Traceback (most recent call last):
 ...
Invalid: Enter a value at least 5 characters long
>>> min5.to_python([1, 2, 3, 4, 5])
[1, 2, 3, 4, 5]
>>> min5.to_python([1, 2, 3])
Traceback (most recent call last):
 ...
Invalid: Enter a value at least 5 characters long
>>> min5.to_python(5)
Traceback (most recent call last):
 ...
Invalid: Invalid value (value with length expected)

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		invalid:

		Invalid value (value with length expected)

		noneType:

		The input must be a string (not None)

		tooShort:

		Enter a value at least %(minLength)i characters long

		
class formencode.validators.Number(*args, **kw)

		Convert a value to a float or integer.

Tries to convert it to an integer if no information is lost.

Example:

>>> Number.to_python('10')
10
>>> Number.to_python('10.5')
10.5
>>> Number.to_python('ten')
Traceback (most recent call last):
 ...
Invalid: Please enter a number
>>> Number(min=5).to_python('6.5')
6.5
>>> Number(max=10.5).to_python('11.5')
Traceback (most recent call last):
 ...
Invalid: Please enter a number that is 10.5 or smaller

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		noneType:

		The input must be a string (not None)

		number:

		Please enter a number

		tooHigh:

		Please enter a number that is %(max)s or smaller

		tooLow:

		Please enter a number that is %(min)s or greater

		
class formencode.validators.NotEmpty(*args, **kw)

		Invalid if value is empty (empty string, empty list, etc).

Generally for objects that Python considers false, except zero
which is not considered invalid.

Examples:

>>> ne = NotEmpty(messages=dict(empty='enter something'))
>>> ne.to_python('')
Traceback (most recent call last):
 ...
Invalid: enter something
>>> ne.to_python(0)
0

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		noneType:

		The input must be a string (not None)

		
class formencode.validators.OneOf(*args, **kw)

		Tests that the value is one of the members of a given list.

If testValueList=True, then if the input value is a list or
tuple, all the members of the sequence will be checked (i.e., the
input must be a subset of the allowed values).

Use hideList=True to keep the list of valid values out of the
error message in exceptions.

Examples:

>>> oneof = OneOf([1, 2, 3])
>>> oneof.to_python(1)
1
>>> oneof.to_python(4)
Traceback (most recent call last):
 ...
Invalid: Value must be one of: 1; 2; 3 (not 4)
>>> oneof(testValueList=True).to_python([2, 3, [1, 2, 3]])
[2, 3, [1, 2, 3]]
>>> oneof.to_python([2, 3, [1, 2, 3]])
Traceback (most recent call last):
 ...
Invalid: Value must be one of: 1; 2; 3 (not [2, 3, [1, 2, 3]])

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		invalid:

		Invalid value

		noneType:

		The input must be a string (not None)

		notIn:

		Value must be one of: %(items)s (not %(value)r)

		
class formencode.validators.PhoneNumber

		

		
class formencode.validators.PlainText(*args, **kw)

		Test that the field contains only letters, numbers, underscore,
and the hyphen. Subclasses Regex.

Examples:

>>> PlainText.to_python('_this9_')
'_this9_'
>>> PlainText.from_python(' this ')
' this '
>>> PlainText(accept_python=False).from_python(' this ')
Traceback (most recent call last):
 ...
Invalid: Enter only letters, numbers, or _ (underscore)
>>> PlainText(strip=True).to_python(' this ')
'this'
>>> PlainText(strip=True).from_python(' this ')
'this'

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		invalid:

		Enter only letters, numbers, or _ (underscore)

		noneType:

		The input must be a string (not None)

		
class formencode.validators.PostalCode

		

		
class formencode.validators.Regex(*args, **kw)

		Invalid if the value doesn’t match the regular expression regex.

The regular expression can be a compiled re object, or a string
which will be compiled for you.

Use strip=True if you want to strip the value before validation,
and as a form of conversion (often useful).

Examples:

>>> cap = Regex(r'^[A-Z]+$')
>>> cap.to_python('ABC')
'ABC'

Note that .from_python() calls (in general) do not validate
the input:

>>> cap.from_python('abc')
'abc'
>>> cap(accept_python=False).from_python('abc')
Traceback (most recent call last):
 ...
Invalid: The input is not valid
>>> cap.to_python(1)
Traceback (most recent call last):
 ...
Invalid: The input must be a string (not a <type 'int'>: 1)
>>> Regex(r'^[A-Z]+$', strip=True).to_python(' ABC ')
'ABC'
>>> Regex(r'this', regexOps=('I',)).to_python('THIS')
'THIS'

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		invalid:

		The input is not valid

		noneType:

		The input must be a string (not None)

		
class formencode.validators.RequireIfMissing(*args, **kw)

		Require one field based on another field being present or missing.

This validator is applied to a form, not an individual field (usually
using a Schema’s pre_validators or chained_validators) and is
available under both names RequireIfMissing and RequireIfPresent.

If you provide a missing value (a string key name) then
if that field is missing the field must be entered.
This gives you an either/or situation.

If you provide a present value (another string key name) then
if that field is present, the required field must also be present.

>>> from formencode import validators
>>> v = validators.RequireIfPresent('phone_type', present='phone')
>>> v.to_python(dict(phone_type='', phone='510 420 4577'))
Traceback (most recent call last):
 ...
Invalid: You must give a value for phone_type
>>> v.to_python(dict(phone=''))
{'phone': ''}

Note that if you have a validator on the optionally-required
field, you should probably use if_missing=None. This way you
won’t get an error from the Schema about a missing value. For example:

class PhoneInput(Schema):
 phone = PhoneNumber()
 phone_type = String(if_missing=None)
 chained_validators = [RequireIfPresent('phone_type', present='phone')]

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		noneType:

		The input must be a string (not None)

		
class formencode.validators.Set(*args, **kw)

		This is for when you think you may return multiple values for a
certain field.

This way the result will always be a list, even if there’s only
one result. It’s equivalent to ForEach(convert_to_list=True).

If you give use_set=True, then it will return an actual
set object.

>>> Set.to_python(None)
[]
>>> Set.to_python('this')
['this']
>>> Set.to_python(('this', 'that'))
['this', 'that']
>>> s = Set(use_set=True)
>>> s.to_python(None)
set([])
>>> s.to_python('this')
set(['this'])
>>> s.to_python(('this',))
set(['this'])

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		noneType:

		The input must be a string (not None)

		
class formencode.validators.SignedString(*args, **kw)

		Encodes a string into a signed string, and base64 encodes both the
signature string and a random nonce.

It is up to you to provide a secret, and to keep the secret handy
and consistent.

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		badsig:

		Signature is not correct

		empty:

		Please enter a value

		malformed:

		Value does not contain a signature

		noneType:

		The input must be a string (not None)

		
class formencode.validators.StateProvince

		

		
class formencode.validators.String(*args, **kw)

		Converts things to string, but treats empty things as the empty string.

Also takes a max and min argument, and the string length must fall
in that range.

Also you may give an encoding argument, which will encode any unicode
that is found. Lists and tuples are joined with list_joiner
(default ', ') in from_python.

>>> String(min=2).to_python('a')
Traceback (most recent call last):
 ...
Invalid: Enter a value 2 characters long or more
>>> String(max=10).to_python('xxxxxxxxxxx')
Traceback (most recent call last):
 ...
Invalid: Enter a value not more than 10 characters long
>>> String().from_python(None)
''
>>> String().from_python([])
''
>>> String().to_python(None)
''
>>> String(min=3).to_python(None)
Traceback (most recent call last):
 ...
Invalid: Please enter a value
>>> String(min=1).to_python('')
Traceback (most recent call last):
 ...
Invalid: Please enter a value

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		noneType:

		The input must be a string (not None)

		tooLong:

		Enter a value not more than %(max)i characters long

		tooShort:

		Enter a value %(min)i characters long or more

		
class formencode.validators.StringBool(*args, **kw)

		Converts a string to a boolean.

Values like ‘true’ and ‘false’ are considered True and False,
respectively; anything in true_values is true, anything in
false_values is false, case-insensitive). The first item of
those lists is considered the preferred form.

>>> s = StringBool()
>>> s.to_python('yes'), s.to_python('no')
(True, False)
>>> s.to_python(1), s.to_python('N')
(True, False)
>>> s.to_python('ye')
Traceback (most recent call last):
 ...
Invalid: Value should be 'true' or 'false'

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		noneType:

		The input must be a string (not None)

		string:

		Value should be %(true)r or %(false)r

		
class formencode.validators.StripField(*args, **kw)

		Take a field from a dictionary, removing the key from the dictionary.

name is the key. The field value and a new copy of the dictionary
with that field removed are returned.

>>> StripField('test').to_python({'a': 1, 'test': 2})
(2, {'a': 1})
>>> StripField('test').to_python({})
Traceback (most recent call last):
 ...
Invalid: The name 'test' is missing

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		missing:

		The name %(name)s is missing

		noneType:

		The input must be a string (not None)

		
class formencode.validators.TimeConverter(*args, **kw)

		Converts times in the format HH:MM:SSampm to (h, m, s).
Seconds are optional.

For ampm, set use_ampm = True. For seconds, use_seconds = True.
Use ‘optional’ for either of these to make them optional.

Examples:

>>> tim = TimeConverter()
>>> tim.to_python('8:30')
(8, 30)
>>> tim.to_python('20:30')
(20, 30)
>>> tim.to_python('30:00')
Traceback (most recent call last):
 ...
Invalid: You must enter an hour in the range 0-23
>>> tim.to_python('13:00pm')
Traceback (most recent call last):
 ...
Invalid: You must enter an hour in the range 1-12
>>> tim.to_python('12:-1')
Traceback (most recent call last):
 ...
Invalid: You must enter a minute in the range 0-59
>>> tim.to_python('12:02pm')
(12, 2)
>>> tim.to_python('12:02am')
(0, 2)
>>> tim.to_python('1:00PM')
(13, 0)
>>> tim.from_python((13, 0))
'13:00:00'
>>> tim2 = tim(use_ampm=True, use_seconds=False)
>>> tim2.from_python((13, 0))
'1:00pm'
>>> tim2.from_python((0, 0))
'12:00am'
>>> tim2.from_python((12, 0))
'12:00pm'

Examples with datetime.time:

>>> v = TimeConverter(use_datetime=True)
>>> a = v.to_python('18:00')
>>> a
datetime.time(18, 0)
>>> b = v.to_python('30:00')
Traceback (most recent call last):
 ...
Invalid: You must enter an hour in the range 0-23
>>> v2 = TimeConverter(prefer_ampm=True, use_datetime=True)
>>> v2.from_python(a)
'6:00:00pm'
>>> v3 = TimeConverter(prefer_ampm=True,
... use_seconds=False, use_datetime=True)
>>> a = v3.to_python('18:00')
>>> a
datetime.time(18, 0)
>>> v3.from_python(a)
'6:00pm'
>>> a = v3.to_python('18:00:00')
Traceback (most recent call last):
 ...
Invalid: You may not enter seconds

Messages

		badHour:

		You must enter an hour in the range %(range)s

		badMinute:

		You must enter a minute in the range 0-59

		badNumber:

		The %(part)s value you gave is not a number: %(number)r

		badSecond:

		You must enter a second in the range 0-59

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		minutesRequired:

		You must enter minutes (after a :)

		noAMPM:

		You must indicate AM or PM

		noSeconds:

		You may not enter seconds

		noneType:

		The input must be a string (not None)

		secondsRequired:

		You must enter seconds

		tooManyColon:

		There are too many :’s

		
class formencode.validators.UnicodeString(**kw)

		Converts things to unicode string, this is a specialization of
the String class.

In addition to the String arguments, an encoding argument is also
accepted. By default the encoding will be utf-8. You can overwrite
this using the encoding parameter. You can also set inputEncoding
and outputEncoding differently. An inputEncoding of None means
“do not decode”, an outputEncoding of None means “do not encode”.

All converted strings are returned as Unicode strings.

>>> UnicodeString().to_python(None)
u''
>>> UnicodeString().to_python([])
u''
>>> UnicodeString(encoding='utf-7').to_python('Ni Ni Ni')
u'Ni Ni Ni'

Messages

		badEncoding:

		Invalid data or incorrect encoding

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		noneType:

		The input must be a string (not None)

		tooLong:

		Enter a value not more than %(max)i characters long

		tooShort:

		Enter a value %(min)i characters long or more

		
class formencode.validators.URL(*args, **kw)

		Validate a URL, either http://... or https://. If check_exists
is true, then we’ll actually make a request for the page.

If add_http is true, then if no scheme is present we’ll add
http://

>>> u = URL(add_http=True)
>>> u.to_python('foo.com')
'http://foo.com'
>>> u.to_python('http://hahaha.ha/bar.html')
'http://hahaha.ha/bar.html'
>>> u.to_python('http://xn--m7r7ml7t24h.com')
'http://xn--m7r7ml7t24h.com'
>>> u.to_python('http://xn--c1aay4a.xn--p1ai')
'http://xn--c1aay4a.xn--p1ai'
>>> u.to_python('http://foo.com/test?bar=baz&fleem=morx')
'http://foo.com/test?bar=baz&fleem=morx'
>>> u.to_python('http://foo.com/login?came_from=http%3A%2F%2Ffoo.com%2Ftest')
'http://foo.com/login?came_from=http%3A%2F%2Ffoo.com%2Ftest'
>>> u.to_python('http://foo.com:8000/test.html')
'http://foo.com:8000/test.html'
>>> u.to_python('http://foo.com/something\nelse')
Traceback (most recent call last):
 ...
Invalid: That is not a valid URL
>>> u.to_python('https://test.com')
'https://test.com'
>>> u.to_python('http://test')
Traceback (most recent call last):
 ...
Invalid: You must provide a full domain name (like test.com)
>>> u.to_python('http://test..com')
Traceback (most recent call last):
 ...
Invalid: That is not a valid URL
>>> u = URL(add_http=False, check_exists=True)
>>> u.to_python('http://google.com')
'http://google.com'
>>> u.to_python('google.com')
Traceback (most recent call last):
 ...
Invalid: You must start your URL with http://, https://, etc
>>> u.to_python('http://www.formencode.org/does/not/exist/page.html')
Traceback (most recent call last):
 ...
Invalid: The server responded that the page could not be found
>>> u.to_python('http://this.domain.does.not.exist.example.org/test.html')
...
Traceback (most recent call last):
 ...
Invalid: An error occured when trying to connect to the server: ...

If you want to allow addresses without a TLD (e.g., localhost) you can do:

>>> URL(require_tld=False).to_python('http://localhost')
'http://localhost'

By default, internationalized domain names (IDNA) in Unicode will be
accepted and encoded to ASCII using Punycode (as described in RFC 3490).
You may set allow_idna to False to change this behavior:

>>> URL(allow_idna=True).to_python(
... u'http://\u0433\u0443\u0433\u043b.\u0440\u0444')
'http://xn--c1aay4a.xn--p1ai'
>>> URL(allow_idna=True, add_http=True).to_python(
... u'\u0433\u0443\u0433\u043b.\u0440\u0444')
'http://xn--c1aay4a.xn--p1ai'
>>> URL(allow_idna=False).to_python(
... u'http://\u0433\u0443\u0433\u043b.\u0440\u0444')
Traceback (most recent call last):
...
Invalid: That is not a valid URL

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		badURL:

		That is not a valid URL

		empty:

		Please enter a value

		httpError:

		An error occurred when trying to access the URL: %(error)s

		noScheme:

		You must start your URL with http://, https://, etc

		noTLD:

		You must provide a full domain name (like %(domain)s.com)

		noneType:

		The input must be a string (not None)

		notFound:

		The server responded that the page could not be found

		socketError:

		An error occured when trying to connect to the server: %(error)s

		status:

		The server responded with a bad status code (%(status)s)

Wrapper Validators

		
class formencode.validators.ConfirmType(*args, **kw)

		Confirms that the input/output is of the proper type.

Uses the parameters:

		subclass:

		The class or a tuple of classes; the item must be an instance
of the class or a subclass.

		type:

		A type or tuple of types (or classes); the item must be of
the exact class or type. Subclasses are not allowed.

Examples:

>>> cint = ConfirmType(subclass=int)
>>> cint.to_python(True)
True
>>> cint.to_python('1')
Traceback (most recent call last):
 ...
Invalid: '1' is not a subclass of <type 'int'>
>>> cintfloat = ConfirmType(subclass=(float, int))
>>> cintfloat.to_python(1.0), cintfloat.from_python(1.0)
(1.0, 1.0)
>>> cintfloat.to_python(1), cintfloat.from_python(1)
(1, 1)
>>> cintfloat.to_python(None)
Traceback (most recent call last):
 ...
Invalid: None is not a subclass of one of the types <type 'float'>, <type 'int'>
>>> cint2 = ConfirmType(type=int)
>>> cint2(accept_python=False).from_python(True)
Traceback (most recent call last):
 ...
Invalid: True must be of the type <type 'int'>

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		inSubclass:

		%(object)r is not a subclass of one of the types %(subclassList)s

		inType:

		%(object)r must be one of the types %(typeList)s

		noneType:

		The input must be a string (not None)

		subclass:

		%(object)r is not a subclass of %(subclass)s

		type:

		%(object)r must be of the type %(type)s

		
class formencode.validators.Wrapper(*args, **kw)

		Used to convert functions to validator/converters.

You can give a simple function for to_python, from_python,
validate_python or validate_other. If that function raises an
exception, the value is considered invalid. Whatever value the
function returns is considered the converted value.

Unlike validators, the state argument is not used. Functions
like int can be used here, that take a single argument.

Note that as Wrapper will generate a FancyValidator, empty
values (those who pass FancyValidator.is_empty) will return None.
To override this behavior you can use Wrapper(empty_value=callable).
For example passing Wrapper(empty_value=lambda val: val) will return
the value itself when is considered empty.

Examples:

>>> def downcase(v):
... return v.lower()
>>> wrap = Wrapper(to_python=downcase)
>>> wrap.to_python('This')
'this'
>>> wrap.from_python('This')
'This'
>>> wrap.to_python('') is None
True
>>> wrap2 = Wrapper(from_python=downcase, empty_value=lambda val: val)
>>> wrap2.from_python('This')
'this'
>>> wrap2.to_python('')
''
>>> wrap2.from_python(1)
Traceback (most recent call last):
 ...
Invalid: 'int' object has no attribute 'lower'
>>> wrap3 = Wrapper(validate_python=int)
>>> wrap3.to_python('1')
'1'
>>> wrap3.to_python('a')
Traceback (most recent call last):
 ...
Invalid: invalid literal for int()...

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		noneType:

		The input must be a string (not None)

		
class formencode.validators.Constant(*args, **kw)

		This converter converts everything to the same thing.

I.e., you pass in the constant value when initializing, then all
values get converted to that constant value.

This is only really useful for funny situations, like:

Any evaluates sub validators in reverse order for to_python
fromEmailValidator = Any(
 Constant('unknown@localhost'),
 Email())

In this case, the if the email is not valid
'unknown@localhost' will be used instead. Of course, you
could use if_invalid instead.

Examples:

>>> Constant('X').to_python('y')
'X'

Messages

		badType:

		The input must be a string (not a %(type)s: %(value)r)

		empty:

		Please enter a value

		noneType:

		The input must be a string (not None)

Validator Modifiers

formencode.compound

Validators for applying validations in sequence.

		
class formencode.compound.Any(*args, **kw)

		This class is like an ‘or’ operator for validators. The first
validator/converter in the order of evaluation that validates the value
will be used.

The order of evaluation differs depending on if you are validating to
python or from python as follows:

The validators are evaluated right to left when validating to python.

The validators are evaluated left to right when validating from python.

		
class formencode.compound.All(*args, **kw)

		This class is like an ‘and’ operator for validators. All
validators must work, and the results are passed in turn through
all validators for conversion in the order of evaluation. All
is the same as Pipe but operates in the reverse order.

The order of evaluation differs depending on if you are validating to
python or from python as follows:

The validators are evaluated right to left when validating to python.

The validators are evaluated left to right when validating from python.

Pipe is more intuitive when predominatenly validating to python.

Examples:

>>> from formencode.validators import DictConverter
>>> av = All(validators=[DictConverter({2: 1}), DictConverter({3: 2}), DictConverter({4: 3})])
>>> av.to_python(4)
1
>>> av.from_python(1)
4

formencode.foreach

Validator for repeating items.

		
class formencode.foreach.ForEach(*args, **kw)

		Use this to apply a validator/converter to each item in a list.

For instance:

ForEach(AsInt(), InList([1, 2, 3]))

Will take a list of values and try to convert each of them to
an integer, and then check if each integer is 1, 2, or 3. Using
multiple arguments is equivalent to:

ForEach(All(AsInt(), InList([1, 2, 3])))

Use convert_to_list=True if you want to force the input to be a
list. This will turn non-lists into one-element lists, and None
into the empty list. This tries to detect sequences by iterating
over them (except strings, which aren’t considered sequences).

ForEach will try to convert the entire list, even if errors are
encountered. If errors are encountered, they will be collected
and a single Invalid exception will be raised at the end (with
error_list set).

If the incoming value is a set, then we return a set.

HTML Parsing and Form Filling

formencode.htmlfill

Parser for HTML forms, that fills in defaults and errors. See render.

		
formencode.htmlfill.render(form, defaults=None, errors=None, use_all_keys=False, error_formatters=None, add_attributes=None, auto_insert_errors=True, auto_error_formatter=None, text_as_default=False, checkbox_checked_if_present=False, listener=None, encoding=None, error_class='error', prefix_error=True, force_defaults=True)

		Render the form (which should be a string) given the defaults
and errors. Defaults are the values that go in the input fields
(overwriting any values that are there) and errors are displayed
inline in the form (and also effect input classes). Returns the
rendered string.

If auto_insert_errors is true (the default) then any errors
for which <form:error> tags can’t be found will be put just
above the associated input field, or at the top of the form if no
field can be found.

If use_all_keys is true, if there are any extra fields from
defaults or errors that couldn’t be used in the form it will be an
error.

error_formatters is a dictionary of formatter names to
one-argument functions that format an error into HTML. Some
default formatters are provided if you don’t provide this.

error_class is the class added to input fields when there is
an error for that field.

add_attributes is a dictionary of field names to a dictionary
of attribute name/values. If the name starts with + then the
value will be appended to any existing attribute (e.g.,
{'+class': ' important'}).

auto_error_formatter is used to create the HTML that goes
above the fields. By default it wraps the error message in a span
and adds a
.

If text_as_default is true (default false) then <input
type="unknown"> will be treated as text inputs.

If checkbox_checked_if_present is true (default false) then
<input type="checkbox"> will be set to checked if any
corresponding key is found in the defaults dictionary, even
a value that evaluates to False (like an empty string). This
can be used to support pre-filling of checkboxes that do not have
a value attribute, since browsers typically will only send
the name of the checkbox in the form submission if the checkbox
is checked, so simply the presence of the key would mean the box
should be checked.

listener can be an object that watches fields pass; the only
one currently is in htmlfill_schemabuilder.SchemaBuilder

encoding specifies an encoding to assume when mixing str and
unicode text in the template.

prefix_error specifies if the HTML created by auto_error_formatter is
put before the input control (default) or after the control.

force_defaults specifies if a field default is not given in
the defaults dictionary then the control associated with the
field should be set as an unsuccessful control. So checkboxes will
be cleared, radio and select controls will have no value selected,
and textareas will be emptied. This defaults to True, which is
appropriate the defaults are the result of a form submission.

		
formencode.htmlfill.default_formatter(error)

		Formatter that escapes the error, wraps the error in a span with
class error-message, and adds a

		
formencode.htmlfill.none_formatter(error)

		Formatter that does nothing, no escaping HTML, nothin’

		
formencode.htmlfill.escape_formatter(error)

		Formatter that escapes HTML, no more.

		
formencode.htmlfill.escapenl_formatter(error)

		Formatter that escapes HTML, and translates newlines to

		
class formencode.htmlfill.FillingParser(defaults, errors=None, use_all_keys=False, error_formatters=None, error_class='error', add_attributes=None, listener=None, auto_error_formatter=None, text_as_default=False, checkbox_checked_if_present=False, encoding=None, prefix_error=True, force_defaults=True)

		Fills HTML with default values, as in a form.

Examples:

>>> defaults = dict(name='Bob Jones',
... occupation='Crazy Cultist',
... address='14 W. Canal\nNew Guinea',
... living='no',
... nice_guy=0)
>>> parser = FillingParser(defaults)
>>> parser.feed('''<input type="text" name="name" value="fill">
... <select name="occupation"> <option value="">Default</option>
... <option value="Crazy Cultist">Crazy cultist</option> </select>
... <textarea cols="20" style="width: 100%" name="address">
... An address</textarea>
... <input type="radio" name="living" value="yes">
... <input type="radio" name="living" value="no">
... <input type="checkbox" name="nice_guy" checked="checked">''')
>>> parser.close()
>>> print parser.text()
<input type="text" name="name" value="Bob Jones">
<select name="occupation">
<option value="">Default</option>
<option value="Crazy Cultist" selected="selected">Crazy cultist</option>
</select>
<textarea cols="20" style="width: 100%" name="address">14 W. Canal
New Guinea</textarea>
<input type="radio" name="living" value="yes">
<input type="radio" name="living" value="no" checked="checked">
<input type="checkbox" name="nice_guy">

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

deprecated/ToscaWidgets/Future.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		ToscaWidgets »

Future Plans

ToscaWidgets has been around for a few years now, but we are still
not completely satisfied with all it does. ToscaWidgets 0.9.x branch
is coming to a close, and tw2 is now under development.

		Some interesting design changes that tw2 brings to the table are:

		
		Use request local storage (2x speedup!)

		Widget-based controllers (full widget functionalality encapsulation)

		Some more goals that we hope to achieve with tw2 are:

		
		Create a functioning Widget Browser that is tested, and easy to
add new widget libraries to. This is possible with widget-based
controller methods.

		More interesting built-in widgets, e.g. growable forms, choice
fields that show and hide options depending on selection. Some
of this work has already been done with tw2.dynforms.

		More hooks for doing custom validation, e.g. fields that become
compulsory depending on the value of another field.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/edit_form.png
00 O ST D (O

Welcome to TurboGears 2
‘The Python web metaframework

Edit Movie

Geme

_images/singleselectcombo-small.png
Nebraska.
Nevada.

New Hampshire
New Jersey
New Mexico
New York

North Carolina
North Daketa.

main/Deployment/Code.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		Deployment »

Deploying Your Project Code

There are a number of ways you can deploy your application’s code in
production. While there is an “officially” standard way to deploy
(via eggs), that pattern is not universally accepted.

Your application’s code is likely to be the most frequently changed
component of your application (compared to the libraries that make up
TurboGears), so you will likely re-deploy your code many times,
possibly many times per day.

		Deploy with an Egg – which can be installed
via easy_install or PIP into your Application-Specific VirtualEnv
with the Production Config being the only file in the
deploy_modwsgi_deploy directory (/usr/local/turbogears/myapp/ by
default)

		Deploy with a Source Code Checkout (often of a branch or a tag)
directly into the deployment directory by the www-data user. Note that
this requires some changes to your .ini file!

What’s Next?

		Standard Deployment Pattern provides an overview of the standard deployment process

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Extensions/Command/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Extensions and Tools »

TGExt.Command

TurboGears uses the Paste commands system to create command-line entry
points that, for example, set up your database or start your server.
When you get to larger projects, however, you will often have other
things you need to do “in the context of your application” from the
command line, such as periodic imports of data, or cron’d database
management tasks.

Paste’s command system is well documented, but it can take quite a bit
of poking around to find out how to get SQLAlchemy, and TurboGears
configured so that code that looks in tg.config gets the right values,
and SQLAlchemy has access to your models.

This extension (tgext.command) is an attempt to make it
easier to create new TG command-line commands.

$ easy_install tgext.command

To use the extension, you will create a BaseCommand class like this
that will be shared by all of your command-line scripts.

from tgext.command import tgcommand
class BaseCommand(tgcommand.TGCommand):
 def import_model(self):
 from example import model
 return model

This command-class would then serve as the base command for each of
your “real” commands. For example, a command that iterates through
all users showing their user_name property:

class Hello(BaseCommand):
 def db_command(self, engine):
 from example.model import User,Group, DBSession
 for user in DBSession.query(User):
 print 'User',user.user_name

As with regular Paste commands you have to register your TGCommands
in your application’s setup.py (in the setup() call), like so:

entry_points="""
[paste.paster_command]
hellocommand = example.commands.hello:Hello
"""

You will need to re-run setup.py develop to get the command to be
available). Note that a simple approach which does not support
PID-file exclusion, paster registration/command-line-parsing and
the like is documented in Command Line Scripts.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

deprecated/movie_tutorial.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Getting Started »

A Movie Database (Models, Views, Controllers)

This tutorial introduces:

		how to define data-models in TurboGears using SQLAlchemy

		how to interact with your data-models from Python code (controllers)

		how to modify HTML (Genshi) template views

		how to use automatically generated forms to allow users to update your models

We will assume you are familiar with the following:

		The Model-View-Controller [http://en.wikipedia.org/wiki/Model-view-controller] abstraction

		Basic operations of Relational Databases

		Basic HTML, CSS and Python

This tutorial goes somewhat faster than The TurboGears 2 Wiki Tutorial with the assumption that
you’ve done web-development before in some framework and just want to know
how TurboGears works in particular.

You will want to follow along with this tutorial within a TurboGears virtualenv.
On a Linux machine with virtualenv already installed, this is accomplished with:

virtualenv --no-site-packages movies
cd movies
source bin/activate
easy_install -i http://tg.gy/current tg.devtools

Complete instructions for setting up TurboGears, VirtualEnv and the like
are available on the Download and Install page.

Getting Started

We will use the TurboGears “quickstart” command, which will create a generic
TurboGears project which we can proceed to edit:

paster quickstart movies

We will want to accept most of the defaults. We will want to have authentication
in this project, so answer yes when asked about that.

SQLAlchemy Models

SQLAlchemy is the default storage layer used by TurboGears 2.0 and above.
SQLAlchemy is a powerful database abstraction layer that lets you begin your
project using a simple “declarative” form that looks much like other ORMs,
but allows you to access a more general and powerful abstraction of “Mapper”
should you need that functionality in the future.

If you browse into the new “movies” directory, you will find a sub-directory
also named “movies”. This directory is your importable package, and within
it you will find a number of sub-packages, including one named “model”. We
are going to create our application’s data-model here.

We’ll create a new file “movie.py” in our “model” directory with this content:

from sqlalchemy import *
from sqlalchemy.orm import mapper, relation, backref
from sqlalchemy.types import Integer, Unicode, Boolean

from movies.model import DeclarativeBase, metadata, DBSession

__all__ = ['Movie']

class Movie(DeclarativeBase):

 __tablename__ = 'movie'

 id = Column(Integer, primary_key=True)
 title = Column(Unicode, nullable=False)
 description = Column(Unicode, nullable=True)
 year = Column(Integer, nullable=True)
 genre_id = Column(Integer,ForeignKey('genre.id'), nullable=True)
 genre = relation('Genre',foreign_keys=genre_id)
 reviewed = Column(Boolean, nullable=False, default=False)
 def __repr__(self):
 return (u"<Movie('%s','%s', '%s')>" % (
 self.title, self.year, self.description
)).encode('utf-8')
class Genre(DeclarativeBase):
 __tablename__ = 'genre'
 id = Column(Integer,primary_key=True)
 title = Column(Unicode,nullable=False,unique=True)

There’s a lot going on here, so let’s break it down a bit. The first few
imports are giving us access to functionality from the SQLAlchemy package.
The sqlalchemy.orm import is letting us access the “declarative” ORM
mechanisms in SQLAlchemy, while the other two imports are from the generic
interfaces.

The line:

from movies.model import DeclarativeBase, metadata, DBSession

is more interesting. We are actually importing fixtures here from the
__init__.py module in the same directory as the file we are creating.
These objects are effectively “globals” which all of our application
code will use to access the database connections, structures etceteras.

One thing to note for your own code: you should never name your
model modules the same name as your top-level modules (“movies” in our
case), as the import here would fail as it got confused as to from where to
import the fixtures.

The DeclarativeBase class is an ORM mechanism from SQLAlchemy which
allows for declaring tables and their ORM mappers via a simple class
definition. Lower-level and more advanced SQLAlchemy usage also allows
for separately defined tables and mappers.

Now we’ll make “Movie” available directly in the movies.model namespace by
importing it in the model/__init__.py module. We do this at the bottom of
the module so that the DBSession, DeclarativeBase and the similar instances
are already available when we do the import:

from movies.model.movie import *

And that’s it. We can now setup our app and then run the following paster
command (from the directory where development.ini is, the level below
our virtualenv directory):

python setup.py develop
paster setup-app development.ini

which by default would create an SQLite file in the local directory which
would have a “model” table.

Types

SQLAlchemy provides a number of built-in types which it automatically maps to
underlying database types. If you want the latest and greatest listing just
type:

The main types are:

		type
		value

		types.Binary
		binary

		types.Boolean
		boolean

		types.Integer
		integer

		types.Numeric
		number

		types.String
		string

		types.Unicode
		unicode

		types.Date
		date

		types.Time
		time

		types.DateTime
		datetime

There are also properties that apply to all column objects, which you
might want to set up front.

Properties

		property
		value

		primary_key
		True/False

		nullable
		True/False

		unique
		True/False

		index
		True/False

Pretty much these do exactly what you would expect them to do, set a field to
be a primary key or set it to accept null values, unique, indexed, etceteras.
By default fields are none of the above.

Working with the Model

We can interact with our model directly from the Python interpreter
by starting up a paster shell:

paster shell development.ini

where we can now import our model:

>>> from movies.model import *
>>> import transaction
>>> drac = Movie(title = 'Dracula', year=1931, description = 'Vampire Movie')
>>> print drac
>>> DBSession.add(drac)
>>> transaction.commit()

when running inside TurboGears request handlers, the call to
transaction.commit is normally handled by middleware which commits
if a method returns “normally” (including redirects) and rolls
back if the method raises an uncaught exception.

Aside: If you are an old SQLAlchemy hand, you may be wondering what
“transaction.commit()” is, as in SQLAlchemy you would normally use
DBSession.commit() to commit your current transaction. TurboGears 2.2.2
uses a middleware component repoze.tm which allows for multi-database
commits. A side-effect of this usage is that use of DBSession.commit()
is no longer possible.

Browse/Edit with Admin GUI

Your quickstart project will have installed an optional administrative
GUI (named Catwalk). This interface can be enhanced with the dojo
javascript library to give it more useful controls:

easy_install tw.dojo

You can start TurboGears’ development web server and browse to the
admin page here:

http://localhost:8080/admin

You can customize the administrative GUI considerably as discussed
in TurboGears Administration System.

Working with the Model in a Controller

With our administrative GUI, we could create some Movie and Genre records,
set up some Users to manage permissions and the like, but none of that
would ever be visible to the user. We’re going to define a simple view
on the home-page of our site that shows the set of Movies we’ve defined
in a simple HTML table.

The site’s “index” page is generated by the “exposed” index method on
the “root” controller. This is defined in the file:

movies/movies/controllers/root.py

in our quick-started application. We’re going to alter this index method
to load a collection of our SQLAlchemy-generated Movie records and provide
them to be rendered by the index template.

To make the various parts of the model available, we’ll add the following
to the imports of the root.py module:

from movies.model import *

which gives us access to DBSession, Movie and Genre. We then alter our
index method to look like this:

@expose('movies.templates.index')
def index(self):
 """Handle the front-page."""
 movies = DBSession.query(Movie).order_by(Movie.title)
 return dict(
 page='index',
 movies = movies,
)

SQLAlchemy query operations are an involved subject (see the
SQLAlchemy Object Relational Tutorial [http://www.sqlalchemy.org/docs/05/ormtutorial.html] for an in-depth exploration of it.
Here we are querying all Movie instances and sorting them by their title
field.

We could actually run our application now, and other than a tiny slowdown
of the front-page load, we would not be able to see any change in the
application. The controller has provided information, but we need to alter
the view to make that information visible.

Altering a View

To make our collection of Movies visible, we are going to change the index
template for our application. The expose decorator on the index method
gives the dotted-format module name of the (Genshi) template which is going
to be used to render the page. Here it is movies.templates.index, so we
will open the file movies/movies/templates/index.html to edit it.

We are going to replace most of this file, so here we show the entire file,
rather than just the edits we would make to it:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:py="http://genshi.edgewall.org/"
 xmlns:xi="http://www.w3.org/2001/XInclude">

 <xi:include href="master.html" />

<head>
 <meta content="text/html; charset=UTF-8" http-equiv="content-type" py:replace="''"/>
 <title>Movie-base Tutorial</title>
</head>

<body>
 <div id="movie-index">
 <h2>Movie-base Tutorial</h2>
 <table class="movie-listing">
 <thead>
 <tr><th>Title</th><th>Year</th><th>Genre</th><th>Description</th></tr>
 </thead>
 <tbody>
 <tr py:for="movie in movies">
 <th class="movie-title">${movie.title}</th>
 <td class="movie-year">${movie.year}</td>
 <td class="genre-title">${movie.genre.title}</td>
 <td class="movie-description">${movie.description}</td>
 </tr>
 </tbody>
 </table>
 </div>
 <div class="clearingdiv" />
</body>
</html>

Genshi is an attribute language system which requires rigorous XML correctness.
If you leave off a closing-tag or forget to put quotes around an attribute value
you will get Genshi templating errors. Luckily Genshi tends to be relatively good
at pointing out where the error is, though occasionally you’ll have to think a bit
to figure out which particular tag isn’t closed, for instance.

TurboGears actually supports a number of templating languages, including Genshi, Jinja and Mako.
The differences between them tend to be subtle enough that new users don’t
generally need to worry about choosing an alternate templating system.

Aside: Adding some Style

You may have noticed that our view/template set a lot of “class” and “id”
values. This is to make it easy to select the various components from within
CSS stylesheets. Your quick-started project already includes a CSS stylesheet
in the master.html template. The template included is in:

movies/movies/public/css/style.css

we can open this file and add the following CSS directives to have our
table of movies be a little easier to read:

#movie-index .movie-listing {
 width: 100%;
 background-color: lightgray;
}
#movie-index .movie-listing tr {
 background-color: white;
}

CSS takes a significant amount of work to master, particularly with regard to
the intricacies of legacy browser support. We’ll assume you will learn CSS
yourself and leave it as showing you where to put the results of your learning.

Automatic Forms for User Interaction (Sprox)

As you might have guessed by the Admin UI, TurboGears is able to introspect
your database model in order to provide common CRUD (Create, Update, Destroy)
forms. We’ll use this capability, which is provided by the Sprox [http://www.sprox.org] library
to create a simple form our users can use to add new movies to our database:

from sprox.formbase import AddRecordForm
from tg import tmpl_context
class AddMovie(AddRecordForm):
 __model__ = Movie
add_movie_form = AddMovie(DBSession)

we can then pass this form to our template in the index method of
our root controller:

@expose('movies.templates.index')
def index(self, **named):
 """Handle the front-page."""
 movies = DBSession.query(Movie).order_by(Movie.title)
 tmpl_context.add_movie_form = add_movie_form
 return dict(
 page='index',
 movies = movies,
)

Why are we using tmpl_context? Why don’t we just pass our
widget into the template as a parameter? The reason is is that
TurboGears controllers often do double duty as both web-page
renderers and JSON handlers. By putting “view-specific” code
into the tmpl_context and “model-data” into the result dictionary,
we can more readily support the JSON queries.

Now we call our widget from within our index template:

<h2>New Movie</h2>
${tmpl_context.add_movie_form(action='add_movie') }

we pass an action parameter to the form to tell it what controller method
(url) it should use to process the results of submitting the form. We’ll create
the controller on our root controller:

from tg import validate
...

 @expose()
 @validate(
 form=add_movie_form,
 error_handler=index,
)
 def add_movie(self, title, description, year, genre, **named):
 """Create a new movie record"""
 new = Movie(
 title = title,
 description = description,
 year = year,
 reviewed = False,
 genre_id = genre,
)
 DBSession.add(new)
 flash('''Added movie: %s'''%(title,))
 redirect('./index')

We do not use a template in our expose call here, as we are not going
to return an HTML page from this method. The validate decorator uses
the Sprox widget/form’s automatically generated validator to convert the
incoming form values into Python objects and check for required fields.
If there are errors, the error_handler controller method will be called.
In this case, as is common, we use the same view which presented the
problematic form, as most widgets (including Sprox’ widgets) are designed
to display error messages when errors occur.

Note the use of DBSession.add() on the new instance. Without this, the
record would not be registered with the transactional machinery, and would
simply disappear when the request completed.

Customizing the Sprox Form

At this point we can view our site and see the movie-adding form just
below the list of Movies. We can enter new values in the form and we will
create new Movie records. However, the form is not particularly elegant
looking, as the use of “Unicode” values (without size limits) for the
title has convinced Sprox to use ungainly TextArea control instead of more
compact TextField controls. We also have a number of extraneous controls
for ids, and the “reviewed” flag is visible to the user.

To clean the form up somewhat, we will refine the set of fields in the form
by omitting the unwanted fields and declaring the widget-type to use for the
title field. The resulting add_movie_form looks like this:

from sprox.formbase import AddRecordForm
from tw.forms import TextField,CalendarDatePicker
class AddMovie(AddRecordForm):
 __model__ = Movie
 __omit_fields__ = [
 'id', 'genre_id', 'reviewed'
]
 title = TextField
add_movie_form = AddMovie(DBSession)

Last but not least, we alter our index page to no longer display any movies
which have not yet been reviewed by our admins (using the admin controller),
which is done by adding a filter clause to the SQLAlchemy query:

movies = DBSession.query(Movie).filter(
 Movie.reviewed == True
).order_by(Movie.title)

Sprox [http://www.sprox.org] allows you to rapidly prototype applications under TurboGears, and
provides considerable customization (documented on their web-site).
As you refine your application you may replace many of the
Sprox-provided forms with custom forms created using the underlying
ToscaWidgets framework, or potentially even forms directly coded
into your templates. The automatically generated forms can save you
a significant amount of time until you get there.

Adding Basic Pagination

As our users add movies and we approve them, our list of movies on the
front page will get longer and longer. We’re going to make our list use
pagination to present standard navigation mechanisms to the user.

In our controllers/root.py module, we’ll alter the index method:

from tg import tmpl_context
...

 @expose('movies.templates.index')
 def index(self, **named):
 """Handle the front-page."""
 movies = DBSession.query(Movie).filter(
 Movie.reviewed == True
).order_by(Movie.title)
 tmpl_context.add_movie_form = add_movie_form
 from webhelpers import paginate
 count = movies.count()
 page =int(named.get('page', '1'))
 currentPage = paginate.Page(
 movies, page, item_count=count,
 items_per_page=5,
)
 movies = currentPage.items
 return dict(
 page='index',
 movies = movies,
 currentPage = currentPage,
)

This sets up a simple URL scheme where the parameter “page” will determine
which page we will view, and we’ll view at most 5 movies per page. We take
just the set of movies in the current page as our “movies” collection, and
we pass in the Page object to our template to allow it to render the
navigation mechanisms.

Our template is altered to display the page navigation at the bottom of
the movie table in our index.html template:

<tr class="navigation" py:if="currentPage.page_count > 1">
 <td colspan="4" class="pager">${currentPage.pager()}</td>
</tr>
<tr class="navigation" py:if="currentPage.item_count == 0">
 <td colspan="4" class="pager">No movies found</td>
</tr>

And finally, we add some CSS rules to make the navigation stand out from
the content:

.navigation .pager {
 text-align: center;
 color: darkgrey;
}

If you want to do more customization with your pager, see the The Pagination Quickstart.

Next Steps

		SQLAlchemy Object Relational Tutorial [http://www.sqlalchemy.org/docs/05/ormtutorial.html] – learn how to use SQLAlchemy effectively to model your applications

		Simple Widget Form Tutorial – learn how to use ToscaWidgets to create custom forms

		Genshi – learn the default templating language for views

		TurboGears Automatic CRUD Generation – learn how to automate CRUD-style editing even more

		TurboGears Administration System – learn how to customize the admin UI

References

		SQLAlchemy Documentation [http://www.sqlalchemy.org/docs/05/]:
		Object Relational Mapper [http://www.sqlalchemy.org/docs/05/ormtutorial.html]

		SQLAlchemy Expressions [http://www.sqlalchemy.org/docs/05/sqlexpression.html]

		Sprox [http://www.sprox.org] Website – includes customization tutorials

		The zope.sqlalchemy transaction module

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/FormBasics.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

TurboGears Autogenerated Forms Overview

This is a succinct explanation on how to use sprox’s form rendering
capabilities within TurboGears2. We will assume the reader is somewhat
versed in TurboGears2’s tg.controllers.RestController. Note
that this is the same technology the Turbogears2 admin is based on, so
this knowledge is valuable to understand how to configure the admin
for your purposes.

Establishing the Model Definition

Let us first assume the following model for this demonstration.:

from sqlalchemy import Column, Integer, String, Date, Text, ForeignKey, Table
from sqlalchemy.orm import relation

from moviedemo.model import DeclarativeBase, metadata

movie_directors_table = Table('movie_directors', metadata,
 Column('movie_id', Integer, ForeignKey('movies.movie_id'), primary_key = True),
 Column('director_id', Integer, ForeignKey('directors.director_id'), primary_key = True))

class Genre(DeclarativeBase):
 __tablename__ = "genres"
 genre_id = Column(Integer, primary_key=True)
 name = Column(String(100))
 description = Column(String(200))

class Movie(DeclarativeBase):
 __tablename__ = "movies"
 movie_id = Column(Integer, primary_key=True)
 title = Column(String(100), nullable=False)
 description = Column(Text, nullable=True)
 genre_id = Column(Integer, ForeignKey('genres.genre_id'))
 genre = relation('Genre', backref='movies')
 release_date = Column(Date, nullable=True)

class Director(DeclarativeBase):
 __tablename__ = "directors"
 movie_id = Column(Integer, primary_key=True)
 title = Column(String(100), nullable=False)
 movies = relation(Movie, secondary_join=movie_directors_table, backref="directors")

The Basic Sprox Form

Here is how we create a basic form for adding a new Movie to the database:

class NewMovieForm(AddRecordForm):
 __model__ = Movie
new_movie_form = NewMovieForm(DBSession)

And our controller code would look something like this:

@expose('moviedemo.templates.sproxdemo.movies.new')
def new(self, **kw):
 tmpl_context.widget = new_movie_form
 return dict(value=kw)

You may have noticed that we are passing keywords into the method. This is so that the
values previously typed by the user can be displayed on failed validation.

And finally, our template code:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:py="http://genshi.edgewall.org/"
 xmlns:xi="http://www.w3.org/2001/XInclude">
 <xi:include href="master.html" />
<head/>
<body>
 <div style="height:0px;"> </div>
 <div>
 <div style="float:left width: 80%">
 <h2 style="margin-top:1px;>Create New Movie</h2>
 ${tmpl_context.widget(value=value)}
 </div>
 </div>
</body>
</html>

Which produces a form like this:

[image: ../_images/form_basic.png]

Omitting Fields

Now, we can use the __omit_fields__ modifier to remove the “movie_id” and “genre_id” fields,
as they will be of little use to our users. Our form code now becomes:

class NewMovieForm(AddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['genre_id', 'movie_id']

The rendered form now looks like this:

[image: ../_images/form_omit.png]

Limiting fields

If you have more omitted fields than required fields, you might want to use the __limit_fields__
operator to eliminate the fields you don’t want. The same above form will be rendered with the
following code:

class NewMovieForm(AddRecordForm):
 __model__ = Movie[
 __limit_fields__ = ['title', 'description', 'release_date', 'genre', 'directors']

Field Ordering

If you want the fields displayed in a ordering different from that of the specified schema,
you may use field_ordering to do so. Here is our form with the fields moved around a bit:

class NewMovieForm(AddRecordForm):
__model__ = Movie
 __omit_fields__ = ['movie_id', 'genre_id']
 __field_order__ = ['title', 'description', 'genre', 'directors']

Notice how the release_date field that was not specified was still appended to the end of the form.

[image: ../_images/form_order.png]

Overriding Field Attributes

Sometimes we will want to modify some of the HTML attributes associated with a field. This is as easy
as passing a __field_attrs__ modifier to our form definition. Here is how we could modify the description
to have only 2 rows:

class NewMovieForm(AddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['movie_id', 'genre_id']
 __field_attrs__ = {'description':{'rows':'2'}}

Here is the resultant form:

[image: ../_images/attrs.png]

Overriding a Form Field

Sometimes you want to override a field all together. Sprox allows you to do this by providing
an attribute to your form class declaratively. Simply instantiate your field within the widget
and it will override the widget used for that field. Let’s change the movie title to a password
field just for fun.:

from tw.forms.fields import PasswordField

class NewMovieForm(AddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['movie_id', 'genre_id']
 __field_attrs__ = {'description':{'rows':'2'}}
 title = PasswordField

[image: ../_images/password.png]
You can see now that the title is “starred” out. Note that you may also send an “instance” of
a widget for a field, but you must pass in the fieldname to the widget. This is a limitation
of ToscaWidgets. (You may not change the “id” of a widget after it has been created.):

title = PasswordField('title')

Field Widget Args

Sometimes you want to provide sprox with a class for a field, and have sprox set the arguments
to a widget, but you either want to provide an additional argument, or override one of the arguments
that sprox chooses. For this, pass a dictionary into the __field_widget_args__ parameter with the
key being the field you would like to pass the arg into, and the value a dictionary of args to set
for that field. Here is an example of how to set the rows and columns for the description field of a form.:

class NewMovieForm(AddRecordForm):
 __model__ = Movie
 __field_widget_args__ = {'description':{'rows':30, 'cols':30}}

Custom Dropdown Field Names

Sometimes you want to display a field to the user for the dropdown that has not been selected by
sprox. This is easy to override. Simply pass the field names for the select boxes you want to
display into the __dropdown_field_names__ modifier.:

class NewMovieForm(AddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['movie_id', 'genre_id']
 __field_order__ = ['title', 'description', 'genre', 'directors']
 __dropdown_field_names__ = ['description', 'name']

If you want to be more specific about which fields should display which field, you can pass
a dictionary into the __dropdown_field_names__ modifier.:

class NewMovieForm(AddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['movie_id', 'genre_id']
 __field_order__ = ['title', 'description', 'genre', 'directors']
 __dropdown_field_names__ = {'genre':'description', 'directors':'name'}

Either will produce a new dropdown like this:

[image: ../_images/form_dropdown.png]

Creating Custom Dropdown Data

Sometimes providing a fieldname alone is not enough of a customization to inform your users into what
they should be selecting. For this example, we will provide both name and description for the Genre field.
This requires us to override the genre widget with one of our choosing. We will exend the existing
sprox dropdown widget, modifying the update_params method to inject both name and description into
the dropdown. This requires some knowledge of ToscaWidgets in general, but this recipe will work
for the majority of developers looking to modify their dropdowns in a custom manner.

First, we extend the Sprox SingleSelect Field as follows:

from sprox.widgets import PropertySingleSelectField

class GenreField(PropertySingleSelectField):
 def _my_update_params(self, d, nullable=False):
 genres = DBSession.query(Genre).all()
 options = [(genre.genre_id, '%s (%s)'%(genre.name, genre.description))
 for genre in genres]
 d['options']= options
 return d

Then we include our new widget in the definition of the our movie form:

class NewMovieForm(AddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['movie_id', 'genre_id']
 __field_order__ = ['title', 'description', 'genre', 'directors']
 __dropdown_field_names__ = {'genre':'description', 'directors':'name'}
 genre = GenreField

Here is the resulting dropdown:

[image: ../_images/form_update_params.png]

Adding a New Field

There may come a time when you want to add a field to your view which is not part of your
database model. The classic case for this is password validation, where you want to provide
a second entry field to ensure the user has provided a correct password, but you do not
want/need that data to be stored in the database. Here is how we would go about
adding a second description field to our widget.:

from tw.forms.fields import TextArea

class NewMovieForm(AddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['movie_id', 'genre_id']
 __field_order__ = ['title', 'description', 'description2', 'genre', 'directors']
 description2 = TextArea('description2')

For additional widgets, you must provide an instance of the widget since sprox will not
have enough information about the schema of the widget in order to populate it correctly.
Here’s what our form now looks like:

[image: ../_images/add_field.png]

Dojo

Your users may not appreciate the simplicity of a standard multi-select. Getting users
to hold down the Control key while selecting multiple items is difficult. Luckily
we have built a widget utilizing the Dojo library which makes this a little more
intuitive for the users. If you would like to take advantage of this capability, all
we must do is swap out our AddRecordForm with the one provided by sprox.dojo. The
code looks like this:

from sprox.dojo.formbase import DojoAddRecordForm
class NewMovieForm(DojoAddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['movie_id', 'genre_id']

And results in a working select shuttle widget like this:

[image: ../_images/dojo.png]

Validation

Turbogears2 has some great tools for validation that work well with sprox. In order
to validate our form, we must first give the form a place to POST to, with a
new method in our controller that looks like:

@validate(new_movie_form, error_handler=new)
@expose()
def post(self, **kw):
 del kw['sprox_id']
 kw['genre'] = DBSession.query(Genre).get(kw['genre'])
 kw['directors'] = [DBSession.query(Director).get(id) for id in kw['directors']]
 kw['release_date'] = datetime.strptime(kw['release_date'],"%Y-%m-%d")
 movie = Movie(**kw)
 DBSession.add(movie)
 flash('your movie was successfully added')
 redirect('/movies/')

A couple of things about this. First, we must remove the sprox_id from the keywords
because they conflict with the Movie definition. This variable may go away in future
versions. genre and directors both need to be converted into their related objects before
they are applied to the object, and the release_date needs to be formatted as a datetime object
if you are using sqlite.

Here is what the form looks like on a failed validation:

[image: ../_images/validation.png]

Overriding a Validator

Often times you will want to provide your own custom field validator. The best way to
do this is to add the validator declaratively to your Form Definition:

from formencode.validators import String
class NewMovieForm(DojoAddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['movie_id', 'genre_id']
 title = String(min=4)

The resulting validation message looks like this:

[image: ../_images/validator.png]

Overriding both Field and Validator

Ah, you may have realized that sometimes you must override both widget and validator. Sprox
handles this too, by providing a :class:sprox.formbase.Field class that you can use to wrap
your widget and validator together.:

from formencode.validators import String
from sprox.formbase import Field
from tw.forms.fields import PasswordField

class NewMovieForm(DojoAddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['movie_id', 'genre_id']
 title = Field(PasswordField, String(min=4))

Again, the field class does not care if you pass instances or class of the widget.

[image: ../_images/field.png]

Required Fields

You can tell sprox to make a field required even if it is nullable in the database by passing
the fieldname into a list of the __require_fields__ modifier.:

class NewMovieForm(DojoAddRecordForm):
 __model__ = Movie
 __omit_fields__ = ['movie_id', 'genre_id']
 __require_fields__ = ['description']

And the form now sports a validation error:

[image: ../_images/require.png]

Form Validation

You can validate at the form level as well. This is particularly interesting if you need to
compare two fields. See FormEncode @validate, and TurboGears Validation.

Conclusion

sprox.formbase.FormBase [http://sprox.org/modules/sprox.formbase.html#sprox.formbase.FormBase] class provides a flexible mechanism for creating customized forms.
It provides sensible widgets and validators based on your schema, but can be overridden for your own
needs. FormBase provides declarative addition of fields, ways to limit and omit fields to a set that
is appropriate for your application. Sprox provides automated drop-down boxes, as well as providing
a way to override those widgets for your purposes. sprox.dojo provides a select shuttle widget to allow your
users to enjoy a more friendly interface.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

modules/tgdecorators.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

tg.decorators – Decorators

Decorators use by the TurboGears controllers.

Not all of these decorators are traditional wrappers. They are much simplified
from the TurboGears 1 decorators, because all they do is register attributes on
the functions they wrap, and then the DecoratedController provides the hooks
needed to support these decorators.

		
class tg.decorators.with_trailing_slash(hook_func)

		This decorator allows you to ensure that the URL ends in “/”.

The decorator accomplish this by redirecting to the correct URL.

		Usage :		

You use this decorator as follows:

class MyController(object):

 @with_trailing_slash
 @expose()
 def sample(self, *args):
 return "found sample"

In the above example http://localhost:8080/sample redirects to http://localhost:8080/sample/
In addition, the URL http://localhost:8080/sample/1 redirects to http://localhost:8080/sample/1/

		
class tg.decorators.https(hook_func)

		Ensure that the decorated method is always called with https.

		
class tg.decorators.without_trailing_slash(hook_func)

		This decorator allows you to ensure that the URL does not end in “/”.

The decorator accomplish this by redirecting to the correct URL.

		Usage :		

You use this decorator as follows:

class MyController(object):

 @without_trailing_slash
 @expose()
 def sample(self, *args):
 return "found sample"

In the above example http://localhost:8080/sample/ redirects to http://localhost:8080/sample
In addition, the URL http://localhost:8080/sample/1/ redirects to http://localhost:8080/sample/1

		
class tg.decorators.Decoration(controller)

		Simple class to support ‘simple registration’ type decorators

		
lookup_template_engine(tgl)

		Return the template engine data.

Provides a convenience method to get the proper engine,
content_type, template, and exclude_names for a particular
tg_format (which is pulled off of the request headers).

		
register_custom_template_engine(custom_format, content_type, engine, template, exclude_names, render_params)

		Registers a custom engine on the controller.

Multiple engines can be registered, but only one engine per
custom_format.

The engine is registered when @expose is used with the
custom_format parameter and controllers render using this
engine when the use_custom_format() function is called
with the corresponding custom_format.

exclude_names keeps track of a list of keys which will be
removed from the controller’s dictionary before it is loaded
into the template. This allows you to exclude some information
from JSONification, and other ‘automatic’ engines which don’t
require a template.

render_params registers extra parameters which will be sent
to the rendering method. This allows you to influence things
like the rendering method or the injected doctype.

		
register_hook(hook_name, func)

		Registers the specified function as a hook.

We now have four core hooks that can be applied by adding
decorators: before_validate, before_call, before_render, and
after_render. register_hook attaches the function to the hook
which get’s called at the appropriate time in the request life
cycle.)

		
register_template_engine(content_type, engine, template, exclude_names, render_params)

		Registers an engine on the controller.

Multiple engines can be registered, but only one engine per
content_type. If no content type is specified the engine is
registered at / which is the default, and will be used
whenever no content type is specified.

exclude_names keeps track of a list of keys which will be
removed from the controller’s dictionary before it is loaded
into the template. This allows you to exclude some information
from JSONification, and other ‘automatic’ engines which don’t
require a template.

render_params registers extra parameters which will be sent
to the rendering method. This allows you to influence things
like the rendering method or the injected doctype.

		
class tg.decorators.after_render(hook_func)

		A list of callables to be run after the template is rendered.

Will be run before it is returned returned up the WSGI stack.

		
class tg.decorators.before_call(hook_func)

		A list of callables to be run before the controller method is called.

		
class tg.decorators.before_render(hook_func)

		A list of callables to be run before the template is rendered.

		
class tg.decorators.before_validate(hook_func)

		A list of callables to be run before validation is performed.

		
class tg.decorators.expose(template='', content_type=None, exclude_names=None, custom_format=None, render_params=None, inherit=False)

		Register attributes on the decorated function.

		Parameters :		
		template

		Assign a template, you could use the syntax ‘genshi:template’
to use different templates.
The default template engine is genshi.

		content_type

		Assign content type.
The default content type is ‘text/html’.

		exclude_names

		Assign exclude names

		custom_format

		Registers as a custom format which can later be activated calling
use_custom_format

		render_params

		Assign parameters that shall be passed to the rendering method.

		inherit

		Inherit all the decorations from the same method in the parent
class. This will let the exposed method expose the same template
as the overridden method template and keep the same hooks and
validation that the parent method had.

The expose decorator registers a number of attributes on the
decorated function, but does not actually wrap the function the way
TurboGears 1.0 style expose decorators did.

This means that we don’t have to play any kind of special tricks to
maintain the signature of the exposed function.

The exclude_names parameter is new, and it takes a list of keys that
ought to be scrubbed from the dictionary before passing it on to the
rendering engine. This is particularly useful for JSON.

The render_parameters is also new. It takes a dictionary of arguments
that ought to be sent to the rendering engine, like this:

render_params={'method': 'xml', 'doctype': None}

Expose decorator can be stacked like this:

@expose('json', exclude_names='d')
@expose('kid:blogtutorial.templates.test_form',
 content_type='text/html')
@expose('kid:blogtutorial.templates.test_form_xml',
 content_type='text/xml', custom_format='special_xml')
def my_exposed_method(self):
 return dict(a=1, b=2, d="username")

The expose(‘json’) syntax is a special case. json is a
rendering engine, but unlike others it does not require a template,
and expose assumes that it matches content_type=’application/json’

If you want to declare a desired content_type in a url, you
can use the mime-type style dotted notation:

"/mypage.json" ==> for json
"/mypage.html" ==> for text/html
"/mypage.xml" ==> for xml.

If you’re doing an http post, you can also declare the desired
content type in the accept headers, with standard content type
strings.

By default expose assumes that the template is for html. All other
content_types must be explicitly matched to a template and engine.

The last expose decorator example uses the custom_format parameter
which takes an arbitrary value (in this case ‘special_xml’).
You can then use the`use_custom_format` function within the method
to decide which of the ‘custom_format’ registered expose decorators
to use to render the template.

		
tg.decorators.override_template(controller, template)

		Override the template to be used.

Use override_template in a controller in order to change the template
that will be used to render the response dictionary dynamically.

The template string passed in requires that
you include the template engine name, even if you’re using the default.

So you have to pass in a template id string like:

"genshi:myproject.templates.index2"

future versions may make the genshi: optional if you want to use
the default engine.

		
class tg.decorators.paginate(name, use_prefix=False, items_per_page=10, max_items_per_page=0)

		Paginate a given collection.

This decorator is mainly exposing the functionality
of webhelpers.paginate().

		Usage :		

You use this decorator as follows:

class MyController(object):

 @expose()
 @paginate("collection")
 def sample(self, *args):
 collection = get_a_collection()
 return dict(collection=collection)

To render the actual pager, use:

${tmpl_context.paginators.<name>.pager()}

It is possible to have several paginate()-decorators for
one controller action to paginate several collections independently
from each other. If this is desired, don’t forget to set the use_prefix-parameter
to True.

		Parameters :		
		name

		the collection to be paginated.

		items_per_page

		the number of items to be rendered. Defaults to 10

		max_items_per_page

		the maximum number of items allowed to be set via parameter.
Defaults to 0 (does not allow to change that value).

		use_prefix

		if True, the parameters the paginate
decorator renders and reacts to are prefixed with
“<name>_”. This allows for multi-pagination.

		
class tg.decorators.require(predicate, denial_handler=None, smart_denial=False)

		TurboGears-specific action protector.

The default authorization denial handler of this protector will flash
the message of the unmet predicate with warning or error as the
flash status if the HTTP status code is 401 or 403, respectively.

See allow_only for controller-wide authorization.

		
default_denial_handler(reason)

		Authorization denial handler for protectors.

		
tg.decorators.use_custom_format(controller, custom_format)

		Use use_custom_format in a controller in order to change
the active @expose decorator when available.

		
class tg.decorators.validate(validators=None, error_handler=None, form=None)

		Registers which validators ought to be applied.

If you want to validate the contents of your form,
you can use the @validate() decorator to register
the validators that ought to be called.

		Parameters :		
		validators

		Pass in a dictionary of FormEncode validators.
The keys should match the form field names.

		error_handler

		Pass in the controller method which shoudl be used
to handle any form errors

		form

		Pass in a ToscaWidget based form with validators

The first positional parameter can either be a dictonary of validators,
a FormEncode schema validator, or a callable which acts like a FormEncode
validator.

		
class tg.decorators.with_engine(engine_name=None, master_params={})

		Decorator to force usage of a specific database engine
in TurboGears SQLAlchemy BalancedSession.

		Parameters:		
		engine_name – ‘master’ or the name of one of the slaves, if is None
it will not force any specific engine.

		master_params – A dictionary or GET parameters that when present will force
usage of the master node. The keys of the dictionary will be the
name of the parameters to look for, while the values must be whenever
to pop the paramter from the parameters passed to the controller (True/False).
If master_params is a list then it is converted to a dictionary where
the keys are the entries of the list and the value is always True.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/stars_avg.png
Sk

The average is now: 3.125

_images/form_dropdown.png

deprecated/SimpleWidgetForm.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Getting Started »

Simple Widget Form Tutorial

		Status:		RoughDoc

Table of Contents

		Simple Widget Form Tutorial
		Starting The Project

		Intro To Widgets And Forms

		Defining The Form

		Displaying The Comment Form

		Form Field Validators

		Form Processing

		Conclusion

		Download The Example Project

This tutorial introduces you to the widget form system by building a
simple application that accepts and displays comments.

The comments are listed on the index page and a link at the bottom of
the page directs the user to add a comment. To keep things simple,
we’re going to skip the database and just keep track of our comments
in memory using a global comments variable.

The comments form itself requires both a name, an email address and a
comment to be entered. If input to one of the fields is missing, the
form is redisplayed along with a message next to the appropriate
field. We’ve tossed in a checkbox field to give an example that
widgets also handle values of other type than strings, i.e. booleans,
integers etc.

Successfully completing a form adds the comment to the global comments
variable and displays a success message on the index page.

Starting The Project

This tutorial starts with a pre-built project. Please download and
unpack the provided archive with the complete example project and read
the source code along with the tutorial. For a detailed explanation
on how to create a new project, please read the 20 Minute Wiki
Tutorial.

If you’re not already familiar with the basics of what widgets are,
and how they work, you’ll probably wan to take a look at the widgets
overview page

Intro To Widgets And Forms

The single most common use of Widgets in a TurboGears project is in
building forms.

Widgets make form creation really easy, because they address all the important
aspects of form handling:

		Defining which fields the form has

		Injecting JavaScript and CSS for a field if necessary

		Defining which kind of input each field expects

		Wrapping the fields into a form

		Displaying the form

		Validating form input

		Displaying validation errors and re-displaying user input

For the purpose of this tutorial, we are interested in two main types
of widgets: simple form field widgets – text inputs and checkboxes
– and compound widgets like the form itself.

Simple form field widgets generally correspond to the default browser
inputs but some, like the date picker, have extra smarts to make your
users’ lives easier. You can get an overview of which widgets are
available on your install by checking out paster tg-info, and you can
find more details about particular widgets by using the toscawidgets
widget browser:

http://toscawidgets.org/documentation/WidgetBrowser/

Compound widgets, like forms, usually act as containers for fields. In
particular, a form provides layout (Table or List) for its fields and
is responsible for labels and error display.

There are many other types of standard widgets, and you can create
your own custom widgets, but this is a simple widgets tutorial, so
we’re keeping it simple. For more information about the widgets
framework, you can start reading at the general widgets overview.

Defining The Form

With the introduction out of the way, let’s dive into the code. This
is the form field declaration in
formstutorialtg2/controllers/root.py:

class CommentFields(WidgetsList):
 """The WidgetsList defines the fields of the form."""

 name = forms.TextField(validator=validators.NotEmpty())
 email = forms.TextField(validator=validators.Email(not_empty=True),
 attrs={'size':30})
 comment = forms.TextArea(validator=validators.NotEmpty())
 notify = forms.CheckBox(label="Notify me")

As you can see, the declaration looks quite a bit like a SQLAlchemy
class definition. The CommentFields class declares a list of four
widgets, all of which are simple widgets corresponding to the
similarly named <INPUT> tags in HTML. The first three are required
text fields and the email field requires a well-formed email
address.

Notice that we have not defined a field widget for the submit
button. The TableForm and ListForm widgets take care of this
for you by default and you can tweak it using their submit_text
argument.

Now the above snippet won’t get you a form as is, it’s just a list of
widgets. To build a form, you pass the list of widgets into a form
constructor (both TableForm and ListForm are standard widgets)
and get a compound form widget:

comment_form = forms.TableForm(
 fields=CommentFields(),
 action="save"
)

Maybe you can guess what the extra action argument is for: it
defines the action attribute of the form element in the generated
HTML, which means that submissions from the form will go to
http://mysite/save and will be handled by the save method of
our controller.

Tip

If, for some reason, you do want to manage the submit button
yourself, derive your own widget form class from TableForm or
ListForm and overwrite the submit attribute with your own
instance of a forms.SubmitButton.

Displaying The Comment Form

Working our way down root.py, our first stop is the add
method. This method passes the widget form instance comment_form,
which we just covered, to the template add.html:

@expose(template='formstutorialtg2.templates.add')
def add(self):
 """Show the comment form."""

 if tg.tmpl_context.form_errors:
 flash('There was a problem with the form!')
 return dict(form=comment_form)

We’ll talk about form_errors later. First, let’s have a look at
how the form widget is used in the template. Here’s the body contents
of formstutorialtg2.templates.add.html:

<p py:content="form.display(submit_text='Add Comment')">Comment form</p>

Yep, that’s all there is to it.

The display method of a widget instance emits the HTML code to
display the form on your page.

Form Display Continued

Now that you know the basics of declaring and instantiating forms,
let’s take a closer look at the possibilities you have when you
display the form.

The simplest way to display the form, as we just saw, is to call the
forms display method:

${form.display()}

It’s also possible to call the instance directly and get the same
behavior:

${form()}

For our comment form, this will produce the HTML output similar to the
following:

<FORM ACTION="save" NAME="form" METHOD="post">
 <TABLE BORDER="0">
 <TR>
 <TD>
 <LABEL CLASS="fieldlabel" FOR="form_name">Name</LABEL>
 </TD>
 <TD>
 <INPUT CLASS="textfield" TYPE="text" ID="form_name" NAME="name">
 </TD>
 </TR>
 ...
 <TR>
 <TD>
 </TD>
 <TD>
 <INPUT TYPE="submit" CLASS="submitbutton">
 </TD>
 </TR>
 </TABLE>
</FORM>

You can see that the submit button has no value and will therefore be
displayed with a language dependant default label because we didn’t
set the form’s submit_text.

If you look at the generated FORM element, you’ll also note that its
action attribute is set to the value of the action argument,
which we specified when we created the form instance.

As a convenience, you can override both the action and
submit_text arguments at display time:

${form(action="preview", submit_text='Preview Comment')}

Whether you want to specify action (or submit_text for that
matter) when you create the form or when you display it, depends on
whether you are reusing the form in another context or not and how
closely coupled the form widget and the controller methods handling
the form are in your application.

If you want to preset the form field values - for instance to edit already
existing data - you pass the form values as the first argument:

${form(data, submit_text='Add Comment')}

You can also explicitly specify it as the value keyword argument:

${form(value=data, submit_text='Add Comment')}

Where data is a dictionary of the form:

data = dict(name='Joe', comment='Hello World', notify=True, ...)

Displaying forms is nice, but it really doesn’t help you out that
much. Admittedly, some people write entire toolkits to do just this
sort of thing (GWT, Pyjamas), but TurboGears widgets offer you more.

Form Field Validators

Validation ensures that the values you’re getting are the values your
method is expecting. Sometimes this is critically important, other
times it’s convenient, but quite a bit of time in web programming is
traditionally tied up in displaying a form, processing the form,
validating its values, and – in the event of errors– redisplaying
the form with the errors marked. TurboGears widgets were created
explicitly to solve this problem.

In practice, you get validation by adding validators to your widget
declarations and setting the appropriate decorators on your form
handling method. You can get super-fancy and do it other ways if
necessary, but we’ll take the simple solutions for simple problems
approach here.

#repeat, for convenience

class CommentFields(WidgetsList):
 """The WidgetsList defines the fields of the form."""

 name = forms.TextField(validator=validators.NotEmpty())
 email = forms.TextField(validator=validators.Email(not_empty=True),
 attrs={'size':30})
 comment = forms.TextArea(validator=validators.NotEmpty())
 notify = forms.CheckBox(label="Notify me")

If you look at the definition of CommentFields repeated above,
you’ll see that there is a validator for each of the first three
fields. These validators are part of the formencode.validators
package, part of Ian Bicking’s FormEncode [http://www.formencode.org] project. Since all values
in a form are sent as strings, validators both convert the value to
the appropriate Python type and check that the value matches a
criteria in one step because one usually requires the other. For
example, if your validator requires a numeric input be greater than 5
and you get "10", you have to convert "10" to the int 10
before a meaningful comparison can be made. In this case, we’re not
doing type conversion for any of our fields, but it’s a useful thing
to know.

The first and third fields have a validators.NotEmpty validator,
which explicitly states that they are required fields. The second
field, with a validators.Email validator, is required as well. We
explicitly state this by passing a not_empty=True, but adding a
validator to the field generally makes that field required. The empty
string, for example, is not a valid email address, so the email
validator will fail. You can get validation on non-required fields by
passing an if_empty="default value" argument to the validator’s
constructor.

Form Processing

Turning our attention to the save method:

@expose()
@validate(comment_form, error_handler=add)
def save(self, name, email, comment, notify=False):
 """Handle submission from the comment form and save the comment."""

 comments.add(name, email, comment)
 if notify:
 flash(_('Comment added! You will be notified.'))
 else:
 flash(_('Comment added!'))
 redirect('/index')

Our method itself takes a set of arguments corresponding to the fields
in the form. Tracking large numbers of fields is very inconvenient, so
it’s common to just use keyword arguments instead:

@expose()
@validate(comment_form, error_handler=add)
def save(self, **data):
 comments.add(
 data['name'],
 data['email'],
 data['comment'
 data.get('notify', False)
)
 #...

Using this syntax you get the data as a dictionary and you have to
extract the field values from there. The use of .get() above is
needed for the notify field, since this is not guaranteed to be
included in the data and because there is no validator checking for
its presence, while the other fields will be present for sure if there
was no validation error.

Note

The form handling strips off the default submit field so
that you don’t have to deal with it. If you add your own, it
won’t be stripped.

Finally, the flash method displays a confirmation notice on the
next page the user is redirected to, which is the index page with the
list of comments.

Data Validation

Let’s take another, closer look at the save method. Our interest
now lies not in its contents, but rather the decorators. We can see
that the method is exposed without a template. It does need to be
exposed or Pylons will raise a 404. The lack of a template is fine
because we’re going to redirect the user to another (output-providing)
method depending on whether the input is valid or not.

The @validate() decorator extracts the various validators from the
form, loops through them, and throws an error if problems are
found. We’re glossing over details, but that’s the basic idea.

If @validate() does throw an error, the error_handler method
takes care of them. If a validation error occurs, TurboGears will
store a dictionary of FormEncode validation errors in
tg.tmpl_context.form_errors.

In the example, we’re re-using add so that the form will be
re-displayed if errors occur. Let’s have a look at the add method
again:

@expose(template='formstutorialtg2.templates.add')
def add(self):
 """Show the comment form."""

 if tg.tmpl_context.form_errors:
 flash('There was a problem with the form!')
 return dict(form=comment_form)

The error handling method, if desired, could look into the
form_errors dictionary to see which fields validation has failed
and act accordingly. In practice, most form error handlers simply do
what we do here: put up a notification message and display the form
showing the validation errors.

Conclusion

In this tutorial you have learned how to create a simple form widget
composed of several form fields. You have seen how the widget is
passed to the template, displayed and how submissions from the form
are handled in the controller. You have also seen simple validators in
action that simplify error handling for forms substantially.

This tutorial only covers basic widget usage. If you’d like to know
more, explore the widgets overview.

Todo

Difficulty: Easy. previous paragraph referenced “widget browser” and “toolbox”
as links. These do not exist for tg2. Need to add them back in
here when they are eventually re-written.

Download The Example Project

FormsTutorial-2.0.tgz

Note

The code for this example is courtesy of Michele Cella, but the
individual files in the project have been updated to reflect changes
in TurboGears versions over time and were adapted by various authors
with respect to style, design etc.

Note

The comment feature has been disabled on this page due to heavy spamming. If you want to comment on the contents of this page, if you have questions, or want to report an error, please write to the TurboGears mailing list.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_static/preview.png

deprecated/ToscaWidgets/Cookbook/JQueryAjaxForm.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

JQuery AjaxForm Widget

Installation

easy_install tw.jquery

Usage

The AjaxForm widget supports the following parameters:

Mandatory Parameters:

		
		id The id of the form. The submit action of this form triggers

		the Ajax Request.

		
		fields The form fields. The fields could be a WidgetList object

		created like this:

from formencode import validators
from tw.forms.fields import TextField, TextArea, CheckBox
from tw.api import WidgetsList

class CommentFields(WidgetsList):
 """The WidgetsList defines the fields of the form."""

 name = TextField(validator=validators.NotEmpty())
 email = TextField(validator=validators.Email(not_empty=True),
 attrs={'size':30})
 comment = TextArea(validator=validators.NotEmpty())
 notify = CheckBox(label="Notify me")

		
		action The url for the controller method that would handle the

		Ajax Request.

Optional Parameters:

		
		target This is the id of the element where the output of the

		request would be rendered. (Default: “output”)

		
		type The method to use for the request, i.e. whether GET or

		POST. (Default: “POST”)

		
		dataType The dataType of the response, i.e. whether XML, JSON or

		SCRIPT. (Default: “JSON”)

		
		beforeSubmit The javascript function that should be called just

		before submitting the request. This could be helpful for doing
javascript based validations if needed. (Default: None)

		
		success The javascript function that should be called if the

		request succeeds. (Default: None)

		
		clearForm Clears the form after sending the request. (Default:

		True)

		
		resetForm Resets the form after sending the request. (Default:

		True)

		
		timeout Time in ms before the request is timed out. (Default:

		
		

A simple AjaxForm widget may be instantiated as:

from tw.jquery import AjaxForm

ajax_form = AjaxForm(id="myAjaxForm",
 fields=CommentFields(),
 target="output",
 action="do_search")

The form can then be served up to the user via a controller method
like this:

@expose('mypackage.templates.myformtemplate')
def entry(self, **kw):
 pylons.c.form = myAjaxForm
 return dict(value=kw)

In your template you need to pickup your form from the template
context for rendering. Also create a target div (“output” in this
case) to display the output:

${tmpl_context.form(show_labels=True, value=value)}

<div id="output"></div>

And here is the resulting field when viewed from a browser:

[image: example AjaxForm]
The template generates the necessary javascript code to send the Ajax
Request when the form is submitted. The controller code for generating
the response would be something like:

@expose()
@validate(ajax_form)
def do_search(self, **kw):
 return "<p>Recieved Data:
%(name)s
%(email)s
%(comment)s
%(notify)s
</p>" % kw

The output would be rendered inside a div element called output,
which is the default target element. This is how the page looks like
after the form has been successfully submitted:

[image: example AjaxForm]

Todo

Difficulty: Medium. Getting output as JSON and updating a data grid

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/itemselector1.png
States:Available
Alabama

Arkansas
Connecticut
Delaware
Florida
Georgia
Hawaii

Selected

= Alaska

: % Arizona
California

main/Utilities/sqlautocode.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Utilities »

AutoGenerating Model Code with SQLAutocode

		Status:		Official

Table of Contents

		AutoGenerating Model Code with SQLAutocode
		Reflecting your database tables

		Reflecting the Database Declaratively

		Providing an Interactive Prompt

		Injecting the Generated Schema Into your TurboGears Application

		A Note on Schemas

SQLAlchemy is an extremely powerful tool, but unless you
already know how to create table and model code, getting
started can be a bit daunting. Luckily, sqlautocode was created
to help you get started. First things first, we need to get
this puppy installed.:

easy_install sqlautocode

We can take a look at the help options in an overview manner:

		$ sqlautocode –help

		Usage: autocode.py <database_url> [options,]
Generates Python source code for a given database schema.

Example: ./autocode.py postgres://user:password@myhost/database -o out.py

		Options:

		

		
-h, --help
		show this help message and exit

		
-o OUTPUT, --output=OUTPUT

		 		Write to file (default is stdout)

		
--force
		Overwrite Write to file (default is stdout)

		
-s SCHEMA, --schema=SCHEMA

		 		Optional, reflect a non-default schema

		
-t TABLES, --tables=TABLES

		 		Optional, only reflect this comma-separated list of
tables. Wildcarding with ‘*’ is supported, e.g:
–tables account_*,orders,order_items,*_audit

		
-b TABLE_PREFIX, --table-prefix=TABLE_PREFIX

		 		Prefix for generated SQLAlchemy Table object names

		
-a TABLE_SUFFIX, --table-suffix=TABLE_SUFFIX

		 		Suffix for generated SQLAlchemy Table object names

		
-i, --noindexes, --noindex

		 		Do not emit index information

		
-g, --generic-types

		 		Emit generic ANSI column types instead of database-
specific.

		
--encoding=ENCODING

		 		Encoding for output, default utf8

		
-e, --example
		Generate code with examples how to access data

		
-3, --z3c
		Generate code for use with z3c.sqlalchemy

		
-d, --declarative

		 		Generate declarative SA code

		
-n, --interactive

		 		Generate Interactive example in your code.

Well, we won’t examine every option here (z3c!?), but it is good to know
what is available before we get started. Some people prefer to define their
own tables so that they can do custom mappings. Just in case you want to try
this tutorial out, here is a link to an sqlite database that you can use.

Reflecting your database tables

The first thing we will examine is how one goes about generating table code
for a given database. This is often preferable when you have sophisticated mappings
that you want to do.

wherever you have saved your database, you can type:

$ sqlautocode sqlite:///movidemo.db -o tables.py

This will create a tables.py with all of the necessary table definitions. Here’s an excerpt:

directors = Table('directors', metadata,
 Column(u'director_id', Integer(), primary_key=1, nullable=False),
 Column(u'name', String(length=100, convert_unicode=False, assert_unicode=None), primary_key=0, nullable=False),
)

genres = Table('genres', metadata,
 Column(u'genre_id', Integer(), primary_key=1, nullable=False),
 Column(u'name', String(length=100, convert_unicode=False, assert_unicode=None), primary_key=0),
 Column(u'description', String(length=200, convert_unicode=False, assert_unicode=None), primary_key=0),
)

movie_directors = Table('movie_directors', metadata,
 Column(u'movie_id', Integer(), primary_key=1, nullable=False),
 Column(u'director_id', Integer(), primary_key=1, nullable=False),
 ForeignKeyConstraint([u'director_id'], [u'directors.director_id'], name=None),
 ForeignKeyConstraint([u'movie_id'], [u'movies.movie_id'], name=None),
)

movies = Table('movies', metadata,
 Column(u'movie_id', Integer(), primary_key=1, nullable=False),
 Column(u'title', String(length=100, convert_unicode=False, assert_unicode=None), primary_key=0, nullable=False),
 Column(u'description', Text(length=None, convert_unicode=False, assert_unicode=None), primary_key=0),
 Column(u'genre_id', Integer(), primary_key=0),
 Column(u'release_date', Date(), primary_key=0),
 ForeignKeyConstraint([u'genre_id'], [u'genres.genre_id'], name=None),
)

This is a great start if you are already familiar with how SA works, and want to provide your
own model or mappings. Since the tables are produced in alphabetical order, this is also
affective for reflecting your schema on a regular basis and merging in the changes as your
database changes if you do not have control over the database schema.

Reflecting the Database Declaratively

Most people getting started with TurboGears or SQLAlchemy for that matter, will probably want
to use the declarative [http://www.sqlalchemy.org/docs/05/reference/ext/declarative.html] style of SQLAlchemy model definition. sqlautocode supports this with the
-d option:

sqlautocode -d -o model.py sqlite:///moviedemo.db

This will generate a file that you can use directly in your TurboGears application. Here is
an excerpt from the model.py that sqlautocode generates:

movie_directors = Table(u'movie_directors', metadata,
 Column(u'movie_id', Integer(), ForeignKey('movies.movie_id'), primary_key=True, nullable=False),
 Column(u'director_id', Integer(), ForeignKey('directors.director_id'), primary_key=True, nullable=False),

class Directors(DeclarativeBase):
 __tablename__ = 'directors'

 #column definitions
 director_id = Column(u'director_id', Integer(), primary_key=True, nullable=False)
 name = Column(u'name', String(length=100, convert_unicode=False, assert_unicode=None), nullable=False)

 #relation definitions
 movies = relation('Movies', secondary=movie_directors)

class Genres(DeclarativeBase):
 __tablename__ = 'genres'

 #column definitions
 description = Column(u'description', String(length=200, convert_unicode=False, assert_unicode=None))
 genre_id = Column(u'genre_id', Integer(), primary_key=True, nullable=False)
 name = Column(u'name', String(length=100, convert_unicode=False, assert_unicode=None))

 #relation definitions
 movies = relation('Movies')

class Movies(DeclarativeBase):
 __tablename__ = 'movies'

 #column definitions
 description = Column(u'description', Text(length=None, convert_unicode=False, assert_unicode=None))
 genre_id = Column(u'genre_id', Integer(), ForeignKey('genres.genre_id'))
 movie_id = Column(u'movie_id', Integer(), primary_key=True, nullable=False)
 release_date = Column(u'release_date', Date())
 title = Column(u'title', String(length=100, convert_unicode=False, assert_unicode=None), nullable=False)

 #relation definitions
 genres = relation('Genres')
 directors = relation('Directors', secondary=movie_directors)

The great thing about this code is that since it is generated, you have the ability to modify
it before use. Notice that it created only tables for those items which are join tables
and therefore do not need their own explicit objects for access. Also, note that sqlautocode
does not generate backrefs, because all references are provided as forward references.
If you execute model.py, it will create a connection to the database and then exit,
but there are more compelling things you can do with sqlautocode.

Providing an Interactive Prompt

Declarative generation will actually give you an interactive prompt if you set the -n option. This
code relies on ipython to give you an auto-completing prompt with history, shell tools, and a whole
host of other goodies. To install it, type:

easy_install python

Now, regenerate your database with the -n option:

sqlautocode -d -n -o model.py sqlite:///moviedemo.db

Your model.py file will now have code that you can use to directly access the database.
Here is a short session generated from the example using the database provided:

In [1]: session.query(Directors).all()
Out[1]:
[<__main__.Directors object at 0x155bb30>,
 <__main__.Directors object at 0x155bbb0>,
 <__main__.Directors object at 0x155bb70>,
 <__main__.Directors object at 0x155bc90>,
 <__main__.Directors object at 0x155bcf0>]

In [2]: [director.name for director in session.query(Directors).all()]
Out[2]:
[u'Robert Zemeckis',
 u'David Fincher',
 u'Andy Wachowski',
 u'Larry Wachowski',

The interactive prompt is a great way to demo the power of SQLAlchemy to people who
have never seen it. And since the output of sqlautocode is just python code, you can modify
the output script to import all sorts of interesting libraries with which to visualize the provided data.

Injecting the Generated Schema Into your TurboGears Application

Now that you have a model.py file, you can put this directly in your TG project. If you have a quickstarted
application, find model/auth.py. Remove all of the table and declarative definitions, and replace them
with the table and declarative definitions inside the model.py file. Do not copy over the metadata definition,
or the interactive prompt code if you are copying from the model. It is very likely that this functionality
will be provided in the quickstart template, or as a paster command in the future, negating the
need for such copying.

A Note on Schemas

If you use a postgres database, you might use schemas to organize your database’s structure.
You can provide sqlautocode schemas for table generation. Simply add -s <schema_name> to
the list of options. If you are using the declarative output, you can do likewise, but if your
database structure has interconnections between schemas, you can provide them as a comma-separated
list: -s <schema1>,<schema2>

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

modules/thirdparty/beaker.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Third-party components »

beaker – Caching

Beaker

Cache

This package contains the “front end” classes and functions
for Beaker caching.

Included are the Cache and CacheManager classes,
as well as the function decorators region_decorate(),
region_invalidate().

		
class beaker.cache.Cache(namespace, type='memory', expiretime=None, starttime=None, expire=None, **nsargs)

		Front-end to the containment API implementing a data cache.

		Parameters:		
		namespace – the namespace of this Cache

		type – type of cache to use

		expire – seconds to keep cached data

		expiretime – seconds to keep cached data (legacy support)

		starttime – time when cache was cache was

		
clear()

		Clear all the values from the namespace

		
get(key, **kw)

		Retrieve a cached value from the container

		
get_value(key, **kw)

		Retrieve a cached value from the container

		
class beaker.cache.CacheManager(**kwargs)

		
		
cache(*args, **kwargs)

		Decorate a function to cache itself with supplied parameters

		Parameters:		
		args – Used to make the key unique for this function, as in region()
above.

		kwargs – Parameters to be passed to get_cache(), will override defaults

Example:

Assuming a cache object is available like:
cache = CacheManager(dict_of_config_options)

def populate_things():

 @cache.cache('mycache', expire=15)
 def load(search_term, limit, offset):
 return load_the_data(search_term, limit, offset)

 return load('rabbits', 20, 0)

Note

The function being decorated must only be called with
positional arguments.

		
invalidate(func, *args, **kwargs)

		Invalidate a cache decorated function

This function only invalidates cache spaces created with the
cache decorator.

		Parameters:		
		func – Decorated function to invalidate

		args – Used to make the key unique for this function, as in region()
above.

		kwargs – Parameters that were passed for use by get_cache(), note that
this is only required if a type was specified for the
function

Example:

Assuming a cache object is available like:
cache = CacheManager(dict_of_config_options)

def populate_things(invalidate=False):

 @cache.cache('mycache', type="file", expire=15)
 def load(search_term, limit, offset):
 return load_the_data(search_term, limit, offset)

 # If the results should be invalidated first
 if invalidate:
 cache.invalidate(load, 'mycache', 'rabbits', 20, 0, type="file")
 return load('rabbits', 20, 0)

		
region(region, *args)

		Decorate a function to cache itself using a cache region

The region decorator requires arguments if there are more than
two of the same named function, in the same module. This is
because the namespace used for the functions cache is based on
the functions name and the module.

Example:

Assuming a cache object is available like:
cache = CacheManager(dict_of_config_options)

def populate_things():

 @cache.region('short_term', 'some_data')
 def load(search_term, limit, offset):
 return load_the_data(search_term, limit, offset)

 return load('rabbits', 20, 0)

Note

The function being decorated must only be called with
positional arguments.

		
region_invalidate(namespace, region, *args)

		Invalidate a cache region namespace or decorated function

This function only invalidates cache spaces created with the
cache_region decorator.

		Parameters:		
		namespace – Either the namespace of the result to invalidate, or the
cached function

		region – The region the function was cached to. If the function was
cached to a single region then this argument can be None

		args – Arguments that were used to differentiate the cached
function as well as the arguments passed to the decorated
function

Example:

Assuming a cache object is available like:
cache = CacheManager(dict_of_config_options)

def populate_things(invalidate=False):

 @cache.region('short_term', 'some_data')
 def load(search_term, limit, offset):
 return load_the_data(search_term, limit, offset)

 # If the results should be invalidated first
 if invalidate:
 cache.region_invalidate(load, None, 'some_data',
 'rabbits', 20, 0)
 return load('rabbits', 20, 0)

Container

Container and Namespace classes

		
beaker.container.ContainerContext

		alias of dict [http://docs.python.org/library/stdtypes.html#dict]

		
class beaker.container.Container

		Implements synchronization and value-creation logic
for a ‘value’ stored in a NamespaceManager.

Container and its subclasses are deprecated. The
Value class is now used for this purpose.

		
class beaker.container.MemoryContainer

		

		
class beaker.container.DBMContainer

		

		
class beaker.container.NamespaceManager(namespace)

		Handles dictionary operations and locking for a namespace of
values.

NamespaceManager provides a dictionary-like interface,
implementing __getitem__(), __setitem__(), and
__contains__(), as well as functions related to lock
acquisition.

The implementation for setting and retrieving the namespace data is
handled by subclasses.

NamespaceManager may be used alone, or may be accessed by
one or more Value objects. Value objects provide per-key
services like expiration times and automatic recreation of values.

Multiple NamespaceManagers created with a particular name will all
share access to the same underlying datasource and will attempt to
synchronize against a common mutex object. The scope of this
sharing may be within a single process or across multiple
processes, depending on the type of NamespaceManager used.

The NamespaceManager itself is generally threadsafe, except in the
case of the DBMNamespaceManager in conjunction with the gdbm dbm
implementation.

		
class beaker.container.MemoryNamespaceManager(namespace, **kwargs)

		NamespaceManager that uses a Python dictionary for storage.

		
class beaker.container.DBMNamespaceManager(namespace, dbmmodule=None, data_dir=None, dbm_dir=None, lock_dir=None, digest_filenames=True, **kwargs)

		NamespaceManager that uses dbm files for storage.

		
class beaker.container.FileContainer

		

		
class beaker.container.FileNamespaceManager(namespace, data_dir=None, file_dir=None, lock_dir=None, digest_filenames=True, **kwargs)

		NamespaceManager that uses binary files for storage.

Each namespace is implemented as a single file storing a
dictionary of key/value pairs, serialized using the Python
pickle module.

		
class beaker.container.CreationAbortedError

		Deprecated.

Database

		
class beaker.ext.database.DatabaseNamespaceManager(namespace, url=None, sa_opts=None, optimistic=False, table_name='beaker_cache', data_dir=None, lock_dir=None, schema_name=None, **params)

		

		
class beaker.ext.database.DatabaseContainer

		

Memcached

		
class beaker.ext.memcached.MemcachedNamespaceManager(namespace, url, memcache_module='auto', data_dir=None, lock_dir=None, **kw)

		Provides the NamespaceManager API over a memcache client library.

		
class beaker.ext.memcached.MemcachedContainer

		Container class which invokes MemcacheNamespaceManager.

Middleware

		
class beaker.middleware.CacheMiddleware(app, config=None, environ_key='beaker.cache', **kwargs)

		

		
class beaker.middleware.SessionMiddleware(wrap_app, config=None, environ_key='beaker.session', **kwargs)

		

Session

		
class beaker.session.SignedCookie(secret, input=None)

		Extends python cookie to give digital signature support

		
class beaker.session.Session(request, id=None, invalidate_corrupt=False, use_cookies=True, type=None, data_dir=None, key='beaker.session.id', timeout=None, cookie_expires=True, cookie_domain=None, cookie_path='/', secret=None, secure=False, namespace_class=None, httponly=False, encrypt_key=None, validate_key=None, **namespace_args)

		Session object that uses container package for storage.

		Parameters:		
		invalidate_corrupt (bool [http://docs.python.org/library/functions.html#bool]) – How to handle corrupt data when loading. When
set to True, then corrupt data will be silently
invalidated and a new session created,
otherwise invalid data will cause an exception.

		use_cookies (bool [http://docs.python.org/library/functions.html#bool]) – Whether or not cookies should be created. When set to
False, it is assumed the user will handle storing the
session on their own.

		type – What data backend type should be used to store the underlying
session data

		key – The name the cookie should be set to.

		timeout (int [http://docs.python.org/library/functions.html#int]) – How long session data is considered valid. This is used
regardless of the cookie being present or not to determine
whether session data is still valid.

		cookie_expires – Expiration date for cookie

		cookie_domain – Domain to use for the cookie.

		cookie_path – Path to use for the cookie.

		secure – Whether or not the cookie should only be sent over SSL.

		httponly – Whether or not the cookie should only be accessible by
the browser not by JavaScript.

		encrypt_key – The key to use for the local session encryption, if not
provided the session will not be encrypted.

		validate_key – The key used to sign the local encrypted session

		
class beaker.session.SessionObject(environ, **params)

		Session proxy/lazy creator

This object proxies access to the actual session object, so that in
the case that the session hasn’t been used before, it will be
setup. This avoid creating and loading the session from persistent
storage unless its actually used during the request.

		
beaker.session.b64decode(s, altchars=None)

		Decode a Base64 encoded string.

s is the string to decode. Optional altchars must be a string of at least
length 2 (additional characters are ignored) which specifies the
alternative alphabet used instead of the ‘+’ and ‘/’ characters.

The decoded string is returned. A TypeError is raised if s were
incorrectly padded or if there are non-alphabet characters present in the
string.

		
beaker.session.b64encode(s, altchars=None)

		Encode a string using Base64.

s is the string to encode. Optional altchars must be a string of at least
length 2 (additional characters are ignored) which specifies an
alternative alphabet for the ‘+’ and ‘/’ characters. This allows an
application to e.g. generate url or filesystem safe Base64 strings.

The encoded string is returned.

Synchronization

Synchronization functions.

File- and mutex-based mutual exclusion synchronizers are provided,
as well as a name-based mutex which locks within an application
based on a string name.

		
class beaker.synchronization.NameLock(identifier=None, reentrant=False)

		a proxy for an RLock object that is stored in a name based
registry.

Multiple threads can get a reference to the same RLock based on the
name alone, and synchronize operations related to that name.

		
class beaker.synchronization.SynchronizerImpl

		Base class for a synchronization object that allows
multiple readers, single writers.

		
class beaker.synchronization.FileSynchronizer(identifier, lock_dir)

		A synchronizer which locks using flock().

		
class beaker.synchronization.ConditionSynchronizer(identifier)

		a synchronizer using a Condition.

Util

Beaker utilities

		
class beaker.util.SyncDict

		An efficient/threadsafe singleton map algorithm, a.k.a.
“get a value based on this key, and create if not found or not
valid” paradigm:

exists && isvalid ? get : create

Designed to work with weakref dictionaries to expect items
to asynchronously disappear from the dictionary.

Use python 2.3.3 or greater ! a major bug was just fixed in Nov.
2003 that was driving me nuts with garbage collection/weakrefs in
this section.

		
class beaker.util.WeakValuedRegistry

		

		
class beaker.util.ThreadLocal

		stores a value on a per-thread basis

		
beaker.util.verify_directory(dir)

		verifies and creates a directory. tries to
ignore collisions with other threads and processes.

		
beaker.util.encoded_path(root, identifiers, extension='.enc', depth=3, digest_filenames=True)

		Generate a unique file-accessible path from the given list of
identifiers starting at the given root directory.

		
beaker.util.verify_options(opt, types, error)

		

		
beaker.util.verify_rules(params, ruleset)

		

		
beaker.util.coerce_session_params(params)

		

		
beaker.util.coerce_cache_params(params)

		

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

modules/pylons/decorators_rest.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Modules »

pylons.decorators.rest – REST-ful Decorators

REST decorators

Module Contents

		
pylons.decorators.rest.dispatch_on(**method_map)

		Dispatches to alternate controller methods based on HTTP method

Multiple keyword arguments should be passed, with the keyword
corresponding to the HTTP method to dispatch on (DELETE, POST, GET,
etc.) and the value being the function to call. The value should be
a string indicating the name of the function to dispatch to.

Example:

from pylons.decorators import rest

class SomeController(BaseController):

 @rest.dispatch_on(POST='create_comment')
 def comment(self):
 # Do something with the comment

 def create_comment(self, id):
 # Do something if its a post to comment

		
pylons.decorators.rest.restrict(*methods)

		Restricts access to the function depending on HTTP method

Example:

from pylons.decorators import rest

class SomeController(BaseController):

 @rest.restrict('GET')
 def comment(self, id):

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Ming.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Working With Ming And MongoDB

MongoDB [http://www.mongodb.org] is a high-performance schemaless database that allows you
to store and retrieve JSON-like documents. MongoDB [http://www.mongodb.org] stores these
documents in collections, which are analogous to SQL tables.
Because MongoDB [http://www.mongodb.org] is schemaless, there are no guarantees given
to the database client of the format of the data that may be
returned from a query; you can put any kind of document into
a collection that you want.

While this dynamic behavior is handy in a rapid development
environment where you might delete and re-create the database
many times a day, it starts to be a problem when you need to
make guarantees of the type of data in a collection
(because you code depends on it).

Ming [http://merciless.sourceforge.net/tour.html] allows you to specify the schema for your data
in Python code and then develop in confidence,
knowing the format of data you get from a query.

TurboGears Integration

TurboGears Ming integration is entirely pushed into the
generated quickstart template since version 2.1.3

To generate a Ming based project you just need to
pass the --ming option to the quickstart command.
For more informations refer to the Quickstarting A TurboGears 2.2.2 Project section.

TurboGears will rely on the unit of work pattern of Ming
flushing the session for you at the end of each request.
This will happen only if everything went fine.
In case of an exception the session won’t be flushed
and any change performed throught the ORM layer won’t
happen avoiding an incosistent environment due to
half made changes.

Note

Note that if you perform any change outside the
ming unit of work or if you flush the session
yourself you might still end with an inconsistent
environment.

Getting Started

If you don’t know how Ming [http://merciless.sourceforge.net/tour.html] works at all, please take a few
minutes to read over these tutorials:

		ORM Tutorial [http://merciless.sourceforge.net/orm.html] – which covers the ORM parts

		Intro to Ming [http://merciless.sourceforge.net/tour.html] – which covers a more general intro

Your quickstarted project will have a subpackage called model, made
up of the following files:

		__init__.py: This is where the database access is set up. Your
collections should be imported into this module, and you’re highly
encouraged to define them in a separate module - entities, for
example.

		session.py: This file defines the session of your database
connection. By default TurboGears will use a Session object
with multithreading support. You will usually need to import
this each time you have to declare a MappedClass to
specify the session that has to be used to perform queries.

		auth.py: This file will be created if you enabled authentication
and authorization in the quickstart. It defines two collections
repoze.what.quickstart relies on: User (for the registered
members in your website and the groups they belong to) and Permission
(a permission granted to one or more groups).

Defining Your Own Collections

By default TurboGears configures Ming [http://merciless.sourceforge.net/tour.html] in Declarative mode.
This is similar to the SQLAlchemy declarative support and needs
each model to inherit from the MappedClass class.

The tables defined by the quickstart in model/auth.py are based on
the declarative method, so you may want to check it out to see how
columns are defined for these tables.
For more information, you may read the ORM Tutorial [http://merciless.sourceforge.net/orm.html].

Once you have defined your collections in a separate module in the model
package, they should be imported from model/__init__.py. So the end
of this file would look like this:

Import your model modules here.
from auth import User, Permission
Say you defined these three classes in the 'movies'
module of your 'model' package.
from movies import Movie, Actor, Director

Indexing Support

TurboGears supports also automatic indexing of MongoDB [http://www.mongodb.org] fields.
If you want to guarantee that a field is unique or indexed you
just have to specify the unique_indexes or indexes variables
for the __mongometa__ attribute of the mapped class.

class Permission(MappedClass):
 class __mongometa__:
 session = DBSession
 name = 'tg_permission'
 unique_indexes = [('permission_name',),]

TurboGears will ensure indexes for your each time the application
is started, this is performed inside the init_model function.

Handling Relationships

Ming comes with support to one-to-many and many-to-one Relations [http://merciless.sourceforge.net/orm.html#relating-classes]
they provide an easy to use access to related objects. The fact
that this relation is read only isn’t a real issue as the related
objects will have a ForeignIdProperty which can be changed
to add or remove objects to the relation.

As MongoDB provides too many ways to express a many-to-many
relationship, those kind of relations are instead left on their own.
TurboGears anyway provides a tool to make easier to access and
modify those relationships.

tgming.ProgrammaticRelationProperty provides easy access to
those relationships exposing them as a list while leaving to the
developer the flexibility to implement the relationship as it
best suites the model.

A good example of how the ProgrammaticRelationProperty works
is the User to Group relationship:

from tgming import ProgrammaticRelationProperty

class Group(MappedClass):
 class __mongometa__:
 session = DBSession
 name = 'tg_group'

 group_name = FieldProperty(s.String)

class User(MappedClass):
 class __mongometa__:
 session = DBSession
 name = 'tg_user'

 _groups = FieldProperty(s.Array(str))

 def _get_groups(self):
 return Group.query.find(dict(group_name={'$in':self._groups})).all()
 def _set_groups(self, groups):
 self._groups = [group.group_name for group in groups]
 groups = ProgrammaticRelationProperty(Group, _get_groups, _set_groups)

In this case each user will have one or more groups stored with their group_name
inside the User._groups array. Accessing User.groups will provide a list
of the groups the user is part of. This list is retrieved using User._get_groups
and can be set with User._set_groups.

Using Synonyms

There are cases when you will want to adapt a value from the database
before loading and storing it. A simple example of this case is the
password field, this will probably be encrypted with some kind of
algorithm which has to be applied before saving the field itself.

To handle those cases TurboGears provides the tgming.SynonymProperty
accessor. This provides a way to hook two functions which have to be
called before storing and retrieving the value to adapt it.

from tgming import SynonymProperty

class User(MappedClass):
 class __mongometa__:
 session = DBSession
 name = 'tg_user'

 _password = FieldProperty(s.String)

 def _set_password(self, password):
 self._password = self._hash_password(password)
 def _get_password(self):
 return self._password
 password = SynonymProperty(_get_password, _set_password)

In the previous example the password property is stored encrypted inside the
User._password field but it is accessed using the User.password property
which encrypts it automatically before setting it.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/TGandFirePython.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Using FirePython With TurboGears2

		Status:		Work in progress

Table of Contents

		Using FirePython With TurboGears2
		Requires

		Installing Stuff

		Adding FirePython Support

FirePython is a sexy Python logger console integrated into Firebug.

Requires

		Firefox - http://www.mozilla.com/en-US/firefox/

		Firebug - https://addons.mozilla.org/en-US/firefox/addon/1843

		FireLogger - https://addons.mozilla.org/en-US/firefox/addon/11090

Installing Stuff

If you haven’t installed TG2, you’ll need to do that first (see
TurboGears 2.2.2 Standard Installation). Once you’ve got an up-to-date version of TG2,
you’ll need to install FirePython and some dependancies, which you can
do by:

easy_install firepython
easy_install python-cjson
easy_install jsonpickle

After that’s done, you can create a new TG2 project in the normal
way:

paster quickstart firepythontest
...
cd firepythontest
paster serve development.ini --reload

Your project should now be started, and you should be able to browse to it at http://127.0.0.1:8080

Adding FirePython Support

Now, you’re ready to add FirePython Middleware to your app:

Edit firepythontest/config/middleware.py

Add:

from firepython.middleware import FirePythonWSGI

Insert After line “app = make_base_app(global_conf, full_stack=True,
**app_conf)”:

app = FirePythonWSGI(app)

This will wrap your Turbogears App with FirePython, and any/all Log
messages will become available in Firebug.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/openid-login.png

main/Testing/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Testing TurboGears Applications

Why is writing tests so essential?

If you’re already convinced about the merits of test-driven development,
you can skip this section. But maybe you’re still wondering whether it’s
worthwile spending time writing tests instead of actually coding your
application. We usually tend to not even have time enough for writing
the code and making it work, and we’re testing the functionality anyway
while we are coding, right? Will it not unnecessarily slow down your whole
development process?

The reality is, as you will see very soon when you start writing automated
tests, that you will not only be writing better software, but developing the
software will even become less expensive and faster. How so? Well, you may
have experienced it already: While it is quite simple to fix bugs during the
design and implementation phase, once your software will be released and
in production, the time needed for fixing bugs will drastically increase.
This is because with every change you make to fix one bug, you may break
other code and introduce new bugs. You will have to check the functionality
manually over and over again. However, if you have automated tests, you will
notice such problems immediately when running your test suite.

Besides these obvious benefits of automated tests, they inevitably generate
other positive side effects. For example, if you want to automate your testing,
you have to write code in a way that is testable. Such code automatically
tends to have a much better quality, because it is usually less complex and
better structured, therefore more robust and easier to understand and maintain.
Tests often reveal problems with edge cases that you wouldn’t have thought
about before writing or executing the tests. As another side benefit, the
test suite can partially replace written documentation with use case examples
and detailed specification of how the code should actually work.

If you have a carefully written test suite in place, it will also encourage
you to refactor your code to make it less complex or more performant. Without
such a test suite, you would be reluctant to make such changes because of the
old saying “never touch a running system.” But the automated tests will assure
that you won’t break anything during the refactoring, and in the end, the code
will become even better.

If you do not write automated tests, you will inevitably spend much more time
debugging and manually testing your system. And you will never be sure that
your last change didn’t break anything. Your development will be driven by
fear of failure and stagnate, while with automated tests, you can always be
confident about your code and you are encouraged to improve it even more.

Since the benefits of autmated tests are so overwhelming, they are not
considered an annoying duty you carried out after writing your code, but some
developers even start writing code by writing the corresponding test (“test
first development” or “test driven development”). This approach sounds
illogical at first, but it has several advantages, besides making sure that
every function in the code is accompanied by an automated test. In the end,
you will find out that test driven programming makes writing tests fun and you
will start wondering how you ever had written programs without writing tests.

Unit testing with “Nose”

The foundation of all automated testing is the so-called “unit testing”.
As the name says, a “unit test” will only test one unit of your code at
a time, i.e. the smallest testable parts of your application. In our case,
this is usually a Python method or function. One of the basic principles
of unit testing is that each test should be independent from the others.

The Python standard library provides the unittest [http://docs.python.org/library/unittest.html] framework that helps
you to write unit tests based on these principles. Alternatively, you can
also write tests using the doctest [http://docs.python.org/library/doctest.html] module in the Python standard library.
This allows you to embed your tests in the docstrings of your code, nicely
utilizing the mentioned overlap between writing tests and documentation.

A popular Python tool that extends the basic unittest framework is nose [http://somethingaboutorange.com/mrl/projects/nose/].
It makes writing unit tests even easier by providing more and simpler ways
of collecting the tests, running the tests and setting up the so-called
“test fixtures”. The nose framework also provides a plugin mechanism
for adding in further test-related tools such as the “coverage” module
allowing you to measure exact code coverage of your application.

Nose is used as the base for testing TurboGears applications as well as
TurboGears itself, and therefore will be automatically installed together
with TurboGears. You can run the tests with the nosetests command.
Let’s try this with a quickstarted TurboGears application:

$ paster quickstart --noinput myapp
$ cd myapp
$ python setup.py develop
$ paster setup-app development.ini
$ nosetests

....................
--
Ran 20 tests in 3.000s

OK

As you see, the quickstarted application already comes with 20 tests which
you can use as the starting point for building the complete test suite for
your application, and which should all pass unless you changed anything to
your application. Nose is able to find these tests due to certain naming
conventions. So you don’t need to manually specify where your tests are when
writing and executing the tests. This is one of the many features that makes
testing with nose so comfortable. By the way, nose will also be used when
running the test command of setuptools, i.e. you can also run the tests
with python setup.py test or python setup.py nosetests. However,
the nosetests command is simpler to type and you can pass it a lot of
useful command-line options. For instance, the option -v (for “verbose”)
will display more information about the individual tests nose has collected:

$ nosetests -v

Anonymous users are forced to login ok
Logouts must work correctly ... ok
Voluntary logins must work correctly ... ok
The data display demo works with HTML ... ok
The data display demo works with JSON ... ok
Displaying the wsgi environ works ... ok
The front page is working properly ... ok
Anonymous users must not access the secure controller ... ok
The editor cannot access the secure controller ... ok
The manager can access the secure controller ... ok
Model objects can be created ... ok
Model objects can be queried ... ok
that Model objects can be created ... ok
Model objects can be queried ... ok
Model objects can be created ... ok
Users should be fetcheable by their email addresses ... ok
User objects should have no permission by default ... ok
The obj constructor must set the email right ... ok
The obj constructor must set the user name right ... ok
Model objects can be queried ... ok

--
Ran 20 tests in 3.000s

OK

You will find all of these tests in the package tests inside your
TurboGears application. This package has been divided into two subpackages,
functional and models. The models package contains unit tests
for your model classes. The functional package contains tests for the
controllers of your application. Since they test the whole application stack,
they are actually not unit tests, but so-called “functional tests”
or “integration tests”. Let’s have a look at the example tests in these
packages in more detail.

Testing your model classes

The model package inside your test package comes with a simple base class
for testing your SQLAlchemy model classes, called ModelTest. Unit tests
allow setting up a so-called “test fixture” with a setUp() method, often
accompanied by a tearDown() method for cleaning up the fixture after use.
The ModelTest class uses this mechanism for creating a model object
and writing it to the database. The example test class for the User
model class, using ModelTest as its base class, looks like this:

class TestUser(ModelTest):
 """Unit test case for the ``User`` model."""

 klass = model.User
 attrs = dict(
 user_name = u"ignucius",
 email_address = u"ignucius@example.org"
)

 def test_obj_creation_username(self):
 """The obj constructor must set the user name right"""
 eq_(self.obj.user_name, u"ignucius")

 def test_obj_creation_email(self):
 """The obj constructor must set the email right"""
 eq_(self.obj.email_address, u"ignucius@example.org")

 def test_no_permissions_by_default(self):
 """User objects should have no permission by default."""
 eq_(len(self.obj.permissions), 0)

 def test_getting_by_email(self):
 """Users should be fetcheable by their email addresses"""
 him = model.User.by_email_address(u"ignucius@example.org")
 eq_(him, self.obj)

You will find this code in the test_auth module, because the User class
is defined in the model.auth module of your application. For clarity, the
names of the test files should correspond to the name of the files they are
testing. As you see, you need to specify the name of the model class with the
klass attribute, and you can also specify the attributes for initializing
the model object in attrs. You don’t need to add tests for creating and
querying users from the database, as these tests are already inherited from the
base class MOdelTest. The object that is created by the setUp() method
is stored in the obj member. The eq_ function used in the four test
method has been imported from nose.tools and is just a shorthand for the
assert statement that is actually at the core of every unit test.
So the first test method is equivalent to:

def test_obj_creation_username(self):
 """The obj constructor must set the user name right"""
 assert self.obj.user_name == u"ignucius"

The nose.tools package contains some more of such convenience functions
and decorators. A more useful one is the raises decorator for checking
whether your test method raises a certain (expected) exception.

Let’s assume we want to add a property top_level_domain to our User
class that returns the top level domain of the user’s email address. As
already mentioned, it is a good idea to write the unit test before writing
the actual code. So we add the following method to our TestUser class:

def test_top_level_domain_property(self):
 """The top level domain must be returned as a property"""
 eq_(self.obj.top_level_domain, 'org')

You see how simple it is to add a uni test, and that this test also documents
that we do not want the returned value to start with a dot. Let’s run our
test suite. If you don’t want to run the full test suite, you can specify
the tests to run as arguments on the command line, like this:

$ nosetests myapp.tests.models.test_auth

..........E
==
ERROR: The top level domain must be returned as a property
--
Traceback (most recent call last):
 ...
 eq_(self.obj.top_level_domain, 'org')
AttributeError: 'User' object has no attribute 'top_level_domain'

--
Ran 11 tests in 0.063s

FAILED (errors=1)

As expected, the test failed, because we haven’t added any code to the
User class yet. However, it is important to verify that the test is actually
picked up by nose and that it really fails if the tested functionality is
not implemented. Let’s now add our top_level_domain property to the
User class which can be found in the file myapp/model/auth.py:

@property
def top_level_domain(self):
 """Return the top level domain of the user's email address."""
 return self.email_address.rsplit('.', 1)[-1]

We re-run our test suite to check that this code is working properly:

$ nosetests

.....................
--
Ran 21 tests in 3.125s

OK

Et voilà, we know that our new property is working. You soon will start to
love these little dots indicating that your tests are passing...

Testing your controllers

As already mentioned, you will find the tests for the example controller
methods of your quickstarted application in the tests.functional
package. There are actually two test modules, test_authentication
for testing the user login provided by the authentication sub-system,
and test_root for testing the actual functionality of the root controller.

Again, the quickstarted test package provides a base class TestController
for all of these tests. In its setUp() method, it creates an instance
of your application which is then stored in the app attribute and run.
By default, this application instance has authentication disabled. The idea
behind this is that you test authentication separately from the actual
functionality of the controller, and independently of which kind of
authentication you have configured. Here is the test for the front page
provided by the root controller of your quickstarted application:

class TestRootController(TestController):
 """Tests for the method in the root controller."""

 def test_index(self):
 """The front page is working properly"""
 response = self.app.get('/')
 msg = 'TurboGears 2 is rapid web application development toolkit '\
 'designed to make your life easier.'
 # You can look for specific strings:
 assert_true(msg in response)

In self.app you actually get a wrapper around the WSGI application, which
is provided by the WebTest [http://pythonpaste.org/webtest/] utility. This wrapper provides a convenient
interface for testing WSGI applications like those created with TurboGears.
What is so nice about this approach is that you don’t need to run a web
server for the functional tests, which makes testing much speedier. WebTest
simply simulates the full request-response cycle for you.

As you see in the first line of the test_index() method, you can send a
request to your imaginary webserver using the get() method. As the method
name indicates, this is a GET request. For a POST request, you would use
the post() method. You can also add headers as argument ot the get()
or post() method. As return value, you will get a response object. This
response object has the usual attributes such as status , headers,
body, and request plus some additional functionality for testing.
For instance, as you see in the example above, msg in response allows
you to check that the string msg is found in the response body. The
assert_true function is imported from nose.tools again and simply
checks that the given expression is true.

Some of the example methods of the root controller require authorization.
There is also the secc subcontroller which is set up so that only
users with “manage” permission, such as the “manager”, can access it in
a quickstarted application. The following test verifies this by trying
to access the secc controller as user “editor”:

def test_secc_with_editor(self):
 """The editor cannot access the secure controller"""
 environ = {'REMOTE_USER': 'editor'}
 self.app.get('/secc', extra_environ=environ, status=403)

As you can see here, you can pass extra environment variables and an expected
HTTP status code (in this case 403, i.e. “forbidden”) to the get() method
of the test application. We still need to check that we can access the
secc controller when we log in as “manager”:

def test_secc_with_manager(self):
 """The manager can access the secure controller"""
 environ = {'REMOTE_USER': 'manager'}
 resp = self.app.get('/secc', extra_environ=environ, status=200)
 assert 'Secure Controller here' in resp.body, resp.body

In this case, the response should have the HTTP status code 200 (i.e. “ok”).
The text “Secure Controller here” is displayed to the user by the index
method method of the secure controller using a flash message. You don’t
need to worry that the flash mechanism is using a cookie in the background;
the testing framework handles all of this transparently for you.

In the case that the assert statement fails, it prints the response body as
an error message. This helps you to fix spelling errors in your expected text.
You can also print the values of all the objects in failed assert statements
by running nosetests with the -d option. Another way of inspecting
the values of objects involved in your test is simply adding print statements
to your test methods. Note that nose very conveniently will only display
the output of failing tests. Even interactive debugging of your tests is
possible with the --pdb and --pdb-failures options of nose.

You can set up the configuration used for your test suite in the test.ini
configuration file. Note that by default, an in-memory database will be used,
but most of the other settings will be the same as in your development
environment, because by default the test.ini file has the following entry:

[app:main]
sqlalchemy.url = sqlite:///:memory:
use = config:development.ini

Measuring code coverage

Your goal should be to have a test suite covering 100% of your application
code. How can you make sure this is the case, and there are no untested areas?
Luckily, with coverage.py [http://nedbatchelder.com/code/coverage/] you have a useful tool for measuring code coverage
of any Python program. You need to install it first, which is as simple as:

$ easy_install coverage

You can instruct nose to run the coverage tool on your test suite and print
a coverage report, using the following options:

$ nosetests --with-coverage --cover-package=myapp

Name Stmts Exec Cover Missing

myapp 1 1 100%
myapp.config 1 1 100%
myapp.config.app_cfg 22 22 100%
myapp.config.environment 4 4 100%
myapp.config.middleware 8 8 100%
myapp.controllers 1 1 100%
myapp.controllers.error 9 9 100%
myapp.controllers.root 51 44 86% 47, 63, 69, ...
myapp.controllers.secure 13 12 92% 31
myapp.lib 1 1 100%
myapp.lib.app_globals 5 5 100%
myapp.lib.base 13 13 100%
myapp.lib.helpers 2 2 100%
myapp.model 11 11 100%
myapp.model.auth 79 69 87% 17-18, 83, 86, ...
myapp.templates 1 1 100%
myapp.websetup 11 11 100%
myapp.websetup.bootstrap 38 32 84% 49-54
myapp.websetup.schema 9 9 100%

TOTAL 280 256 91%

Ran 21 tests in 5.359s

This is already quite a good coverage. Let’s try to improve the coverage
of the root controller. The report shows that line 47 of the
controllers.root module is missing, and if you open the file with an
editor, you will find that this is the controller method for the “about” page.
You can add the following test method to the TestRootController class
in the tests.functional.test_root module to fix this:

def test_about(self):
 """The about page can be displayed"""
 response = self.app.get('/about.html')
 assert_true('<h2>Architectural basics'
 ' of a quickstart TG2 site.</h2>' in response)

The report also shows that lines 83 and 86 of the model.auth module are
not covered, and you will find that these are __repr__() and unicode()
methods of the Group class. You can fix this by adding two test methods
to the TestGroup class in the tests.models.test_auth module:

def test_obj_repr(self):
 """The obj has a proper string representation"""
 eq_(repr(self.obj), "<Group: name=test_group>")

def test_obj_unicode(self):
 """The obj can be converted to a unicode string"""
 eq_(unicode(self.obj), u"test_group")

If you now print a coverage report again, you will notice that the coverage
has increased from 91% to 92%.

Want to learn more?

If you want to learn more about testing TurboGears applications,
we recommend studying the following online ressources:

		The Testing chapter of the Pylons book [http://pylonsbook.com/en/1.1/testing.html]

		The documentation of the nose [http://somethingaboutorange.com/mrl/projects/nose/] testing framework

		Testing Applications with WebTest [http://pythonpaste.org/webtest/]

		Test utilites for repoze.who-powered applications [http://code.gustavonarea.net/repoze.who-testutil/]

		The documentation of the unittest [http://docs.python.org/library/unittest.html] and doctest [http://docs.python.org/library/doctest.html] packages
in the Python standard library

		The documentation of the coverage.py [http://nedbatchelder.com/code/coverage/] tool

		Introduction to Test Driven Design [http://www.agiledata.org/essays/tdd.html]

		The Python testing tools mailing list (testing_in_python [http://lists.idyll.org/listinfo/testing-in-python])

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Controllers.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Writing Controller Methods

The nerve center of your TurboGears application is the
controller. It ultimately handles all user actions, because every
HTTP request arrives here first. The controller acts on the request
and can call upon other TurboGears components (the template engines,
database layers, etc.) as its logic directs.

When the TurboGears server receives an HTTP request, the requested URL
is mapped as a call to your controller code located in
controllers.py. Page names map to functions within the controller
class.

For example:

		URL
		Maps to

		http://localhost:8080/index
		Root.index()

		http://localhost:8080/mypage
		Root.mypage()

Quick Example

Suppose using paster quickstart you generate a TurboGears project
named “HelloWorld”. Your default controller code would be created in
the file HelloWorld/helloworld/controllers/root.py.

Modify the default controllers.py to read as follows:

"""Main Controller"""
from helloworld.lib.base import BaseController
from tg import expose, flash
#from tg import redirect, validate
#from helloworld.model import DBSession

class RootController(BaseController):

 @expose()
 def index(self):
 return "<h1>Hello World</h1>"

 @expose()
 def _default(self, *args, **kw):
 return "This page is not ready"

When you load the root URL http://localhost:8080/index in your web
browser, you’ll see a page with the message “Hello World” on it. In
addition, any of these URLs will return the same result.

Implementing A Catch-All Url Via The _default() Method

URLs not explicitly mapped to other methods of the controller will
generally be directed to the method named _default(). With the
above example, requesting any URL besides /index, for example
http://localhost:8080/hello, will return the message “This page is
not ready”.

Adding More Pages

When you are ready to add another page to your site, for example at
the URL

http://localhost:8080/anotherpage

add another method to class RootController as follows:

@expose()
def anotherpage(self):
 return "<h1>There are more pages in my website</h1>"

Now, the URL /anotherpage will return:

There are more pages in my website

Line By Line Explanation

"""Main Controller"""
from helloworld.lib.base import BaseController
from tg import expose, flash
from tg.i18n import ugettext as _
#from tg import redirect, validate
#from helloworld.model import DBSession

First you need to import the required modules.

There’s a lot going on here, including some stuff for internationalization.
But we’re going to gloss over some of that for now. The key thing to notice is
that you are importing a BaseController, which your RootController must inherit
from. If you’re particularly astute, you’ll have noticed that you import this
BaseController from the lib module of your own project, and not from TurboGears.

TurboGears provides a base TGController which is imported in the lib
folder of the current project (HelloWorld/helloworld/lib) so that you
can modify it to suit the needs of your application. For example, you
can define actions which will happen on every request, add parameters
to every template call, and otherwise do what you need to the request
on the way in, and on the way out.

The next thing to notice is that we are importing expose from tg.

BaseController classes and the expose decorator are the basis of TurboGears
controllers. The @expose decorator declares that your method should be
exposed to the web, and provides you with the ability to say how the results
of the controller should be rendered.

The other imports are there in case you do internationalization,
use the HTTP redirect function, validate inputs/outputs, or use the models.

class RootController(BaseController):

RootController is the required standard name for the
RootController class of a TurboGears application and it should inherit
from the BaseController class. It is thereby specified as the
request handler class for the website’s root.

In TurboGears 2 the web site is represented by a tree of controller
objects and their methods, and a TurboGears website always grows out
from the RootController class.

def index(self):
 return "<h1>Hello World</h1>"

We’ll look at the methods of the RootController class next.

The index method is the start point of any TurboGears controller
class. Each of the URLs

		http://localhost:8080

		http://localhost:8080/

		http://localhost:8080/index

is mapped to the RootController.index() method.

If a URL is requested and does not map to a specific method, the
_default() method of the controller class is called:

def _default(self):
 return "This page is not ready"

In this example, all pages except the three URLs listed above will
map to the _default method.

As you can see from the examples, the response to a given URL is
determined by the method it maps to.

@expose()

The @expose() seen before each controller method directs
TurboGears controllers to make the method accessible through the web
server. Methods in the controller class that are not “exposed” can
not be called directly by requesting a URL from the server.

There is much more to @expose(). It will be our access to TurboGears
sophisticated rendering features that we will explore shortly.

Are You Sure You Wanted To expose Strings All The Time?

As shown above, controller methods return the data of your website. So far, we
have returned this data as literal strings. You could produce a whole site by
returning only strings containing raw HTML from your controller methods, but it
would be difficult to maintain, since Python code and HTML code would not be
cleanly separated.

Expose + Template == Good

To enable a cleaner solution, data from your TurboGears controller can be
returned as strings, or as a dictionary.

With @expose(), a dictionary can be passed from the controller to a template
which fills in its placeholder keys with the dictionary values and then returns
the filled template output to the browser.

Template Example

A simple template file called sample could be made like
this:

<html>
 <head>
<title>TurboGears Templating Example</title>
 </head>
 <body>
 <h2>I just want to say that ${person} should be the next
 ${office} of the United States.</h2>
 </body>
</html>

The ${param} syntax in the template indicates some undetermined
values to be filled.

We provide them by adding a method to the controller like this ...

@expose(template="helloworld.templates.sample")
def example(self):
 mydata = {'person':'Tony Blair','office':'President'}
 return mydata

... then the following is made possible:

		The web user goes to http://localhost:8080/example.

		The example method is called.

		The method example returns a Python dict.

		@expose processes the dict through the template file named
sample.html.

		The dict values are substituted into the final web response.

		The web user sees a marked up page saying:

I just want to say that Tony Blair should be the next President of the United States.

Template files can thus house all markup information, maintaining clean
separation from controller code.

SubControllers And The URL Hierarchy

Sometimes your web-app needs a URL structure that’s more than one
level deep.

TurboGears provides for this by traversing the object hierarchy, to
find a method that can handle your request.

To make a sub-controller, all you need to do is make your
sub-controller inherit from the object class. However there’s a
SubController class Controller in your project’s lib.base
(HelloWorld/helloworld/lib/base.py) for you to use if you want a
central place to add helper methods or other functionality to your
SubControllers:

from lib.base import BaseController
from tg import redirect

class MovieController(BaseController):
 @expose()
 def index(self):
 redirect('list/')

 @expose()
 def list(self):
 return 'hello'

class RootController(BaseController):
 movie = MovieController()

With these in place, you can follow the link:

		http://localhost:8080/movie/

		http://localhost:8080/movie/index

and you will be redirected to:

		http://localhost:8080/movie/list/

Unlike turbogears 1, going to http://localhost:8080/movie will not
redirect you to http://localhost:8080/movie/list. This is due to some
interesting bit about the way WSGI works. But it’s also the right
thing to do from the perspective of URL joins. Because you didn’t
have a trailing slash, there’s no way to know you meant to be in the
movie directory, so redirection to relative URLs will be based on the
last / in the URL. In this case the root of the site.

It’s easy enough to get around this, all you have to do is write your
redirect like this:

redirect('/movie/list/')

Which provides the redirect method with an absolute path, and takes
you exactly where you wanted to go, no matter where you came from.

Passing Parameters To The Controller

Now that you have the basic routing dispatch understood, you may be
wondering how parameters are passed into the controller methods.
After all, a framework would not be of much use unless it could accept
data streams from the user.

TurboGears uses introspection to assign values to the arguments in
your controller methods. This happens using the same duck-typing you
may be familiar with if you are a frequent python programmer. Here is
the basic approach:

		
		The dispatcher gobbles up as much of the URL as it can to find the

		correct controller method associated with your request.

		The remaining url items are then mapped to the parameters in the method.

		If there are still remaining parameters they are mapped to *args in the method signature.

		
		If there are named parameters, (as in a form request, or a GET request with parameters), they are mapped to the

		args which match their names, and if there are leftovers, they are placed in **kw.

Here is an example controller and a chart outlining the way urls are mapped to it’s methods:

class WikiController(TGController):

 def index(self):
 """returns a list of wiki pages"""
 ...

 def _default(self, *args):
 """returns one wikipage"""
 ...

 def create(self, title, text, author='anonymous', **kw):
 wikipage = Page(title=tile, text=text, author=author, tags=str(kw))
 DBSession.add(wikipage)

 def update(self, title, **kw):
 wikipage = DBSession.query(Page).get(title)
 for key, value in kw:
 setattr(wikipage, key, value)

 def delete(self, title):
 wikipage = DBSession.query(Page).get(title)
 DBSession.delete(wikipage)

		URL
		Method
		Argument Assignments

		/
		index
		

		/NewPage
		_default
		args : [‘NewPage’]

		/create/NewPage?text=More Information
		create
		text: ‘More Information’

		title: ‘NewPage’

		/update/NewPage?author=Lenny
		update
		kw: {‘author’:’Lenny’}

		title: ‘NewPage’

		/delete/NewPage
		delete
		title :’NewPage’

The parameters that are turned into arguments arrive in string format.
It is a good idea to use Python’s type casting capabilities to change
the arguments into the types the rest of your program expects. For
instance, if you pass an integer ‘id’ into your function you might use
id = int(id) to cast it into an int before usage. Another way to
accomplish this feat is to use the @validate decorator, which is
explained in FormEncode @validate, and TurboGears Validation

Ignore Unused Parameters

By default TurboGears2 will complain about parameters that the controller
method was not expecting. If this is causing any issue as you need to share
between all the urls a parameter that it is used by your javascript framework
or for any other reason, you can use ignore_parameters option to have
TurboGears2 ignore them. Just add the list of parameters to ignore in
config/app_cfg.py:

base_config.ignore_parameters = ['timestamp', 'param_name']

You will still be able to access them from the tg.request object if you
need them for any reason.

Differences Between Dispatch In TurboGears 1.x and 2.x

Here are the major differences in dispatch between
CherryPy/Turbogears1 and TurboGears 2.

		We have not yet implemented cherrypy’s mechanism that replaces dots
in the URL with underscores when looking up a method name. If this
feature is important to you let us know on the mailing list.

		TurboGears2 implements a Quixote inspired lookup method which allows
you to do customized dispatch at controller execution time.

		TurboGears2 implements a new REST-based for resource-driven
dispatch.

		TurboGears2 provides an easy path for supporting mime-type
extensions as part of dispatch.

		Redirect does not know “where you are” in the object tree and move
you on from there, it just joins the URL the user requested, with
the absolute or relative URL you provide. Using absolute URLs is
recommended.

Advanced Topics

		Content Types and Request Extensions

		The TGController Class

		Developing RESTful Web Applications with TurboGears

		Mounting WSGI Applications as TG Controllers

API References

		tg.controllers – Controllers

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

modules/pylons/decorators.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

 		Modules »

pylons.decorators – Decorators

Pylons Decorators

Common decorators intended for use in controllers. Additional
decorators for use with controllers are in the
cache, rest and
secure modules.

Module Contents

		
pylons.decorators.jsonify(func)

		Action decorator that formats output for JSON

Given a function that will return content, this decorator will turn
the result into JSON, with a content-type of ‘application/json’ and
output it.

		
pylons.decorators.validate(schema=None, validators=None, form=None, variable_decode=False, dict_char='.', list_char='-', post_only=True, state=None, on_get=False, **htmlfill_kwargs)

		Validate input either for a FormEncode schema, or individual
validators

Given a form schema or dict of validators, validate will attempt to
validate the schema or validator list.

If validation was successful, the valid result dict will be saved
as self.form_result. Otherwise, the action will be re-run as if
it was a GET, and the output will be filled by FormEncode’s
htmlfill to fill in the form field errors.

		schema

		Refers to a FormEncode Schema object to use during validation.

		form

		Method used to display the form, which will be used to get the
HTML representation of the form for error filling.

		variable_decode

		Boolean to indicate whether FormEncode’s variable decode
function should be run on the form input before validation.

		dict_char

		Passed through to FormEncode. Toggles the form field naming
scheme used to determine what is used to represent a dict. This
option is only applicable when used with variable_decode=True.

		list_char

		Passed through to FormEncode. Toggles the form field naming
scheme used to determine what is used to represent a list. This
option is only applicable when used with variable_decode=True.

		post_only

		Boolean that indicates whether or not GET (query) variables
should be included during validation.

Warning

post_only applies to where the arguments to be
validated come from. It does not restrict the form to
only working with post, merely only checking POST vars.

		state

		Passed through to FormEncode for use in validators that utilize
a state object.

		on_get

		Whether to validate on GET requests. By default only POST
requests are validated.

Example:

class SomeController(BaseController):

 def create(self, id):
 return render('/myform.mako')

 @validate(schema=model.forms.myshema(), form='create')
 def update(self, id):
 # Do something with self.form_result
 pass

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/validate.png
Welcome to TurboGears 2
& ‘The Python web metaframework

Gene

Oiscors

Relsse Date - Pess eter the gt nthe form /ey

deprecated/ToscaWidgets/Cookbook/ActiveForm.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		ToscaWidgets Cookbook »

Creating Ajax-Enabled Forms Using Prototype

Installation

easy_install tw.prototype

Usage

from tg import expose, flash, redirect, TGController
import pylons

from tw.forms.fields import *
from tw.prototype.activeform import ActiveForm
from twtools.frameworks.tg2.activeform import ActiveFormResponseHandler

from formencode.validators import Int, String

children = [TextField('non_empty_string', validator=String(not_empty=True)),
 TextField('integer', validator=Int()),
]
activeForm = ActiveForm(id='myActiveForm',
 action='submit',
 children=children,
 clear_on_success=True,
 on_success="console.log('hello!')")

class ExampleController(TGController):

 @expose('tw.prototype.examples.tg2.templates.index')
 def form(self, **kw):
 pylons.c.widget = activeForm
 return dict()

 def submitSuccess(self, **kw):
 #this is where your database call goes
 print kw

 activeFormHandler = ActiveFormResponseHandler(activeForm, submitSuccess)
 submit = activeFormHandler.ajax_submit

Todo

Difficulty: Medium. This is nothing but code snippets. Add text describing what the code does.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/openlayersmap.png

main/SQLAlchemy.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Working With SQLAlchemy And Your Data Model

SQLAlchemy [http://www.sqlalchemy.org/] is a modern Object Relational Mapper [http://en.wikipedia.org/wiki/Object-relational_mapping], that provides an
extremely powerful and flexible system for managing the connection
between in-memory Python objects and the relational datastore that
provides persistence for those objects. One of the main goals of
SQLAlchemy is to allow for the full power of both Object Oriented
development and Relational Algebra based datastores to be used
together in a way that’s natural to your application.

TurboGears Integration

TurboGears SQLAlchemy integration is entirely pushed into the
generated quickstart template, so you are totally free to edit your
model packages, remove all SQLAlchemy references, and turn off the use
of SQLAlchemy in app_cfg.py.

The main reason for this is not to make it easy to remove
SQLAlchemy though that is a nice side effect, instead, the motivation
was to make it easier to build applications with multiple datastores,
which is a common requirement for large-scale applications that either
need to talk to so called integration databases which are shared
between a large number of applications in an organization, or which
need to do some horizontal partitioning of their database in order to
scale up to thousands of requests per second.

Getting Started

If you don’t know how SQLAlchemy works at all, please take a few
minutes to read over these excellent tutorials:

		ORM Tutorial [http://www.sqlalchemy.org/docs/05/ormtutorial.html] – which covers the ORM parts of SQLAlchemy

		SQLAlchemy Expressions [http://www.sqlalchemy.org/docs/05/sqlexpression.html] – which covers using the SQLAlchemy
expression language

Your quickstarted project will have a subpackage called model, made
up of the following files:

		__init__.py: This is where the database access is set up. Your
tables should be imported into this module, and you’re highly
encouraged to define them in a separate module - entities, for
example.

		auth.py: This file will be created if you enabled authentication
and authorization in the quickstart. It defines the three tables
repoze.what.quickstart relies on: User (for the registered
members in your website), Group (for the teams a member may belong
to, and to which you can assign permissions) and Permission (a
permission granted to one or more groups); it also defines two
intermediary tables: One for the many-to-many relationship between
the groups and the permissions, and another one for the many-to-many
relationship between the users and the groups.

Auto-reflection of tables has to happen after all the configuration is
read, and the app is set up, so we provide simple init_model method
(defined in model/__init__.py) that is not called until after
everything is set up for you.

Defining Your Own Tables

There are two methods for table definition with SQLAlchemy:

		The traditional, which consists in defining the table and a class to
interact with this table, separately, and finally map the table to
the relevant class. If you are new to SQLAlchemy, you’re encouraged
to start with the method below, because with this one things may
seem more complicated.

		The declarative method, which relies on a built-in plugin for
SQLAlchemy called Declarative [http://www.sqlalchemy.org/docs/05/ormtutorial.html#creating-table-class-and-mapper-all-at-once-declaratively]. This is the most intuitive method
for table definition.

The tables defined by the quickstart in model/auth.py are based on
the declarative method, so you may want to check it out to see how
columns are defined for these tables, as well as to see real examples
of many-to-one, one-to-many and many-to-many relationships. For more
information, you may read the ORM Tutorial [http://www.sqlalchemy.org/docs/05/ormtutorial.html] and
documentation for the Declarative [http://www.sqlalchemy.org/docs/05/ormtutorial.html#creating-table-class-and-mapper-all-at-once-declaratively] extension.

Once you have defined your tables in a separate module in the model
package, they should be imported from model/__init__.py. So the end
of this file would look like this:

Import your model modules here.
from auth import User, Group, Permission
Say you defined these three classes in the 'movies'
module of your 'model' package.
from movies import Movie, Actor, Director

Choosing Data Types

When you’re setting up the column types for your tables, you don’t
have to think about your target database and its type system.
SQLAlchemy [http://www.sqlalchemy.org/] provides a flexible underlying type system that, along with
the table definition syntax above, allows you to define
database-independent table objects.

SQLAlchemy [http://www.sqlalchemy.org/] provides a number of built-in types which it automatically
maps to underlying database types. If you want the latest and
greatest listing just type:

>>> from sqlalchemy import types
>>> dir(types)

Data Types

The main types are:

		type
		value

		types.Binary
		binary

		types.Boolean
		boolean

		types.Integer
		integer

		types.Numeric
		number

		types.String
		string

		types.Date
		date

		types.Time
		time

		types.DateTime
		datetime

Properties

As you define a column, you can specify several properties to control
the column’s behavior.

		property
		value

		primary_key
		True/False

		nullable
		True/False

Basic Object Relational Mapping

Once you’ve got a table, such as the movie_table we’re using in this
example, you can create a Movie class to support a more object
oriented way of manipulating your data:

class Movie(object):
 def __init__(self, title, year, description, **kw):
 self.title = title
 self.year = year
 self.description = description

 def __repr__(self):
 return (u"<Movie('%s','%s', '%s')>" % (self.title, self.year, self.description)).encode('utf-8')

If you don’t define the __init__ method. You will need to update the
properties of a movie object after it’s been created. like this:

>>> entry = Movie()
>>> entry.title = 'Dracula'
>>> entry.year = '1931'
>>> entry.description = 'vampire movie'

If you’re following along with the tutorial, you’ll want to make sure
that you’ve defined the __init__ method. We’ll use the Movie class to
create new Movie instances, and set their data all at once throughout
the rest of the tutorial.

If you defined the __init__ method, it allows you to initialize the
properties at the same time while you create the object:

>>> entry = Movie(title='Dracula', year='1931', description='vampire movie')

or

>>> entry = Movie('Dracula', '1931', 'vampire movie')

It looks better.

Using Non-Default Names For Auth-Related Classes

If you don’t want to use the default names for your auth-related
classes, it’s easy to replace them. Please check the documentation for
repoze.what to learn how to do it.

Quick Database Creation

Once you’ve got your database table objects defined (and imported into
__init__.py if you didn’t define your model in __init__.py), you can
create the tables in the database with one simple command, just run:

paster setup-app development.ini

from within your project’s home directory.

Pylons (the TurboGears 2 underground framework) defines a setup-app
function that paster will use to connect to the database and create
all the tables we’ve defined.

The default database setup configurations are defined in
development.ini. So if you just run the script without modification of
development.ini, the script will create a single-file database called
‘devdata.db’ in your project directory. If you change your data model
and want to apply the new database, delete ‘devdata.db’ and run the
‘paster setup-app’ command again.

TurboGears 2 does support database migrations. But that’s another
tutorial (Database Schema Migrations).

Reference:

		ORM Tutorial [http://www.sqlalchemy.org/docs/05/ormtutorial.html]

Getting Help

		If you need help with SQLAlchemy, you may:

		
		Read the SQLAlchemy Documentation [http://www.sqlalchemy.org/docs/05/].

		Join the SQLAlchemy Mailing List [http://groups.google.com/group/sqlalchemy?hl=en].

		Join the #sqlalchemy channel on Freenode.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_static/hello-evalexception.jpg
(<[>][(&) [+] @ hup: siocainosts0sonello o cooge)

Module genshi.template.eval:136 in evaluate & view r
Module 2:10 in <Expression u'now.strftime('3¥')"> &
>>>data
[{}, {'select': <function select at 0x25551£0>}, {'select': <function select at 0x2555070>},
('XML': <function XML at 0x17£7£70>, 'tg flash': '', ‘header': <function header at 0x24fbib0>,
‘defined’: <function defined at 0x24£b270>, 'sidebar_top': <function sidebar top at
0x24£b3£0>, 'tmpl_context': <pylons.util.AttribSafeContext0bj at 0x23fbel0 action=u'route’,
controller=u'root', controller url=u'hello’, environ={'routes.route': <routes.base.Route
object at 0x2327e50>, 'H...ate'), form errors=(}, form values=UnicodeMultiDict([]),
pylons=<pylons.util.PylonsContext object at 0x23fb910>, start responses<function
repl_start response at 0x24£b1£0>, url=u'hello’, w=(]>, 'value of': <function value of at
0x24£b230>, 'HIML': <function HTML at 0x17b38b0>, 'sidebar bottom': <function sidebar_bottom
at 0x24£b430>, 'tg': <module 'tg’ from '/Users/markramm-
christensen/python/turbogears/trunk/tg/__init_.pyc'>, 'ET': <function ET at 0x17£2bb0>,
‘footer': <function footer at 0x24fb530>, 'resources': (}}]
data ({), {'select': <function select at 0x25551£0>), {'select': <function select at 0x2555070sg |
view
<< <div class="foottext">
<p>TurboGears 2 is a open source front-to-back web development
</div>
</aiv>
Module genshi.template.eval:267 in lookup_attr @ view
Module genshitemplate.eval:236 in _die ® view
UndefinedError: "now" not defined S

main/Caching.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Caching

Caching is a common techneque to achieve performance goals,
when a web application has to perform some operation that
could take a long time. There are two major types of caching
used in Web Applications:

		Whole-page caching –
works at the HTTP protocol level to avoid entire requests to the
server by having either the user’s browser, or an intermediate
proxy server (such as Squid) intercept the request and return
a cached copy of the file.

		Application-level caching – works within the application server
to cache computed values, often the results of complex database
queries, so that future requests can avoid needing to re-caculate
the values.

Most web applications can only make very selective use of HTTP-level caching,
such as for caching generated RSS feeds, but that use of HTTP-level
caching can dramatically reduce load on your server, particularly
when using an external proxy such as Squid and encountering a
high-traffic event (such as the Slashdot Effect).

For web applications, application-level caching provides a flexible way to
cache the results of complex queries so that the total load of a given
controller method can be reduced to a few user-specific or case-specific
queries and the rendering overhead of a template. Even within templates,
application-level caching can be used to cache rendered HTML for those
fragments of the interface which are comparatively static, such as
database-configured menus, reducing potentially recursive database queries
to simple memory-based cache lookups.

Application-level Caching (Beaker)

TurboGears comes with application-level caching
middleware enabled by default in QuickStarted projects. The
middleware, Beaker [http://beaker.groovie.org] is the same
package which provides Session storage for QuickStarted
projects. Beaker is the standard cache framework of the
Pylons web framework, on which TurboGears 2.2.2 is based.

Beaker supports a variety of backends which can be used for
cache or session storage:

		memory – per-process storage, extremely fast

		filesystem – per-server storage, very fast, multi-process

		“DBM” database – per-server storage, fairly fast, multi-process

		SQLAlchemy database – per-database-server storage, integrated into
your main DB infrastructure, so potentially shared, replicated, etc.,
but generally slower than memory, filesystem or DBM approaches

		Memcached – (potentially) multi-server memory-based cache,
extremely fast, but with some system setup requirements

Each of these backends can be configured from your
application’s configuration file, and the resulting caches can be
used with the same API within your application.

Using the Cache

The configured Beaker cache is provided by the pylons module.
This is more properly thought of as a CacheManager, as it provides
access to multiple independent cache namespaces. To access the
cache from within a controller module:

from tg import cache
@expose()
def some_action(self, day):
 # hypothetical action that uses a 'day' variable as its key

 def expensive_function():
 # do something that takes a lot of cpu/resources
 return expensive_call()

 # Get a cache for a specific namespace, you can name it whatever
 # you want, in this case its 'my_function'
 mycache = cache.get_cache('my_function')

 # Get the value, this will create the cache copy the first time
 # and any time it expires (in seconds, so 3600 = one hour)
 cachedvalue = mycache.get_value(
 key=day,
 createfunc=expensive_function,
 expiretime=3600
)
 return dict(myvalue=cachedvalue)

The Beaker cache is a two-level namespace, with the keys at each level
being string values. The call to cache.get_cache() retrieves a cache
namespace which will map a set of string keys to stored values. Each value
that is stored in the cache must be pickle-able [http://docs.python.org/lib/module-pickle.html].

Pay attention to the keys you are using to store your cached values. You
need to be sure that your keys encode all of the information that the
results being cached depend upon in a unique manner. In the example above,
we use day as the key for our cached value, on the assumption that this
is the only value which affects the calculation of expensive_function,
if there were multiple parameters involved, we would need to encode each of
them into the key.

Note

The Beaker API exposed here requires that your functions for
calculating complex values be callables taking 0 arguments.
Often you will use a nested function to provide this interface
as simply as possible. This function will only be called if there
is a cache miss, that is, if the cache does not currently have
the given key recorded (or the recorded key has expired).

Other Cache Operations

The cache also supports the removal values from the cache, using the key(s) to
identify the value(s) to be removed and it also supports clearing the cache
completely, should it need to be reset.

Clear the cache
mycache.clear()

Remove a specific key
mycache.remove_value('some_key')

Template Caching

Genshi Loader Cache

genshi will retrieve the templates from a cache if they have not changed.
This cache has a default size of 25, when there are more than 25,
the least recently used templates will be removed from this cache.

You can change this behavior by setting the genshi.max_cache_size option
into the development.ini:

[app:main]
genshi.max_cache_size=100

Another speed boost can be achieved by disabling template automatic reloading.

[app:main]
auto_reload_templates = false

Prerendered Templates Caches

In templates, the cache namespace will automatically be set to the name of
the template being rendered. To cache a template you just have to return
the tg_cache option from the controller that renders the cached template.

tg_cache is a dictionary that accepts the following keys:

		key: The cache key. Default: None

		expire: how long the cache must stay alive. Default: never expires

		type: memory, dbm, memcached. Default: dbm

if any of the keys is available the others will default, if all three
are missing caching will be disabled.
For example to enable caching for 1 hour for the profile of an user:

@expose('myproj.templates.profile')
def profile(self, username):
 user = DBSession.query(User).filter_by(user_name=user_name).first()
 return dict(user=user, tg_cache=dict(key=user_name, expire=3600))

Configuring Beaker

Beaker is configured in your QuickStarted application’s main configuration
file in the app:main section.

To use memory-based caching:

[app:main]
beaker.cache.type = memory

To use file-based caching:

[app:main]
beaker.cache.type = file
beaker.cache.data_dir = /tmp/cache/beaker
beaker.cache.lock_dir = /tmp/lock/beaker

To use DBM-file-based caching:

[app:main]
beaker.cache.type = dbm
beaker.cache.data_dir = /tmp/cache/beaker
beaker.cache.lock_dir = /tmp/lock/beaker

To use SQLAlchemy-based caching you must provide the url parameter
for the Beaker configuration. This can be any valid SQLAlchemy
URL, the Beaker storage table will be created by Beaker if
necessary:

[app:main]
beaker.cache.type = ext:database
beaker.cache.url = sqlite:///tmp/cache/beaker.sqlite

Memcached

Memcached allows for creating a pool of colaborating servers which
manage a single distributed cache which can be shared by large numbers of
front-end servers (i.e. TurboGears instances). Memcached can be extremely
fast and scales up very well, but it involves an external daemon process
which (normally) must be maintained (and secured) by your sysadmin.

Memcached is a system-level daemon which is intended
for use solely on “trusted” networks, there is little or no security provided
by the daemon (it trusts anyone who can connect to it), so you should never
run the daemon on a network which can be accessed by the public! To repeat,
do not run memcached without a firewall or other network partitioning
mechanism! Further, be careful about storing any sensitive or
authentication/authorization data in memcache, as any attacker who can
gain access to the network can access this information.

Ubuntu/Debian servers will generally have memcached configured by default
to only run on the localhost interface, and will have a small amount of
memory (say 64MB) configured. The /etc/memcached.conf file can be
edited to change those parameters. The memcached daemon will also normally
be deactivated by default on installation. A basic memcached installation
might look like this on an Ubuntu host:

sudo apt-get install memcached
sudo vim /etc/default/memcached
ENABLE_MEMCACHED=yes
sudo vim /etc/memcached.conf
Set your desired parameters...
sudo /etc/init.d/memcached restart
now install the Python-side client library...
note that there are other implementations as well...
easy_install python-memcached

You then need to configure TurboGears/Pylon’s beaker support to use the
memcached daemon in your .ini files:

[app:main]
beaker.cache.type = ext:memcached
beaker.cache.url = 127.0.0.1:11211
you can also store sessions in memcached, should you wish
beaker.session.type = ext:memcached
beaker.session.url = 127.0.0.1:11211

You can have multiple memcached servers specified using ; separators.
Usage, as you might imagine is the same as with any other Beaker cache
configuration (that is, to some extent, the point of the
Beaker Cache abstraction, after all):

References

		Beaker Caching [http://beaker.groovie.org/caching.html] – discussion of use of Beaker’s caching services

		Beaker Configuration [http://beaker.groovie.org/configuration.html] – the various parameters which can be used to configure Beaker in your config files

		Memcached [http://www.danga.com/memcached/] – the memcached project

		Python Memcached [http://www.tummy.com/Community/software/python-memcached/] – Python client-side binding for memcached

		Caching for Performance [http://web.archive.org/web/20060424171425/http://www.webperformance.org/caching/caching_for_performance.pdf]
– Stephen Pierzchala’s general introduction to the concept of
caching in order to improve web-site performance

HTTP-Level Caching

HTTP supports caching of whole responses (web-pages,
images, script-files and the like). This kind of caching
can dramatically speed up web-sites where the bulk of the
content being served is largely static, or changes predictably,
or where some commonly viewed page (such as a home-page) requires
complex operations to generate.

HTTP-level caching is handled by external services, such as
a Squid [http://www.squid-cache.org/] proxy or the user’s
browser cache. The web application’s role in HTTP-level caching
is simply to signal to the external service what level of caching
is appropriate for a given piece of content.

Note

If any part of you page has to be dynamically generated,
even the simplest fragment, such as a user-name, for each
request HTTP caching likely will not work for you. Once the
page is HTTP-cached, the application server will not recieve any
further requests until the cache expires, so it will not
generally be able to do even minor customizations.

Browser-side Caching with ETag

HTTP/1.1 supports the ETag caching system that
allows the browser to use its own cache instead of requiring regeneration of
the entire page. ETag-based caching avoids repeated generation of content but
if the browser has never seen the page before, the page will still be
generated. Therefore using ETag caching in conjunction with one of the other
types of caching listed here will achieve optimal throughput and avoid
unnecessary calls on resource-intensive operations.

Caching via ETag involves sending the browser an ETag header so that it knows
to save and possibly use a cached copy of the page from its own cache, instead
of requesting the application to send a fresh copy.

The etag_cache() function will set the proper HTTP headers if the browser
doesn’t yet have a copy of the page. Otherwise, a 304 HTTP Exception will be
thrown that is then caught by Paste middleware and turned into a proper 304
response to the browser. This will cause the browser to use its own
locally-cached copy.

etag_cache() returns pylons.response for legacy purposes
(tg.response should be used directly instead).

ETag-based caching requires a single key which is sent in the ETag HTTP header
back to the browser. The RFC specification for HTTP headers [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html] indicates that an
ETag header merely needs to be a string. This value of this string does not
need to be unique for every URL as the browser itself determines whether to use
its own copy, this decision is based on the URL and the ETag key.

from tg.controllers.util import etag_cache
def my_action(self):
 etag_cache('somekey')
 return render('/show.myt', cache_expire=3600)

Or to change other aspects of the response:

from tg.controllers.util import etag_cache
from tg import response
def my_action(self):
 etag_cache('somekey')
 response.headers['content-type'] = 'text/plain'
 return render('/show.myt', cache_expire=3600)

Note

In this example that we are using template caching in addition to ETag
caching. If a new visitor comes to the site, we avoid re-rendering the
template if a cached copy exists and repeat hits to the page by that user
will then trigger the ETag cache. This example also will never change the
ETag key, so the browsers cache will always be used if it has one.

The frequency with which an ETag cache key is changed will depend on the web
application and the developer’s assessment of how often the browser should be
prompted to fetch a fresh copy of the page.

		ETag

		From Wikipedia [http://en.wikipedia.org/wiki/HTTP_ETag] An ETag
(entity tag) is an HTTP response header returned by an HTTP/1.1
compliant web server used to determine change in content at a given
URL.

Todo

Add links to Beaker region (task-specific caching mechanisms) support.

Todo

Document what the default Beaker cache setup is for TG 2.2.2 quickstarted projects (file-based, likely).

Todo

Provide code-sample for use of cache within templates

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/WebFlash.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Displaying Flash/Notice Messages

TurboGears provides a way to display short messages inside the current
or next page. This works by using the WebFlash module which stores
short text messages inside a cookie so that it can be retrieved
when needed.

Default Setup

By Default the master.html of a quickstarted project provides a div
where flash messages will be displayed, this is achieved with the
following lines of code:

<py:with vars="flash=tg.flash_obj.render('flash', use_js=False)">
 <div py:if="flash" py:replace="Markup(flash)" />
</py:with>

The tg.flash_obj is the WebFlash object which is available inside
any rendered template. This object permits to retrieve the current
flash message and display it.

Storing Flash Messages

Flash messages can be stored using the tg.flash command
this allows to store a message with a status option to configure
the flash style.

tg.flash('Message', 'status')

If the method that called flash performs a redirect the flash
will be visible inside the redirected page.
If the method directly exposes a template the flash will be
visible inside the template itself.

Styling the Flash

By default warning, error, info, ok statuses
provide a style. Any number of statuses can be configured
using plain css:

#flash .ok {
 background:#d8ecd8 url(../images/ok.png) no-repeat scroll 10px center;
}

#flash .warning {
 background:#fff483 url(../images/warning.png) no-repeat scroll 10px center;
}

#flash .error {
 background:#f9c5c1 url(../images/error.png) no-repeat scroll 10px center;
}

#flash .info {
 background:#EEEEFF url(../images/info.png) no-repeat scroll 10px center;
}

Caching with Flash Messages

When using tg_cache variable in rendered templates (Prerendered Templates Caches)
the flash will get into the cached template causing unwanted messages to be displayed.

To solve this issue the tg.flash_obj.render method provides the use_js option.
By default this option is set at False inside the template, changing it to True
will make the flash message to be rendered using javascript. This makes so that the same
template is always rendered with a javascript to fetch the flash message and display it
due to the fact that the template won’t change anymore it will now be possible to
correctly cache it.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/CommandLine.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Command Line Reference

TurboGears2 delegates its command line tasks to Paste. TG1.x uses the
built-in command tgadmin which was dropped in favor of the more
robust Paste infrastructure.

What is PasteScript?

PasteScript is a part of the Paste group of libraries, which provides
the very basic foundation on which TurboGears and Pylons are
built. You can think of Paste [http://pythonpaste.org/] as a very useful group of things.

As for PasteScript [http://pythonpaste.org/script/] it is composed of two parts Templates and Commands,
the first takes care of code generation tasks (like quickstart), the
second is an extensible command line utility (like tginfo)

If you are interested in learning how to build your own Paster command
please visit http://pythonpaste.org/script/developer.html

How Does It Integrate With TurboGears 2?

PasteScript provides a single command-line script named paster
which is built to be self-explanatory. Try it out on the command
line: it should give you a big list of commands. There is also a
paster help <command> command that will give you additional
information about all commands that it provides.

Using a setuptools mechanism known as “entry point” TurboGears, as
well as any other project that uses PasteScript, is able to add
extensions to the paster command; for example if you execute paster
with no parameters you will see a “TurboGears2” section.

What are the TurboGears commands?

Please note that not all paster commands are expected to work with
a TurboGears 2.2.2 project. However, if you experience an error using
paster we encourage you to report it. Below is a list of the most important
commands you will use in your journey in the world of TurboGears 2.2.2.
Be sure to run paster help on each of them to get all the possible command
line switches.

		paster command
		action

		paster quickstart <project_name>
		initialize new project

		paster serve <config_file>
		serve project configured in <config_file>

		paster tginfo
		list tg files in current path

		paster shell <config_file>
		start python shell, loading project models

		paster setup-app <config_file>
		initialize project using config_file

paster quickstart

This is probably the first command you will encounter when developing
on TurboGears, it will create a base project for you with everything
you need to get started and explanations for everything. In case you
are wondering this is a small wrapper around paster create to
provide a TG1-like command.

paster serve

This is used to start the built-in server. This is a very robust
implementation (multi-threaded, SSL support, etc.) which means several
people use it in production. That said, you should take a look at our
Deployment docs. The most common usage for this command is:

$ paster serve --reload development.ini

The above command will enable the reloading of the server every time
you save a file, which is a very nice feature :)

paster tginfo

This command is designed to display a rather big chunk of information
regarding your TurboGears installation, and it’s designed to
troubleshoot installation problems. Therefore it should be the first
thing you should run to be certain your system is healthy.

paster shell

This starts a python shell with your TurboGears application
loaded. The most important feature here is that your model is also
loaded, therefore you can experiment with your database.

Note

Changes made to your database from within paster shell are
encapsulated in a transaction. In other words, your changes won’t
be saved unless you commit:

import transaction
transaction.commit()

paster setup-app

setup-app provides two crucial pieces of functionality.

		Set up your database schema.

		Add bootstrap data to your database.

Your project will have a folder called websetup which contains
schema.py and bootstrap.py. Each of these can be customized to add
additional functionality to your bootstrapping process. For instance,
if you have additional default users you would like added, you would
add them in at the bottom of bootstrap.py inside the bootstrap()
function, before the transaction.commit(). The command looks
something like this:

paster setup-app development.ini

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/tg2pagination_fig3.png
Movie List |

& = {
1. "Into the Wild" (2007) 1
2. "The Big Lebowsky" (1998) {
3. "Pulp Fiction” (1994)
4. "Dead Man" (1995) \
5. "Night on Earth” (1991) {
& = |

Add a Movie {

recipesandfaq.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

Tips and Recipes

This page collects documentation which describes how to work with
TurboGears to accomplish an effect. Normally you should have completed
a few Getting Started so that you have a feel for the general workflow
within TurboGears before you dive into these documents.

Core: Read These Pages!

These pages are the most useful pages for a new TurboGears developer
to read after going through the tutorials. Reading the material
here will help make you a more productive developer with TurboGears.

We cannot stress this enough: Read These Pages!

		Authentication and Authorization in TurboGears 2

		FormEncode @validate, and TurboGears Validation

		Writing Controller Methods

		Genshi How-To

		TurboGears 2 Configuration

		Configuring and using the Logging System

		Handling Internationalization And Localization

Todo

link repoze.who, repoze.what, and the other key middleware

Modeling Your Application

SQLAlchemy is the default data-storage layer for TurboGears 2.2.2.
Ming is supported as the alternative storage layer for MongoDB.
The SQLAlchemy-migrate project is the officially supported mechanism
for updating and migrating your database.

		Working With SQLAlchemy And Your Data Model

		Database Schema Migrations

		SQLAlchemy Master Slave Load Balancing

		Working With Ming And MongoDB

		SQLAlchemy and Transaction Config Settings

		Using Multiple Databases In TurboGears

Todo

Document initial DB setup in websetup.py

Todo

Link DB setup (MySQL, PostgreSQL, etceteras) docs

Todo

document the transaction module, part of the repoze.tm package, introduction for implementers here... http://repoze.org/tmdemo.html

Handling HTTP Requests (Controllers)

		Writing Controller Methods

		Web Session Usage

		FormEncode @validate, and TurboGears Validation

		TurboGears Autogenerated Forms Overview

		Pagination Quickstart For Turbogears2

		Authentication and Authorization in TurboGears 2

		Adding OpenID Support

		webob – WebOb

		Displaying Flash/Notice Messages

		tg.decorators – Decorators

		Content Types and Request Extensions

		A Request’s Flow Through The TurboGears Stack

		Caching

		Routes Integration in TG2

		Streaming Response

		Generating RSS and Atom Feeds

Todo

Document “community” sites; user-signup mechanisms (e.g. tgext.registration2), OpenID,
Recaptcha, etceteras as sub-section

Automatic Forms/Controllers

The TurboGears Admin system is built on top of the Sprox and tgext.crud
system. You can use the same automatically generated forms and
controllers to help you quickly prototype your applications. The
Movie Tutorial introduces this usage of
Sprox [http://www.sprox.org].

		Developing RESTful Web Applications with TurboGears

		TurboGears Automatic CRUD Generation

		TurboGears Administration System

Templates/Views

By default your TurboGears 2.2.2 project will be configured to use the
Genshi templating language. TurboGears allows for the
use of alternate templating languages.

Note: most new users do not need to choose an alternate templating language.

		Genshi How-To

		Templating Options

		Why Mako?

		Why Jinja?

Javascript Libraries

Modern web-sites are dynamic, flexible, Javascript-code-heavy pieces
of software. You will almost certainly want to use one of the major
Javascript libraries to make the process of creating your sites less
painful. The ToscaWidgets package provides plug-ins for each of the
three major libraries, JQuery, Dojo and Ext, as well as the older
Mochikit package which was the default in TurboGears 1.x.

		Adding a JavaScript Library Include to Every Page

Todo

JQuery, Dojo, EXT usage doc-links

Todo

Link documentation for doing JSON RPC/Ajax here

Old Recipes

		Full Description of master.html

		ToscaWidgets

		Using ToscaWidgets to Create Forms

		ToscaWidgets Cookbook

		Adding Captcha To Your Form

		JQuery FlexiGrid Widget

		JQuery Flot Widget

		JQuery TreeView Widget Tutorial

		JQuery AjaxForm Widget

		Adding JSON with MochiKit to the wiki20

Testing

		Testing TurboGears Applications
		Why is writing tests so essential?

		Unit testing with “Nose”

		Testing your model classes

		Testing your controllers

		Measuring code coverage

		Want to learn more?

Installation and Deployment

		TurboGears 2.2.2 Standard Installation
		Recommended Installation Environment

		System Package Installation

		Installation for the Impatient

		Explaining the Installation Process

		Running the Installed Environment

		Upgrading TurboGears

		Install a Database Driver

		What’s Next?

		Alternate Installation Process
		32-bit Windows

		Mac OSX Install

		Linux Root Install

		Python 2.4 Installation

		Install Via PIP

		Source Install (Development Version)

		Deployment
		Standard Deployment Pattern

		Apache Web Server

		Apache Mod-WSGI

		Production Database

		Production Config

		Deploying Your Project Code

		Deploying your TG application with an Egg and Easy Install

		Optimizing Toscawidgets Resources

		Alternate Deployment Patterns

		Deploy with a Source Code Checkout

		Deploying as a Service/Daemon

		Running TurboGears 2.2.2 behind Apache with Mod Proxy

		FastCGI/WSGI – Running TurboGears 2.2.2 behind Apache

		Lighttpd and FastCGI

		NGINX Web Server

Todo

Difficulty Medium: document how to “freeze” applications (PIP, zc.buildout, etceteras) for re-deployment with precisely the same software on each machine (no downloads etceteras)

Todo

document use of Nginx beyond just saying you can do it

Todo

(maybe) document use of Twisted WSGI wrapper?

Tools

		Profiling Your App

		ToolBox

		Command Line Reference

		TurboGears 2 Configuration

		Configuring and using the Logging System

		Command Line Scripts

		Scheduling Tasks

Special Effects and Extensions

		Using PyAMF With TurboGears2

		Using FirePython With TurboGears2

		Using Authorize.net in a TurboGears Form

		tgext.geo: Geographic Extensions for TurboGears

Todo

Document use of Ming [http://merciless.sourceforge.net/] and MongoDB [http://www.mongodb.org/] with TurboGears

Real-time Web

		Real-time TurboGears Introduction

		Moksha

Performance and optimization

		Profiling Your App

		Template Performance

		Caching

Todo

Difficulty: Medium. optimization tips for SQLAlchemy usage

Todo

Difficulty: Easy. Validate that toctree maxdepth values are appropriate

Todo

Difficulty: Easy. Explain usage of tgscheduler and how to use SQLAlchemy in a task

Next Steps

		About the TurboGears Project – learn how TurboGears 2.2.2 works, changes since the 1.x release, and how to contribute to the project

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/flot11.png
B 10
‘Simple Flot Example

main/Config/ToscaWidgets.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		TurboGears 2 Configuration »

ToscaWidgets Config Settings

		Status:		Official

Table of Contents

		ToscaWidgets Config Settings
		TW Minification

		Toscawidgets Versions

		AppConfig Method Overrides

ToscaWidgets itself has a few different configuration settings. Here’s a few
ways you can modify the way ToscaWidgets renders content.

TW Minification

TW 0.9.9+ support resource variants. This allows the developers to point TW at a different
javascript/css/image library in the event you want to change the js files that are used. This
is usually employed in minification of the javascript files. This is valuable when you want to
run “debug” mode on your js files in development, but “minified” on production for speedups.

You can set this variable in two ways. Add the following line to your .ini file as:

#for "minified" files
toscawidgets.framework.resource_variant=min

#for "debug" files
toscawidgets.framework.resource_variant=debug

Note that this only works if your js wrapper has actually been set up to have multiple variants.
If the library does not have variants, this variable will be ignored.

Toscawidgets Versions

TurboGears supports both the 0.9.x branches of ToscaWidgets and the 2.x TW code.
ToscaWidgets is currently at a crossroads, with the 0.9.x branch being a very stable
codebase, and TW2 providing speed benefits, easier use, and a simpler, easier to debug
codebase. TW2 is currently in alpha, so it’s up to you to determine it’s level
of stability before usage. TW and TW2 can be used simultaneously. To use them,
modify the following config options:

base_config.use_toscawidgets – Set to False to turn off
Toscawidgets. (default is True)

base_config.use_toscawidgets2 – Set to True to turn on
Toscawidgets2. (default is False)

What this does is to allow ToscaWidgets to provide hooks for both entry and exit. On
entry, ToscaWidgets handles server requests that are directed directly to the widget
itself, bypassing the TG Controllers. On exit, TW middleware provides resource injection,
which can actually insert links to resources like javascript files into your HTML code
automatically. Both TW 0.9.x and TW 2.x support this usage. There is more information
on [tw_middleware [http://toscawidgets.org/documentation/ToscaWidgets/modules/resource_injector.html]] and [tw2_middleware [http://toscawidgets.org/documentation/tw2.core/core.html#middleware]].

AppConfig Method Overrides

		
AppConfig.add_tosca_middleware(app)

		Configure the ToscaWidgets middleware.

If you would like to override the way the TW middleware works, you might do something like:

from tg.configuration import AppConfig
from tw.api import make_middleware as tw_middleware

class MyAppConfig(AppConfig):

 def add_tosca2_middleware(self, app):

 app = tw_middleware(app, {
 'toscawidgets.framework.default_view': self.default_renderer,
 'toscawidgets.framework.translator': ugettext,
 'toscawidgets.middleware.inject_resources': False,
 })
 return app

base_config = MyAppConfig()

The above example would disable resource injection.

There is more information about the settings you can change
in the ToscaWidgets middleware. <http://toscawidgets.org/documentation/ToscaWidgets/modules/middleware.html>

		
AppConfig.add_tosca2_middleware(app)

		Configure the ToscaWidgets2 middleware.

If you would like to override the way the TW2 middleware works,
you might do change your app_cfg.py to add something like:

from tg.configuration import AppConfig
from tw2.core.middleware import TwMiddleware

class MyAppConfig(AppConfig):

 def add_tosca2_middleware(self, app):

 app = TwMiddleware(app,
 default_engine=self.default_renderer,
 translator=ugettext,
 auto_reload_templates = False
)

 return app
base_config = MyAppConfig()

The above example would always set the template auto reloading off. (This is normally an
option that is set within your application’s ini file.)

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/arrow-right.png

_images/movie_form_1.png
New Movie

Title

Year

Release Date |02/22/2009

Genre Action & Adventure

Description

main/Extensions/Geo/MapFishTutorial.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Extensions and Tools »

 		tgext.geo: Geographic Extensions for TurboGears »

tgext.geo MapFish Tutorial

Introduction

MapFish is a Web Application Framework for developing Geographic
Applications. It has two components, a server component and a client
component. The client component comprises a Javascript mapping toolkit
based on ExtJS and OpenLayers, whereas the server component is based
on the Pylons web framework. The MapFish server uses a set of paster
commands for creating controller and model code that make use of the
following components for providing a fully editable GIS vector layer
functionality.

		SQLAlchemyGeom : Introduces a new data type (Geometry) in
SQLAlchemy

		Shapely : A python GIS library for manipulation of 2D geospatial
geometries

		GeoJSON : A JSON encoder / decoder for simple GIS features

tgext.geo makes use of modified paster commands that create model and
controller code for TG2 apps. The model uses reflection to map a
PostGIS table to the created model class. The controller is mounted on
the root controller and used for CRUD operations on the GIS database
using GeoJSON.

About This Tutorial

In this tutorial we create a TG2 app and use the tgext.geo extension
to create a GIS vector layer. We also make use of tw.openlayers to
create a map with a WMS base layer and an overlay of vector data
retrieved from the tgext.geo backend.

Installation

It is assumed that a fresh virtualenv has been created and TG2
installed following the TurboGears 2.2.2 Standard Installation. Install tgext.geo
using easy_install:

(tg2env)$ easy_install -i http://www.turbogears.org/2.0/downloads/current/index tgext.geo

Make sure that tw.openlayers is installed:

(tg2env)$ easy_install tw.openlayers

MapFish uses a PostGIS backend for storing Geographic data. Install
instructions for PostGIS can be found here
<http://postgis.refractions.net/documentation/>_. Additionally, we
need to install the following:

(tg2env)$ easy_install -i http://www.turbogears.org/2.0/downloads/current/index egenix-mx-base
(tg2env)$ easy_install -i http://www.turbogears.org/2.0/downloads/current/index psycopg2

Creating A New TG2 App

Create a new TG2 app with gis capability use the following paster
command:

(tg2env)$ paster quickstart VectorApp --geo
(tg2env)$ cd VectorApp

Create A MapFish Layers Config

Create a MapFish Layers config in the file layers.ini in the project
folder and add the necessary configuration. The layers.ini file should
have layer definitions as sections, e.g. [mylayer] followed by a
series of parameter value pairs in the param=value format. For this
example, we use a layer definition like this:

[countries]
singular=country
db=gisdb
table=world_fb
epsg=4326
units=degrees
geomcolumn=the_geom
idcolumn=Integer:gid

In the above example, a layer named countries would be created. The
singular param is used for creating the model class with the first
letter capitalized. In this case the model class would be Country
. The db should be a the PostGIS database and table the table name
to be mapped to the model class using database metadata reflection
(SQLAlchemy autoload feature). epsg should have the EPSG (European
Petroleum Survey Group) code for the desired datum and projection for
the geometry data. geomcolumn should have the name of the column
containing the geometry data. idcolumn should contain the data type
and name of the primary key column.

Creating The Geo Model And Controller

Once the layers.ini file has been created in the project folder, the
model and controller can be created by creating a new layer using the
following paster command:

(tg2env)$ paster geo-layer countries

where countries is the new controller and should match the layer name
defined in the layers.ini file. Now edit the root controller
(package/controllers/root.py) to import the new controller and mount
it inside the RootController class:

from vectorapp.controllers.countries import CountriesController

class RootController(BaseController):
 countries = CountriesController()

The countries controller should now be accessible at the url location
http://<host>:<port>/countries.

Pointing the browser to the above url should show up all objects
(records) in the PostGIS table as JSON (GeoJSON).

Displaying The Vector Data As A Layer In An OpenLayers Map

We are now ready to access the vector data from the PostGIS spatial
database using the new countries controller. We now need to use the
tw.openlayers ToscaWidgets Library to create a map and use the data
returned by the countries controller as a vector layer in the map. We
also make use of some OpenLayers based javascript code to select
features on mouse hover and display them in the sidebar div.

Initialize The Widgets In Controller

The tw.openlayers has library of widgets for creating Map, Layers and
Controls using OpenLayers. The following paragraphs show how the
layers, controls and the map widgets are initialized. First we need to
import the necessary symbols from the ToscaWidgets and the
tw.openlayers API:

from tw.api import WidgetsList, js_symbol
from tw.openlayers import Map, GML, WMS, LayerSwitcher, OverviewMap, \
 MouseToolbar, MousePosition, PanZoomBar, \
 Permalink, SelectFeature

We create the layers as a WidgetsList which contains several
layers. Our data would be fetched into the transportation layer
which is defined as a GML (Geography Markup Language) layer. In
OpenLayers the GML layer is used to create a vector layer using data
obtained in specific vector formats. In this case, the option format:
OpenLayers.Format.GeoJSON indicates that our data would be in GeoJSON
format. Note the use of js_symbol function used from the
ToscaWidgets API. This is useful in passing Javascript symbols to the
encapsulated Javascript code. Otherwise the expression would get
passed as a string. The url parameter of GML specifies the url to be
used to fetch the data. In this case a relative path to the countries
controller is specified:

class MyLayers(WidgetsList):
 ol = WMS(name="OpenLayers WMS",
 url=["http://labs.metacarta.com/wms/vmap0"],
 options = {'layers':'basic'})
 nasa = WMS(name="NASA Global Mosaic",
 url=['http://t1.hypercube.telascience.org/cgi-bin/landsat7'],
 options={'layers': 'landsat7'})
 transportation = GML(name="Transportation", url="countries",
 options = {
 "format": js_symbol(" OpenLayers.Format.GeoJSON"),
 "isBaseLayer": False,
 "projection": js_symbol(' new OpenLayers.Projection("EPSG:4326")')
 })

We have to also initialize the required controls as a WidgetsList. Out
of these the SelectFeature is the most interesting in this
example. Feature selection takes place on hovering the mouse over the
feature geometry as specified by the “hover”: True option. The
Javascript custom functions show_info() and erase_info() would be
called respectively when a feature is selected or unselected:

class MyControls(WidgetsList):
 ls = LayerSwitcher()
 ovm = OverviewMap()
 mtb = MouseToolbar()
 mp = MousePosition()
 pzb = PanZoomBar()
 pl = Permalink()
 sf = SelectFeature(layer_name="Transportation", options={
 "hover": True,
 "onSelect": js_symbol("show_info"),
 "onUnselect": js_symbol("erase_info")})

The Map widget is initialized using the layers and controls
initialized earlier:

mymap = Map(id="map", layers=MyLayers(), controls=MyControls(),
 center=(15,0), zoom=3)

Finally, we use the Map widget inside the controller method to stick
it to the template context:

class RootController(BaseController):
 countries = CountriesController()

 @expose('geogrid.templates.index')
 def index(self):
 pylons.c.map = mymap
 return dict(page='index')

Adding The Style Code

The following stylesheet code may be added to suite the map display:

<style>
#map {
 width: 480px;
 height: 480px;
 border: 2px solid #0000ff;
 float: left;
}
</style>

Define The Javascript Functions

We had called two custom Javascript functions on feature select and
unselect. These functions could be either included within a pair of
<script> tags in the head section of index.html template or included
as a file placed at the package/public/javascript folder:

<script type="text/javascript">
 function show_info (feature) {
 $("sb_top").innerHTML = "
Country : " + feature.attributes.country +
 "
Airports : " + feature.attributes.airports +
 "
Roadways : " + feature.attributes.roadways +
 "
Railways : " + feature.attributes.railways +
 "
Waterways : " + feature.attributes.waterways;
 }

 function erase_info(feature) {
 $("sb_top").innerHTML = "
Select a country by hovering the mouse over it.";
 }
</script>

Add The Widget In The HTML Body

The template HTML code would be modified to render the map by calling
the widget from the template context:

<body>
 ${sidebar_top()}
 ${tmpl_context.map()}
 <div class="clearingdiv" />
 <div class="notice"> Thank you for choosing TurboGears.
 </div>
</body>

See tgext.geo And tw.openlayers In Action

Its time to see tgext.geo and tw.openlayers in action now. Run the
paster command to start the local HTTP server:

(tg2env)$ paster serve --reload development.ini

Point your browser to http://localhost:8080 to view the map. Moving
the mouse over the countries shows data about the country in the
sidebar_top div element.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

deprecated/ToscaWidgets/ToscaWidgets.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

ToscaWidgets

ToscaWidgets are reusable web components. The idea is that a component
with some complexity, such as a popup calendar or rich text editor,
could be packaged into a self-contained unit. The component should
contain all javascript, css, resource files (such as images) and
dynamic-data (values) interaction code. The component can then be
integrated into your application without the developer having to know
about it’s internal complexity.

		Using Existing Widgets

		Using ToscaWidgets to Create Forms

		Developing Toscawidgets

		Existing ToscaWidgets Packages

		Creating ToscaWidgets Libraries

		Future Plans

		ToscaWidgets FAQ

		ToscaWidgets Cookbook

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_static/turbogears.png

_images/validator.png
D (@ 03 v caost0801moves T Giloors Q) @0

Welcome to TurboGears 2

The Python web metaframework

Create New Movie

st T

modules/tgcontroller.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		Writing Controller Methods »

tg.controllers – Controllers

Common Controller Classes

There are two main methods for defining controllers in a TG2 system.
The first method is ObjectDispatch-based, and is similar to the way
TG1 dispatch worked. RootControllers should be defined with this
class. This will allow the normal nested-style dispatch of URLS as is
expected with TG1.

The second controller is RestController, which defines a RESTful
interface for URL dispatch. This provides Controller-Specific methods
which are unique to dispatch using REST architecture. RestControllers
may be inter-twined with “regular” controllers to provide any mix of
dispatch the developer desires.

Controller classess, along with the redirect function, and the special
url function for constructing URL’s constitutes the main functionality
of the Controllers part of MVC.

		
class tg.controllers.TGController

		Bases: tg.controllers.decoratedcontroller.DecoratedController, tg.controllers.dispatcher.CoreDispatcher, crank.objectdispatcher.ObjectDispatcher

TGController is a specialized form of ObjectDispatchController that forms the
basis of standard TurboGears controllers. The “Root” controller of a standard
tg project must be a TGController.

This controller can be used as a baseclass for anything in the
object dispatch tree, but it MUST be used in the Root controller
and any controller which you intend to do object dispatch from
using Routes.

This controller has a few reserved method names which provide special functionality.

		Method
		Description
		Example URL(s)

		index
		The root of the controller.
		/

		_default
		A method to call when all other methods have failed.
		/movies

		_lookup
		Allows the developer to return a
Controller instance for further dispatch.
		/location/23.35/2343.34/elevation

		References :		Controller A basic overview on how to write controller methods.

		
class tg.controllers.RestController

		Bases: tg.controllers.decoratedcontroller.DecoratedController, tg.controllers.dispatcher.CoreDispatcher, crank.restdispatcher.RestDispatcher

A Decorated Controller that dispatches in a RESTful Manner.

This controller was designed to follow Representational State Transfer protocol, also known as REST.
The goal of this controller method is to provide the developer a way to map
RESTful URLS to controller methods directly, while still allowing Normal Object Dispatch to occur.

Here is a brief rundown of the methods which are called on dispatch along with an example URL.

		Method
		Description
		Example Method(s) / URL(s)

		get_one
		Display one record.
		GET /movies/1

		get_all
		Display all records in a resource.
		GET /movies/

		get
		A combo of get_one and get_all.
		GET /movies/

		GET /movies/1

		new
		Display a page to prompt the User for resource creation.
		GET /movies/new

		edit
		Display a page to prompt the User for resource modification.
		GET /movies/1/edit

		post
		Create a new record.
		POST /movies/

		put
		Update an existing record.
		POST /movies/1?_method=PUT

		PUT /movies/1

		post_delete
		Delete an existing record.
		POST /movies/1?_method=DELETE

		DELETE /movies/1

		get_delete
		Display a delete Confirmation page.
		GET /movies/1/delete

		delete
		A combination of post_delete and get_delete.
		GET /movies/delete

		DELETE /movies/1

		DELETE /movies/

		POST /movies/1/delete

		POST /movies/delete

You may note the ?_method on some of the URLs. This is basically a hack because exiting browsers
do not support the PUT and DELETE methods. Just note that if you decide to use a this resource with a web browser,
you will likely have to add a _method as a hidden field in your forms for these items. Also note that RestController differs
from TGController in that it offers no index, _default, or _lookup. It is intended primarily for resource management.

		References :		Controller A basic overview on how to write controller methods.

CrudRestController A way to integrate ToscaWdiget Functionality with RESTful Dispatch.

Useful Methods

		
tg.controllers.redirect(base_url='/', params={}, redirect_with=<class 'webob.exc.HTTPFound'>, **kwargs)

		Generate an HTTP redirect.

The function raises an exception internally,
which is handled by the framework. The URL may be either absolute (e.g.
http://example.com or /myfile.html) or relative. Relative URLs are
automatically converted to absolute URLs. Parameters may be specified,
which are appended to the URL. This causes an external redirect via the
browser; if the request is POST, the browser will issue GET for the
second request.

		
tg.controllers.url(base_url='/', params=None, qualified=False)

		Generate an absolute URL that’s specific to this application.

The URL function takes a string (base_url) and, appends the
SCRIPT_NAME and adds parameters for all of the
parameters passed into the params dict.

		
tg.controllers.lurl(base_url=None, params=None)

		Like tg.url but is lazily evaluated.

This is useful when creating global variables as no
request is in place.

As without a request it wouldn’t be possible
to correctly calculate the url using the SCRIPT_NAME
this demands the url resolution to when it is
displayed for the first time.

Other Classes

The ObjectDispatchController, and DecoratedController provide
controllers that can be used as endpoints for users who are using
Routes – either in addition to object dispatch, or as an alternative.

		
class tg.controllers.DecoratedController

		Bases: tg._compat.NewBase

Decorated controller object.

Creates an interface to hang decoration attributes on
controller methods for the purpose of rendering web content.

		
class tg.controllers.WSGIAppController(app, allow_only=None)

		Bases: tg.controllers.tgcontroller.TGController

A controller you can use to mount a WSGI app.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/ajaxform1.png
- Sample AJAX Form

Name [Saniiv Singh

Email [singhsaniivk@gmail com

[Thie 12 & Eeat coment!

Comment

Notty [
Submit

TurboGears s an opensouree project; help yoursef
and make yourife easier.

_images/autocomplete3.png
Field
Name

55555 Value must be one of: ALABAMA; ALASKA; AMERICAN SAMOA; ARIZONA;
ARKANSAS; CALIFORNIA; COLORADO; CONNECTICUT; DELAWARE; DISTRICT OF COLUMBIA; FEDERATED STATES
‘OF MICRONESIA; FLORIDA; GEORGIA; GUAM; HAWAII; DAHO; ILLINGIS; INDIANA; IOWA; KANSAS; KENTUCKY;
LOUISIANA; MAINE; MARSHALL ISLANDS; MARYLAND; MASSACHUSETTS; MICHIGAN; MINNESOTA; MISSISSIPP;
MISSOURI; MONTANA; NEBRASKA; NEVADA; NEW HAMPSHIRE; NEW JERSEY; NEW MEXICO; NEW YORK; NORTH
CAROLINA; NORTH DAKOTA; NORTHERN MARIANA ISLANDS; OHIO; OKLAHOMA; OREGON; PALAU;
PENNSYLVANIA; PUERTO RICO; RHODE ISLAND; SOUTH CAROLINA; SOUTH DAKOTA; TENNESSEE; TEXAS; UTAI
VERMONT; VIRGIN ISLANDS; VIRGINIA; WASHINGTON; WEST VIRGINIA; WISCONSIN; WYOMING (not SSSSSS')

Submit

_images/pullform.png
i bitbucket e o s o ey - ——————— 1

Send pul request (back o hg-gi) Whatsa"pul request>

Youte aboutto send a pullrequest o the owners o the reposiory hg-gi. Itmeans thatyou will send a notfcation (o the reposiory owner,
encouraging himher o pulin your changes.
Message:

Hi,

I hereby encourage you to pull
some changes in from my fork of Put your

hg-git. description here

You can find my changes on ...

Instead of manually specifying a location above, you can choose ane of
your repositories on bitbucket:

Select *your* forlgd
repository here

Notiy these users:
O scoty Check all upstream maintainers here

_images/add_field.png
S

Welcome to TurboGears 2

A The Python web metaframework

Create New Movie

Tide

Description

Description?

Genre

Directors

Release Date 5or64.5

_images/form_update_params.png

todo.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

All To Do Items From The Docs

For the doc sprint, todo items have been given three categories:

		Easy. Simple definitions, maybe couple of paragraphs. Expected work time: <15 minutes

		Medium. Reorganization, reformatting, taking existing notes and making them coherent (for instance: Google groups threads). Expected work time: <1 hour

		Hard. Everything else. Expected work time: Unknown (but likely a couple of hours)

Todo

Difficulty: Easy. previous paragraph referenced “widget browser” and “toolbox”
as links. These do not exist for tg2. Need to add them back in
here when they are eventually re-written.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/deprecated/SimpleWidgetForm.rst, line 396.)

Todo

Difficulty: Medium to Hard. write a tutorial to add a star rating widget to an application

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/deprecated/ToscaWidgets/Cookbook.rst, line 138.)

Todo

Difficulty: Medium to Hard. Need some basic dojo widgets here.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/deprecated/ToscaWidgets/Cookbook.rst, line 153.)

Todo

Difficulty: Medium to Hard. write tutorial to show how to update select fields based on other choices

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/deprecated/ToscaWidgets/Cookbook.rst, line 182.)

Todo

Difficulty: Medium to Hard. create a tutorial for an ajax enabled progress bar

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/deprecated/ToscaWidgets/Cookbook.rst, line 189.)

Todo

Difficulty: Medium to Hard. create a tutorial for a file upload with progress bar

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/deprecated/ToscaWidgets/Cookbook.rst, line 196.)

Todo

Difficulty: Medium to Hard. create tutorial for adding tabbed browsing to your website

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/deprecated/ToscaWidgets/Cookbook.rst, line 248.)

Todo

Difficulty: Medium. This is nothing but code snippets. Add text describing what the code does.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/deprecated/ToscaWidgets/Cookbook/ActiveForm.rst, line 50.)

Todo

Difficulty: Medium. document the answer to this question: What about if someone is using this widget for a select field, and the value they want returned is the value of the id of an object of select values in a database?

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/deprecated/ToscaWidgets/Cookbook/AutoComplete.rst, line 121.)

Todo

Difficulty: Medium. extend tutorial to include the SingleSelectCombo widget in a Form

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/deprecated/ToscaWidgets/Cookbook/ExtSingleSelectCombo.rst, line 69.)

Todo

Difficulty: Medium. extend the tutorial to populate the options list by sending a JSON request

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/deprecated/ToscaWidgets/Cookbook/ExtSingleSelectCombo.rst, line 70.)

Todo

Difficulty: Medium. extend the tutorial to have form field validation

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/deprecated/ToscaWidgets/Cookbook/ExtSingleSelectCombo.rst, line 71.)

Todo

Difficulty: Medium. This entire tutorial is code snippets. Add some text to explain what is going on

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/deprecated/ToscaWidgets/Cookbook/ExtTreeView.rst, line 63.)

Todo

Difficulty: Medium. Getting output as JSON and updating a data grid

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/deprecated/ToscaWidgets/Cookbook/JQueryAjaxForm.rst, line 116.)

Todo

Difficulty: Medium. add section about the javascript callbacks

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/deprecated/ToscaWidgets/Creation.rst, line 100.)

Todo

Difficulty: Easy. check this (.child_args), it’s been a while

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/deprecated/ToscaWidgets/Creation.rst, line 170.)

Todo

Difficulty: Hard. get the widget browser working for toscawidgets.org

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/deprecated/ToscaWidgets/Library.rst, line 94.)

Todo

Difficulty: Medium. This info is just copied over from the TG1 wiki tutorial, and needs to be vetted, expanded, and edited.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/deprecated/Wiki20/JSONMochiKit.rst, line 6.)

Todo

Difficulty: Medium. update the expose reference article for tg2

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/deprecated/Wiki20/JSONMochiKit.rst, line 39.)

Todo

Provide sample code for the “Log in with ...” implementations.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Auth/OpenID.rst, line 268.)

Todo

Difficulty Medium/Hard: document how to provide group/permission
support when using an OpenID Authentication provider.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Auth/OpenID.rst, line 299.)

Todo

Difficulty Hard: document how to store OpenID identifiers in
SQLAlchemy (i.e. add records for each new OpenID identity)

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Auth/OpenID.rst, line 301.)

Todo

Add links to Beaker region (task-specific caching mechanisms) support.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Caching.rst, line 393.)

Todo

Document what the default Beaker cache setup is for TG 2.2.2 quickstarted projects (file-based, likely).

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Caching.rst, line 394.)

Todo

Provide code-sample for use of cache within templates

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Caching.rst, line 395.)

Todo

Difficulty: Medium. More doc types will be defined here when doc templates are
brought online.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Contributing.rst, line 115.)

Todo

document use of isapi-wsgi [http://code.google.com/p/isapi-wsgi/] with TurboGears

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Deployment/Alternate.rst, line 49.)

Todo

Difficulty: Hard. Document use of IIS with TurboGears thru a proxy.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Deployment/Alternate.rst, line 50.)

Todo

Add section on “repeatable deployment options”

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Deployment/Alternate.rst, line 78.)

Todo

document Fedora/RHEL installation

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Deployment/Apache.rst, line 38.)

Todo

Priority high: Document setup of MySQL

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Deployment/DBServer.rst, line 157.)

Todo

Priority low: Document setup of Oracle

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Deployment/DBServer.rst, line 158.)

Todo

Priority low: Document setup of MSSQL

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Deployment/DBServer.rst, line 159.)

Todo

Priority low: Document deployment issues with SQLite

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Deployment/DBServer.rst, line 160.)

Todo

Priority medium: Document setup of MongoDB/Ming (not here)

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Deployment/DBServer.rst, line 162.)

Todo

Priority low: Document setup of CouchDB (not here)

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Deployment/DBServer.rst, line 163.)

Todo

Provide sample init script

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Deployment/Daemon.rst, line 27.)

Todo

Provide sample upstart

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Deployment/Daemon.rst, line 28.)

Todo

Provide sample supervisord config

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Deployment/Daemon.rst, line 29.)

Todo

Difficulty: Hard. Document usage of http://pypi.python.org/pypi/wsgisvc to deploy as a Win32 service

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Deployment/Daemon.rst, line 30.)

Todo

When we have the branch integrated, replace with easy_install modwsgideploy

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Deployment/ModWSGI.rst, line 130.)

Todo

verify whether this is still necessary in TurboGears 2.2.2

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Deployment/ProductionINI.rst, line 76.)

Todo

Document processes for repeatable local-only releases: Local PyPI,
PIP, recordeggs, whole-virtualenv checkin/checkout.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Deployment/index.rst, line 52.)

Todo

clean up the LightHTTPD + FastCGI deployment documentation

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Deployment/lighttpd+fcgi.rst, line 6.)

Todo

consolidate the 3 FastCGI documents (Mod-FastCGI, NGINX FastCGI
and LightHTTPD FastCGI) as well as the Mod-Proxy stuff.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Deployment/lighttpd+fcgi.rst, line 7.)

Todo

Need to test and document these options better
if we’re going to keep them in the official documentation.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Deployment/nginx/index.rst, line 30.)

Todo

references CherryPy, update for TG 2.2.2

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Deployment/nginx/load_balance.rst, line 23.)

Todo

Difficulty: Hard. At some point, we should also find a way to document how to
handle Horizontal and Vertical Partitioning [http://www.sqlalchemy.org/docs/05/session.html#partitioning-strategies]
properly, and document that in here, too.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/MultipleDatabases.rst, line 175.)

Todo

Difficulty: Medium to Hard. This is an empty file. We need to discuss this topic in depth.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Performance/TemplatePerformance.rst, line 5.)

Todo

Difficulty: Medium. Document writing your own render function for templates

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/main/Templates/index.rst, line 37.)

Todo

Difficulty: Medium. Understand “variable_provider”: you define
tg.config[‘variable_provider’] = callable and that returns a
dict with all the variables you want in all templates.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 9.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/7db400f92f652fd4/95c256ac817a5102?hl=en
How can I configure genshi?

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 13.)

Todo

Difficulty: Medium. add in notes regarding how to use repoze.who’s user_checker

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 20.)

Todo

Difficulty: Medium. Include these docs: http://groups.google.com/group/turbogears/browse_frm/thread/c2aa4cb5ed07f52d?hl=en
Everything there is to know about the current auth/identity in TG2

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 22.)

Todo

Difficulty: Medium. Include these docs: http://groups.google.com/group/turbogears/browse_frm/thread/3afbc13d88af57d3?hl=en TG2
repoze.who and multiple auth sources

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 25.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/f3c2c616f5530426?hl=en
Help with Authentication

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 28.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/54306a9fd9b76a7d?hl=en
How to check if the user is authorized for a controller or action

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 31.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/f6c61b5f1668e6d3?hl=en
Auth can now be configured via config [ini] files
percious: priority high

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 34.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/ba405adcabf4f78f?hl=en
Configuring LDAP authentication on turbogears2
percious: priority high on this one

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 38.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/4a87b275876647b6?hl=en
list of connected users?

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 42.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/9fab648428c20761?hl=en
login_handler

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 45.)

Todo

Difficulty: Medium. Include these docs: http://groups.google.com/group/turbogears/browse_frm/thread/f35ef3d347793682?hl=en
What’s wrong with predicates being “booleanized”

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 48.)

Todo

Difficulty: Hard. TW2 usage documentation

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 55.)

Todo

Difficulty: Easy. Add note for “validator=Schema(allow_extra_fields=True)” for ToscaWidgets and RestController classes

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 57.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/33a64a06ee4020ce?hl=en
Upload images to a TG2 app with Dojo (Ajax style)

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 59.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/bb07ff87d38367f0?hl=en
Best way to add fields on the fly to TW Forms?

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 62.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/ca5ddeabdc7cb517?hl=en
trying to inject Dojo resources with ToscaWidgets

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 65.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/72e106fc6512b1cb?hl=en
Toscawidgets form with multiple buttons
priority: low

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 68.)

Todo

Difficulty: Hard. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/a691ae9d3b31138d?hl=en
Flash Widget

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 72.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/7d5a07b4a21d7226?hl=en
Visitor IP & pre-populated toscawidget field from database

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 75.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/be2939380bfe0f2b?hl=en
Using ImageButton() as submit throws an error

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 78.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/c721e2d15bb2c134?hl=en
Return to form after custom validation and keep form data?

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 81.)

Todo

Difficulty: Medium. Document @restrict decorator, restricts request types that a given method will respond to

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 87.)

Todo

Difficulty: Medium. incorporate custom routes docs from here http://simplestation.com/locomotion/routes-in-turbogears2/
percious: There is a better way of doing this by overriding _dispatch in 2.0
so I would wait until I re-write RoutedController with _dispatch before documenting this

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 89.)

Todo

Difficulty: Hard. RestController requires that all data come in as a key/value pair, can’t just get raw POST body.
percious: not sure what you mean by this. You want to provide RestController with just a blob of data?
jorge: yes, this was the complain from europe74 this goes against the atom protocol http://tools.ietf.org/html/rfc5023#section-9.2
I think that this needs to be a trac ticket, not a doc todo

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 93.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/ad87eeef701ed1b1?hl=en
exception object in ErrorController

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 98.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_thread/thread/3ba7ca9d35fd9d75?fwc=1
mounting test-controllers/getting root-controller instance?

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 101.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/b97ee4faeb6acd53?hl=en
CRC does wacky pluralization
percious: this should probably be a trac ticket, not a doc todo.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 104.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/d4635f5eb2ad1dc4?hl=en
how could a controller method know whether it’s invoked as an error_handler or directly

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 108.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/9b451d82b410f844?hl=en
TG2 serveFile equivalent?

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 111.)

Todo

Difficulty: Medium. Include these docs: http://groups.google.com/group/turbogears/browse_frm/thread/1c4158ad3035082c?hl=en
Secure Static Files TG2

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 114.)

Todo

Difficulty: Medium. http://turbogears.org/2.0/docs/main/DownloadInstall.html references
ttp://www.turbogears.org/2.0/downloads/current/tg2-bootstrap.py and this needs to be updated.
Or does it? request from percious, the code to generate the installer currently has
tg.devtools/scripts/_installer.py and it’s fixed at 2.0 only update needed is to hg

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 120.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/263233e9a8081c7a?hl=en
easy_install and offline installation in virtualenv og TG2
percious: we need to add an offline install section to deployment. This should not be very difficult, it’s basically 2 commands.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 125.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/bbf8c847e77ca740?hl=en
TG2 on Webfaction - Make TG not see the extra part of the URL

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 129.)

Todo

Difficulty: Hard. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/92581851b407cdd6?hl=en migrate
priority: high

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 135.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/57229bc8677f0e6b/a9843e77e67af793?hl=en Problem
with accessing attributes after transaction.commit()

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 138.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/d64d27b2cf54bb2e?hl=en
Suggestion about how turbojson handle SQLAlchemy object circuit jorge: this seems like a feature request rather than a docs item

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 141.)

Todo

Difficulty: uncertain. Document how SA+TG+Transaction manager work together.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 144.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/4fc2abf3b91b9ce3?hl=en
tg_template is now override_template

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 150.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_thread/thread/1174aad1b3350b5c
TurboGears2: Overriding meta element on child template.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 153.)

Todo

Difficulty: Medium. critique the toc, and other organization.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 160.)

Todo

Difficulty: Medium: the TG logo is missing in the new theme.
It’s hard to find a place for it where it does not disturb in the new layout.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 166.)

Todo

Difficulty: Hard. add prerequisites to all pages - well, especially tutorials

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 169.)

Todo

Difficulty: Hard. Compare Our Docs to Django Docs <http://docs.djangoproject.com/en/dev/,
see where we can do better. Also compare to pylons book!

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 171.)

Todo

Difficulty: Medium. laurin is following the tutorial path.
right now, I created a tutorials directory under _static.
perhaps, all tutorial images, etc should go in there? just a thought.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 174.)

Todo

Difficulty: Medium. make docs more linky. provide link to pylons,
and why tg2 is now based on it. eventually, I’d really like to see
links to pylonsbook for specific “more information”, and how turbogears is different/expands upon it

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 178.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/1f9853eac52decd5?hl=en
Rolling back transactions in TG2 (I think this is documented, need to double check)

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 182.)

Todo

Difficulty: Hard. Resolve all tickets that match this query: http://trac.turbogears.org/query?status=new&status=assigned&status=reopened&component=Documentation&order=id

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 185.)

Todo

Difficulty: Medium. include links to “read more” - especially true of
tutorials that just scratch the surface (this kind of replaces the “more linky” todo)

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 191.)

Todo

Difficulty: Medium. parts is parts: the text on the frontgage of a quickstart says:
“standing on the shoulders of giants, since 2007” - provide a main place to
see what components are used (by default) in turbogears.
don’t be afraid to mention TG2 is built on pylons now, and link to the pylonsbook for more info

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 194.)

Todo

Difficulty: Hard. only after showing the default components - show what components can be easily switched in TG2, and how

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 199.)

Todo

Difficulty: Medium. Add lifecycle of TG project in the getting to know TG section.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 201.)

Todo

Difficulty: Medium. make sure that override_template is more visible, and provide a tutorial on how to use it

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 203.)

Todo

Difficulty: Medium. http://code.google.com/p/tgtools/source/browse/projects/tgext.admin/trunk/tgext/admin/tgadminconfig.py#114 << how to override tgext.admin controllers properly

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 205.)

Todo

Difficulty: Medium. Include these docs: http://groups.google.com/group/turbogears/browse_frm/thread/9b07a8d34611f5d7?hl=en
TG2 virtualenv MySQLdb ImportError.
Should we be providing documentation to debug MySQLdb problems? Seems out of scope.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 207.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/5dd5b090eb0d4c49?hl=en
List of Quickstarted files that are safe to remove
percious: I think this is a terrible idea to document

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 211.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/ae89ea2b3a354bc2?hl=en
Lukasz Szybalski’s docs: http://lucasmanual.com/mywiki/TurboGears2

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 215.)

Todo

Difficulty: Medium. Document the code_ext extension for Sphinx (docs/code_ext.py)
TG documentation writers should be aware of this extension, and how to use it.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 218.)

Todo

Difficulty: Medium. Include these docs: http://groups.google.com/group/turbogears/browse_frm/thread/4023f34fd114121e?hl=en
Trouble with WebHelpers

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 225.)

Todo

Difficulty: Medium. Incorporate these docs: http://groups.google.com/group/turbogears/browse_frm/thread/b718855725da557d?hl=en
tgext and i18n

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 228.)

Todo

Difficulty: Hard. Performance deployment enhancements pretty much explain all the YSlow issues
* serving static files from the frontent, /config/app_cfg.py base_config.serve_static = False
* compressing JS/html/CSS,etc

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 231.)

Todo

Difficulty: Medium. Add shell script which validates environment for building docs

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 235.)

Todo

Difficulty: Medium. main/ToscaWidgets/forms.rst uses the archive directive. This outputs an absolute path relative to root on the machine that builds the docs. Fix the code so it is relative to _build/html/_static

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/misc.rst, line 238.)

Todo

link repoze.who, repoze.what, and the other key middleware

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/recipesandfaq.rst, line 32.)

Todo

Document initial DB setup in websetup.py

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/recipesandfaq.rst, line 52.)

Todo

Link DB setup (MySQL, PostgreSQL, etceteras) docs

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/recipesandfaq.rst, line 53.)

Todo

document the transaction module, part of the repoze.tm package, introduction for implementers here... http://repoze.org/tmdemo.html

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/recipesandfaq.rst, line 54.)

Todo

Document “community” sites; user-signup mechanisms (e.g. tgext.registration2), OpenID,
Recaptcha, etceteras as sub-section

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/recipesandfaq.rst, line 83.)

Todo

JQuery, Dojo, EXT usage doc-links

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/recipesandfaq.rst, line 136.)

Todo

Link documentation for doing JSON RPC/Ajax here

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/recipesandfaq.rst, line 137.)

Todo

Difficulty Medium: document how to “freeze” applications (PIP, zc.buildout, etceteras) for re-deployment with precisely the same software on each machine (no downloads etceteras)

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/recipesandfaq.rst, line 176.)

Todo

document use of Nginx beyond just saying you can do it

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/recipesandfaq.rst, line 177.)

Todo

(maybe) document use of Twisted WSGI wrapper?

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/recipesandfaq.rst, line 178.)

Todo

Document use of Ming [http://merciless.sourceforge.net/] and MongoDB [http://www.mongodb.org/] with TurboGears

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/recipesandfaq.rst, line 207.)

Todo

Difficulty: Medium. optimization tips for SQLAlchemy usage

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/recipesandfaq.rst, line 231.)

Todo

Difficulty: Easy. Validate that toctree maxdepth values are appropriate

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/recipesandfaq.rst, line 233.)

Todo

Difficulty: Easy. Explain usage of tgscheduler and how to use SQLAlchemy in a task

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/recipesandfaq.rst, line 235.)

Todo

Difficulty: Medium. Validate that toctree maxdepth values are appropriate

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/toc.rst, line 72.)

Todo

Difficulty: Medium. Validate that this toctree actually reflects what we want. Reduce it as necessary, reorg it, make it somewhat simpler.

(The original entry is located in /var/build/user_builds/turbogears/checkouts/rtfd2.2.2/docs/toc.rst, line 74.)

Questions

		Where i can find the good tutorial about genshi other than it’s home page?

Useful Links:

		http://groups.google.com/group/turbogears/browse_thread/thread/70c14ac308563af5

		http://www.imagebin.ca/view/65iqpnZ.html

		http://www.blog.pythonlibrary.org/?p=210

		http://wiki.github.com/GothAlice/YAPWF/how-to-multiple-database-connections

		http://www.blog.pythonlibrary.org/?p=230

Testing Notes and Links

		http://showmedo.com/videos/video?name=2910000&fromSeriesID=291

		http://code.google.com/p/pythontutorials/source/browse/

		Coverage of testing: http://nedbatchelder.com/code/coverage/

From Admin Through Creating Your Own Widgets

		http://turbogears.org/2.1/docs/main/Extensions/Admin/index.html

		http://turbogears.org/2.1/docs/main/Extensions/Crud/index.html

		http://turbogears.org/2.1/docs/main/RestControllers.html?highlight=moviedemo

		http://turbogears.org/2.1/docs/main/ToscaWidgets/forms.html

		http://www.sprox.org/tutorials/table.html

		http://www.sprox.org/tutorials/form.html

		http://code.google.com/p/pythontutorials/source/browse/docs/twtut/ajax_tutorial.rst

Repoze Docs

		http://static.repoze.org/whatdocs

		Understand __nozero__ better

		which does this Predicate.__nonzero__ = lambda self: self.is_met(request.environ) which is thread unsafe (according to Gustavo) which is bad because it’s using the environ. and therefore it shouldn’t be used because you need the env.

20 Minute Wiki Issues

The existing tutorial is great marketing ... very compelling. However, it’s
pedagogically weak. It’s too rushed and assumes far too much familiarity
with the ORM ... and the overall conceptual basis for web development
frameworks. For example there’s no explanation of MVC and not discussion of
how a new developer would recognize the separation semantics.

Apache/mod_wsgi

Make sure to discuss mod_wsgi more fully
< peep1> should tg2/mod_wsgi work slower than stock paste/pylons installation?
< peep2> yea, tg2 will be somewhat slower than stock pylons
< peep2> genshi is not as fast as mako
< peep2> there’s a couple more pre-loaded wsgi middleware components, etc
< peep2> if you use mako they get pretty close together

Root Url of app is in environ, SCRIPT_PATH

Sprox Disabling ‘id’ Field Editing When Using AddRecordForm

Don’t use AddRecordForm, use FormBase instead. AddRecordForm
automatically disables the primary key fields. The only other
difference between AddRecordForm and FormBase is the assignment of the
__check_if_unique__ property to True.

Q: How can I enable editing of the ‘id’ field on a Sprox AddRecordForm?
A: Override _do_get_disabled_fields(self) in your subclass and return self.__disable_fields__[:].
By default it excludes the field(s) returned by self.__provider__.get_primary_field(self.__entity__)
Or, since that is the only feature added by AddRecordForm, don’t use AddRecordForm. XD
From the docstrings: “”“Override this function to define how”“”

Using tg.config Variables

the tg.config variable is created when middlware.py does the
load_environment call well, not created, but updated with the ini file
values, etc you can’t use it before that. But all the ini values are
passed in to the make_middlware call in middlware.py so you can use
them there if you need to

On Spawning New Processes and Threads

< peep1> hey all, i’m using TG1, and wondering what my options are for making an asynchronous HTTP request from a controller method
< peep1> i want the controller to return ASAP, and don’t care about callbacks from the (long-running) HTTP request
< peep1> threads don’t seem to work (they get killed off when the controller method exits), and i’d prefer not to go down the rabbit warren of twisted or similar
< peep1> calling curl from subprocess seems my best option at the moment, but seems to be The Wrong Solution - any other ideas?
< peep2> I’d look into threads, and find out why the thread gets killed, and then fix that.
< peep1> ah, rather than started threads directly from the controller, I’ll put a queue in there, see if it helps
< peep3> goodgracious: you pretty much need to fork in some way. threads will be no good as the webserver will recycle it as you found out.

On Adding Robots.txt

< peep1> where should one place robots.txt in a tg2 installation?
< peep1> ./public ?
< peep2> that should work
< peep2> according to pylons docs, public is searched before going through controllers
< peep2> I assume this still applies with turbogears
< peep1> y, that worked

On How To Limit Routes To Specific Languages

< peep> map.connect(‘/{lang}/{controller}/’, requirements=dict(lang=’bg|en|ro|ru’))

		google search! including search key related sites: tosca, sqlalchemy,

		genshi, etc...

		should we link more directly to toscawidget tutorials?

		either ask them to upgrade tutorials to tg2, or provide them a patch?

Serving Specific File Types

from tg.controllers import CUSTOM_CONTENT_TYPE

class FilesController(RestController):

 @@expose(content_type=CUSTOM_CONTENT_TYPE)
 def get_one(self, file_type, *file_path):
 file_path = list(file_path)
 if pylons.request.response_ext:
 file_path[-1]+=pylons.request.response_ext
 pylons.response.headers['Content-Type'] = 'text/plain'
 pylons.response.headers['Content-Disposition'] = 'attachment; filename="'+file_path[-1]+'"'
 return file(file_path, "r").read()

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Extensions/Scheduling.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Extensions and Tools »

Scheduling Tasks

On Posix systems, using cron is a perfectly valid way to schedule
tasks for your application. See Command Line Scripts for an example of
script that can access all of the application model and internals and
that is therefore an ideal target for a cron job.

However, it sometimes happen that you need to interact intimately with
the runtime environment of your application, that you need to schedule
jobs dynamically, or that your hosting service does not provide access
to cron. In those cases, you can schedule jobs with the TGScheduler
module.

Installation

TGScheduler is registered on PyPI and therefore can be installed
with easy_install:

$ easy_install tgscheduler

Setup

TGScheduler is not started by default. To allow your tasks to run,
simply start the scheduler when your application is loaded. You can
do that in lib/app_globals.py:

import tgscheduler

class Globals(object):
 def __init__(self):
 tgscheduler.start_scheduler()

Scheduling Tasks

To you have four ways to schudule tasks:

		add_interval_task();

		add_monthly_task();

		add_single_task();

		add_weekday_task().

Each of those receive a callable and a time specifier that defines
when to run a function. As an example, if you want to update the
stock prices in your database every 15 minutes, you would do something
like the following:

def update_stocks():
 url = 'http://example.com/stock_prices.xml'
 data = urllib2.urlopen(url).read()
 etree = lxml.etree.fromtsring(data)
 for el in etree.xpath("//stock"):
 price = model.StockPrice(el.get("name"), int(el.get("price")))
 model.DBSession.add(price)

class Globals(object):
 def __init__(self):
 tgscheduler.start_scheduler()
 tgscheduler.add_interval_task(60*15, update_stocks)

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_static/bg_rpt.png

_images/table.png
s e o) (il e st

Welcome to TurboGears 2

‘The Python web metaframework

Movie Listing

main/CLIScript.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Command Line Scripts

It is often useful to have command line scripts that can access the
model of a TurboGears2 application, as an example, to manipulate model
object from within a cron job. The main difficulty in implementing
such a script is often to have the model configured according to a
given configuration file. Paste takes care of that but the
documentation of it’s API can seem somewhat obscure to newcomers.

Example Command Line Script

The following script prints all the usernames to the console. The
critical part of the script is the load_config() function. It both
parses the .ini configuration file and initializes the SQLAlchemy
model.

#!/usr/bin/env python
""" Print all the usernames to the console. """
import os
import sys
from argparse import ArgumentParser

from paste.deploy import appconfig
from example_app.config.environment import load_environment
from example_app import model

def load_config(filename):
 conf = appconfig('config:' + os.path.abspath(filename))
 load_environment(conf.global_conf, conf.local_conf)

def parse_args():
 parser = ArgumentParser(description=__doc__)
 parser.add_argument("conf_file", help="configuration to use")
 return parser.parse_args()

def main():
 args = parse_args()
 load_config(args.conf_file)

 print model.DBSession.query(model.User.user_name).all()

if __name__ == '__main__':
 sys.exit(main())

Packaging and Deploying CLI Scripts

Setuptools can take care of installing CLI script in the $PATH when
an application is installed or set it development mode. For this
to happen, all what one have to do is to include a reference to his
scripts in the console_scripts entry point in setup.py. As an
example, if the above script is saved in saved as
exampleapp/scripts/usernames.py, then setup.py should contain the
following:

setup(#...
 entry_points="""
 # ...
 [console_scripts]
 print-usernames = exampleapp.scripts.usernames:main
 """)

Paster Commands and Cron Support

The TGExt.Command package provides a class which can be used to
provide more involved command support, including support for respecting
PID files, and integration with the paster command-line parsing code.

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

modules/pylons/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		About the TurboGears Project »

Modules

Contents:

		pylons.commands – Command line functions

		pylons.configuration – Configuration object and defaults setup

		pylons.controllers – Controllers

		pylons.controllers.core – WSGIController Class

		pylons.controllers.util – Controller Utility functions

		pylons.controllers.xmlrpc – XMLRPCController Class

		pylons.decorators – Decorators

		pylons.decorators.cache – Cache Decorators

		pylons.decorators.rest – REST-ful Decorators

		pylons.decorators.secure – Secure Decorators

		pylons.error – Error handling support

		pylons.i18n.translation – Translation/Localization functions

		pylons.log – Logging for WSGI errors

		pylons.middleware – WSGI Middleware

		pylons.templating – Render functions and helpers

		pylons.test – Test related functionality

		pylons.util – Paste Template and Pylons utility functions

		pylons.wsgiapp – PylonsWSGI App Creator

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

deprecated/ManualDatabaseMigration.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Getting Started »

Manual Database Schema Migration in TurboGears 2

An automated method of applying database schema migrations helps to
create a robust and reliable upgrade path for an application as it
changes over time. TurboGears 2 comes with a tool to incrementally
test and automatically deploy schema changes as needed.

TurboGears 2 relies on the sqlalchemy-migrate [http://code.google.com/p/sqlalchemy-migrate/] project to
automate database schema migration.

Prerequisites

This document assumes that you have an existing TurboGears 2.2.2 project
that uses the built-in support for SQLAlchemy. If you
are not yet at that stage, you may want to review the following:

		Quickstarting A TurboGears 2.2.2 Project

		Working With SQLAlchemy And Your Data Model

Additionally, it is assumed that you have reached a point in the
development life cycle where a change must be made to your current data
model. This could mean adding a column to an existing table, adding a
table, removing a table, or any number of other database schema
changes.

The examples in this document will be based on the The TurboGears 2 Wiki Tutorial, but
the information applies to any TurboGears 2 project.

Getting Started

The sqlalchemy-migrate library provides a migrate script that should
be in your path. The migrate script wraps several
sqlalchemy-migrate commands much like the paster script wraps
commands. You can verify that the migrate script is in your path and
retrieve a list of available commands by running the following:

$ migrate --help

Two additions to your TurboGears 2 project are required for
sqlalchemy-migrate to manage the database schema:

		A repository on the file system of schema revisions

		A database table for maintaining migration state in the managed database.

Create a Repository

To create a repository of schema revisions we issue the following command
in the root of the project:

$ migrate create migration "Wiki20 Migrations"

The first argument to the create command, migration, is the
directory that will contain the repository of schema revisions. The second
argument to the create command, ‘Wiki20 Migrations’, is the name of
the newly created migration repository. The command should return
without generating any output, and a new directory, migration, should
now exist in the project root with the following content:

__init__.py
__init__.pyc
manage.py
migrate.cfg
README
versions

Place the Database under Version Control

Our repository is ready. Now we must create a table
for maintaining revision state in our managed database. The migrate
script provides for this step as well:

$ migrate version_control sqlite:///devdata.db migration

The two arguments to the version_control command are a valid
SQLAlchemy database URL and the path to your sqlalchemy-migrate
revision repository. You will need to run the version_control
command against each database instance for your application. If you
have a development, test, and production database, all three databases
will need to be placed under version_control.

If you examine your database, you will now find a new table named
migrate_version. It will contain one row:

sqlite> .headers on
sqlite> select * from migrate_version;
repository_id|repository_path|version
Wiki20 Migrations|migration|0

Note that the repository_id column should uniquely identify your
project’s set of migrations. Should you happen to deploy multiple
projects in one database, each sqlalchemy-migrate repository will
insert and maintain a row in the migrate_version table.

Integrating sqlalchemy-migrate in the Development Process

With the database under version control and a repository for schema
change scripts, you are ready to begin regular development. We will
now walk through the process of creating, testing, and applying a
change script for your current database schema. Repeat these steps as
your data model evolves to keep your databases in sync with your
model.

Create Your First Change Script

The migrate script will create an empty change script for you,
automatically naming it and placing it in your repository:

$ migrate script --repository=migration initial_schema

The command will return without producing any output, but the new script
will be in your repository:

$ ls migration/versions
001_initial_schema.py __init__.py __init__.pyc

Edit the Script

Each change script provides an upgrade and downgrade method, and
we implement those methods by creating and dropping the pages_table
respectively:

from sqlalchemy import *
from migrate import *

metadata = MetaData(migrate_engine)
pages_table = Table("pages", metadata,
 Column("id", Integer, primary_key=True),
 Column("pagename", Text, unique=True),
 Column("data", Text)
)

def upgrade():
 # Upgrade operations go here. Don't create your own engine; use the engine
 # named 'migrate_engine' imported from migrate.
 pages_table.create()

def downgrade():
 # Operations to reverse the above upgrade go here.
 pages_table.drop()

Test the Script

Anyone who has experienced a failed schema upgrade on a production
database knows how uniquely uncomfortable that situation can be.
Although testing a new change script is optional, it is clearly a good
idea. After you execute the following test command, you will ideally be
successful:

$ migrate test migration sqlite:///devdata.db
Upgrading... done
Downgrading... done
Success

If you receive an error while testing your script, one of two issues
is probably the cause:

		There is a bug in the script

		You are testing a script that conflicts with the schema as it currently exists.

If there is a bug in your change script, you can fix the bug and rerun
the test.

If you are working through this document with an existing application,
your database probably already contains the initial schema for your
project. In this case, you cannot test the change script against your
existing database because it will try to create tables that already
exist. To test the script while preserving your existing data, you
will need to create a second database, place it under version_control,
and test the script against the new database. Since your original database
already contains the schema defined in your change script, you will need
to update the migrate_version table manually to reflect this situation:

sqlite> update migrate_version set version=1;

Deploy the Script

The script is now ready to be deployed:

migrate upgrade sqlite:///devdata.db migration

One quirk to note: the arguments to upgrade are in the opposite
order compared to the test command. If your database is already at
the most recent revision, the command will produce no output. If
migrations are applied, you will see output similar to the following:

0 -> 1... done

Additional Information and Help

		The sqlalchemy-migrate documentation [http://code.google.com/p/sqlalchemy-migrate/w/list].

		The TurboGears SQLAlchemy documentation [http://turbogears.org/2.1/docs/main/SQLAlchemy.html].

Many of the sqlalchemy-migrate developers are on the SQLAlchemy
mailing list. Problems integrating sqlalchemy-migrate into a
TurboGears project should be sent to the TurboGears mailing list [http://groups.google.com/group/turbogears].

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/Streaming.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

Streaming Response

Streaming permits to your controller to send data that yet has to be created to the client,
this can be really useful when your app needs to send an huge amount of data to the client,
much more data than you are able to keep in memory.

Streaming can also be useful when you have to send content to the client that yet has to be
generated when you provide an answer to the client keeping an open connection between the
application and the client itself.

In TurboGears2 streaming can be achieved returning a generator from your controllers.

Making your application streaming compliant

First of all you have to make sure that your application isn’t running in debug mode
or it will try to read your response making streaming useless. If your response never
ends it will hung the application forever.

So the first thing you want to do when using streaming is disabling debug mode
in your development.ini and any middleware that edits the content of your response.

[DEFAULT]
debug = false

Most middlewares like debugbar, ToscaWidgets and so on will avoid touching your
response if it is not of text/html content type.
So streaming files or json is usually safe.

Streaming with Generators

Streaming involves returning a generator from your controller, this will let
the generator create the content while being read by client.

@expose(content_type='application/json')
def stream_list(self):
 def output_pause():
 num = 0
 yield '['
 while num < 9:
 num += 1
 yield '%s, ' % num
 time.sleep(1)
 yield '10]'
 return output_pause()

This simple example will slowly stream the numbers from 1 to 10 in a json array.

Accessing TurboGears objects

While streaming content is quite simple some teardown functions get executed
before your streamer, this has the side effect of changing how your application
behaves.

Accessing Request

All the global turbogears objects get unregistered before running the generator
so if you need to have access to them, you will need to pass the current
object instance to the generator itself.

@expose(content_type='text/css')
def stream(self):
 def output_pause(req):
 num = 0
 while num < 10:
 num += 1
 yield '%s/%s\n' % (req.path_info, num)
 time.sleep(1)
 return output_pause(request._current_obj())

This example, while not returning any real css, shows how it is possible
to access the turbogears request inside the generator.

Reading from Database

When reading from the database the only required action is to remove
the session at the end of your generator when you don’t need it anymore.

Apart from that the database will be available as usual:

@expose(content_type='application/json')
def stream_db(self):
 def output_pause():
 num = 0
 yield '['
 while num < 9:
 u = DBSession.query(model.User).filter_by(user_id=num).first()
 num += 1
 yield u and '"%s", ' % u.user_name or 'null, '
 time.sleep(1)
 DBSession.remove()
 yield 'null]'
 return output_pause()

Writing to Database

If you need to write data on the database you will have to manually flush the session
and commit the transaction. This is due to the fact that TurboGears2
won’t be able to do it for you as the request flow already ended.

@expose(content_type='application/json')
def stream_list(self):
 def output_pause():
 import transaction
 num = 0
 while num < 9:
 DBSession.add(model.Permission(permission_name='perm_%s'%num))
 num += 1
 time.sleep(1)
 DBSession.flush()
 transaction.commit()
 DBSession.remove()
 return output_pause()

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

deprecated/ToscaWidgets/Cookbook/AutoComplete.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		ToscaWidgets Cookbook »

JQuery AutoComplete Widget Tutorial

Installation

easy_install tw.jquery

Usage

The AutoCompleteField widget supports the following parameters:

Mandatory Parameters:

		
		id The element id of the input field element. Multiple instances

		of AutoCompleteField can be used on the same form or page. These
are referenced distinctly on the form or page by the id. This is
also the name of the field which is passed into the form on the
server side.

		
		completionURL This is the url to be used for fetching the

		autocomplete values using HTTP GET request.

Optional Parameters:

		
		fetchJSON Specifies whether the values are to be fetched as a

		JSON request. If specified as true it tries to interpret the
returned data as JSON. (Default: fetchJSON = False)

		
		minChars Specifies the minimum number of characters that the

		user must enter before the list is shown. (Default: minChars =
1)

For example the widget is instantiated as:

from tw.jquery.autocomplete import AutoCompleteField

autoField = AutoCompleteField(
 id='myFieldName',
 completionURL = 'fetch_states',
 fetchJSON = True,
 minChars = 1)

Once the Widget is instantiated it can be added to an existing form:

from tw.forms import TableForm

myForm = TableForm(id='myForm', children=[autoField])

This form is of course served up to the user via a controller method
like this:

@expose('mypackage.templates.myformtemplate')
def entry(self, **kw):
 pylons.c.form = myForm
 return dict(value=kw)

And your template form would display your form like this:

${tmpl_context.form(value=value)}

And here is the resulting field when viewed from a browser:

[image: example AutoComplete Field]
The template generates the necessary javascript code to fetch values
from the controller using the completionURL. The controller code for
generating the json response would be something like:

@expose('json')
def fetch_states(self):
 states = ['ALASKA', 'ALABAMA', 'ARIZONA',, 'WYOMING']
 return dict(data=states)

The method should return a dictionary with data as key and a list
as value. In this example the list is populated manually. The list
would, in most cases, be obtained from a database.

Data Retrieval

Here is how you retrieve data from the form once it has been submitted
by the user. Notice that this is not any different from how it is
normally retrieved from forms.:

def retrieve(self, **kw):
 do.something()
 return dict()

Validation

We add a @validate decorator to the data retrieval function which
redirects us back to the original form if the user enters something
that does not match that which is in our list.

@validate(myForm, error_handler=entry)
def retrieve(self, **kw):
 do.something()
 return dict()

and here is what the widget looks like when the validation fails:

[image: example Validation Failure]

Todo

Difficulty: Medium. document the answer to this question: What about if someone is using this widget for a select field, and the value they want returned is the value of the id of an object of select values in a database?

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

_images/prefork.png
i bitbucket Home Repositories ~ Account (inbox Plans Help Log out pederen) [1

Overview | Downloads (0) Source | Changesets Admin Followers (1) | ForksiQueues (0)

&% branches» 7 tags » RSS E) Aom 4= pul request patchqueue @ following | § get source »

pedersen /tg_bitbucket_tut
A very small and simple repository to help a user get the hang of using BitBucket and Mercurial with TurboGears

Clone this repository (size: 1.1 KB): HTTPS / SSH
§ hg clone https://pedersengbitbucket .org/pedersen/tg_bitbucket_tut/

Shortog (showing 10448208272 (tp) — 101aa4482c8272) B —
age Author Hessage A o«
3 minutes @ Michael J. Pedersen Simple file for simple needs 100

Terms of Service | Privacy Policy | Blog | Report Bug / Request Feature | Discuss Bitbucket | avantlumiere.com © 2008-2009

_images/movie_form_5.png
New Movie

Movie Title | Wallace & Gromit

vear _

Release Date [09-02-22 [Cchoose |

main/Deployment/Apache.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		Deployment »

Apache Web Server

Warning

You are deploying a web application. This is an inherently risky
process. Apache, as with any other web-server, can be configured
incorrectly to compromise the security of your machine. You need
to either become very familiar with Apache or rely on someone who
is to keep your installation safe. At a minimum you need to be
sure that you update your server with security patches in a timely
manner!

Apache is the most widely-deployed web-server on the planet, and it
is well documented. This document simply introduces you to the
various features of the server and gives you an idea of how it is
normally used with TurboGears 2.2.2.

Note

Apache is part of the Standard Deployment Pattern for TurboGears 2.2.2.
TurboGears uses the WSGI interface, which can be supported by Apache
in a number of ways. The mod_wsgi extension is the recommended
implementation for new TurboGears users.

Installation

All major Linux platforms package Apache such that it can be
installed with a simple package-manager command. For Debian/Ubuntu
machines this command looks like this:

sudo apt-get install apache2

Todo

document Fedora/RHEL installation

which will install Apache and configure it to start automatically
on system startup. Apache is configurable via a series of config
files installed in (normally) /etc/apache2 with the directories
sites-available and sites-enabled being the two most commonly
altered.

Deployment Patterns

Normally in an Apache deployment Apache is configured to serve your
application’s static files folder directly. This provides a
significant performance advantage over having TurboGears serve these
files. Apache accesses the files directly from the disk and serves
them without needing to load them into memory all at once.

Similarly, Apache will tend to be used to provide the SSL encryption
layer for SSL-using sites. Apache’s SSL implementation is reasonably
fast and robust, and setup of SSL is well documented for the server.

WSGI Environment

There are 2 major strategies for providing TurboGears with a WSGI
environment using Apache. The first is to embed TurboGears into the
Apache process with a “captive” WSGI-supporting module. For this
strategy:

		Apache will manage the lifetime of your TurboGears application

		Normally to restart your application you will have to restart the Apache server

		Your code needs to be executable by the Apache user, normally www-data

		Your data directories need to be readable/writable by the Apache user

		The environment is somewhat restrictive (for instance, you cannot print to stdout)

There are two implementations of this strategy:

		mod_wsgi – The
mod_wsgi apache extension is a very efficient WSGI server, which
provides automatic process monitoring, load balancing for
multi-process deployments, as well as strong apache integration.
Strongly recommended for new users, and is the
Standard Deployment Pattern for TurboGears 2.2.2.

		FastCGI – when apache extensions are not an option
due to web host restrictions (for example, admins want to run suexec on
all userspace scripts), you can create a FastCGI dispatcher that invokes
the WSGI interface. Generally you should not use this mechanism unless
no other mechanism is available.

The second strategy for deploying WSGI with Apache is to have
Apache “reverse proxy” or “redirect/rewrite” requests that come in on
the main port (80) to a separate TurboGears server process which is
running on a “high port” (for example, port 8080) solely on the
localhost (private) interface. For this strategy:

		you are responsible for keeping your TurboGears process running, starting
it at boot, and generally making sure that it can receive the requests
from the Apache server. See Deploying as a Service/Daemon.

		You can run the TurboGears process as any user you like, and you can even
run it in a “screen” session during development

		You can easily restart the TurboGears process

There are two implementations of this strategy in Apache:

		mod_proxy – The mod_proxy
extension provides a simple to set-up apache environment that
proxies HTTP requests to your TurboGears 2.2.2 app. It can
be used to load balance across multiple machines.

		mod_rewrite – Very similar to mod_proxy
(in fact from the TurboGears side they are identical), but
mod_rewrite can be somewhat more complex to setup.

Enable Your Apache Site

Once you have:

		setup your (mod_wsgi) environment

		Deployed your Database

		Deployed your Code

		Created your Production INI (including testing with the paster server)

		Tweaked your Apache config

You can copy the Apache config file to your Apache sites-available
directory, enable it, and restart Apache.

$ sudo cp myapp/apache/myapp /etc/apache2/sites-available
$ sudo chown root:root /etc/apache2/sites-available/myapp
$ sudo a2ensite sitename
$ sudo apache2ctl configtest
$ sudo apache2ctl restart

You should now be able to load your site at the configured location
(by default http://localhost/myapp). If your site doesn’t appear,
check the Apache error log:

$ less /var/log/apache2/error.log

normally either your Python application will have encountered an error
in the .wsgi script. Pay particular attention to the PYTHONPATHS,
as this is one of the most common issues that prevents your site from
running.

What’s Next

		mod_wsgi – the recommended deployment environment for Apache

		Standard Deployment Pattern – gives an overview of the standard installation pattern

		Apache docs [http://httpd.apache.org/docs/] – the official Apache documentation

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

main/CakePHPIntro.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Getting Started »

Intro to TurboGears for CakePHP developers

		Status:		RoughDoc

Table of Contents

		Intro to TurboGears for CakePHP developers
		A 30,000 Feet Comparison

		Project Folders

		Routes

		Controller

		Components

		Models & Behaviors

		Views

		Helpers

		Scaffolding

		Pros and Cons

This document serves as an intro to TurboGears for those migrating
from CakePHP (and possibly other PHP frameworks). We will assume some
familiarity with the Python language, and will try to stick to
outlining the core differences between the frameworks rather than
the languages (quite beyond the scope of this document).

A 30,000 Feet Comparison

Of course, the largest difference between CakePHP and TurboGears is
the core language. However, from a technical standpoint, both are
quite similar: Both are open source, both have an active community,
and both provide a rich component set.

		Framework
		Language
		License
		Started
		Deployment Options
		MVC
		MVC Push/Pull
		i18n & l10n

		CakePHP
		PHP
		MIT
		2005
		Apache, FastCGI,
etc.
		Yes
		Push
		Yes

		TurboGears
		Python
		MIT/LGPL
		2005
		paster, Apache
(mod_wsgi or mod_proxy)
		Yes
		Push
		Yes

Feature and component wise, both frameworks provide advanced
functionality such as a rich ORM, a tight security framework, and an
easy to use forms creation & validation framework:

		Feature/Component
		CakePHP
		TurboGears

		ORM:
		Active Record Pattern
		SQLAlchemy (Data Mapper Pattern)

		Testing Framework:
		Based on SimpleTest
		nose

		Security Framework:
		Security component
		repoze.who & Authentication

		Forms Framework:
		Form helper
		tw2.forms & formencode

		Caching Framework:
		Yes
		beaker

		DB Migration Framework:
		SchemaShell
		sqlalchemy-migrate

		Template Framework:
		PHP files
		Multiple [1]

		Ajax:
		Prototype & script.aculo.us
		toscawidgets or roll your own [2]

		[1]		TurboGears supports Genshi (default), Mako, and Jinja2 out of the box. See the alternate templates page for more information.

		[2]		TurboGears is JavaScript/Ajax agnostic and therefore approaches Ajax and DHTML differently than a framework tied to only one JS library. For more information see the ToscaWidgets section.

Project Folders

		CakePHP
		TurboGears

		app/config
		myapp/config

		app/controllers
		myapp/controllers

		app/locale
		myapp/i18n

		app/models
		myapp/model

		app/plugins
		myapp/lib

		app/tmp
		data

		app/vendors
		n/a – use easy_install packagename

		app/views
		myapp/templates

		app/webroot
		myapp/public

See this image for more information.

Routes

By default TurboGears is setup with one default route which goes to
your RootController. This means you typically don’t have to think
about routes at all, and gives you great design flexibility.

However, advanced routing is available if needed. See
Routes Integration in TG2 for more information.

Controller

In CakePHP (and many other PHP web frameworks) you are expected to
have a separate controller file & class for each :controller
route. The methods of the controller class become the :action
routes, with the method arguments being the :id.

In TurboGears, the philosiphy is similar with a bit of added
flexability. As was mentioned in the previous section, the default
routing in TurboGears is to the RootController class in
myapp/controllers/root.py. From RootController, you are free to
define “sub-controllers” and methods however you like. A typical setup
might look like this:

In myapp/controllers/root.py:

initial imports edited out

this import loads our "sub-controller"
from myapp.controllers.about import AboutController

class RootController(BaseController):
 # the line below instructs the "about" route (http://www.example.com/about/) to
 # load the index method of the AboutController
 about = AboutController()

 # the next few lines handle the loading of the "root" route (http://www.example.com/)
 @expose('myapp.templates.index') # loads the index template
 def index(self): # defines the "index" action
 return dict(page='index') # the 'page' variable is available in our template

 # you could just as easily specify another "controller" route (like we did with 'about')
 # by defining another method in this controller (becomes http://www.example.com/contact/)
 @expose() # no template needed (returning a string)
 def contact(self):
 return 'email@example.com' # simply prints email@example.com

This is what the AboutController file might look like:

In myapp/controllers/about.py:

class AboutController(BaseController):
 # the index action (http://www.example.com/about/)
 @expose('myapp.templates.about')
 def index(self):
 return dict(page='about')

$components, $helpers, and $uses

Although these attributes play a major part in CakePHP classes,
TurboGears has no need for this type of class attribute definition. To
use a “component” or “helper” package in your class you would simply
import packagename. For your models you would simply from
myapp.model import ModelClassName.

Controller Methods

CakePHP has a few special controller methods that deal with things
like passing objects to a template, rendering templates, etc. Below is
a list of these methods, and TurboGears’ equivalent:

		CakePHP
		TurboGears

		set()
		tmpl_context or passed in return dict()

		render()
		@expose(myapp.path.to.templatefile)

		redirect()
		from tg import redirect

		flash()
		from tg import flash

Components

The “batteries included” nature of Python (and therefore TurboGears)
means that you have a lot of packages available right at your
fingertips. Aside from familiarizing yourself with Python’s standard
library, it is also a good idea to become acquainted with
TurboGears’ module library.

A Comparison of Components

		CakePHP [3]
		TurboGears

		ACL, Auth & Security
		repoze.who and tg.predicates

		Cookie
		from tg import response, response.set_cookie()
& from tg import request, request.cookies

		Email
		TurboMail [4]

		RequestHandler
		request.environ (dictionary)

		Session
		from tg import session

		[3]		http://book.cakephp.org/view/170/Core-Components

		[4]		http://www.python-turbomail.org/

Models & Behaviors

TurboGears uses a high-performance enterprise-level SQL toolkit and
ORM named SQLAlchemy.

Views

Whereas PHP itself acts as CakePHP’s template language, TurboGears has
a number of templating languages available. The most popular choices are Genshi [http://genshi.edgewall.org/] (a pure
XML-based template language) and Mako [http://www.makotemplates.org/] (non-XML, but much faster than
Genshi).

As we saw earlier in TG’s equivalent Controller Methods, data is
typically passed from the controller to the view by using the special
tmpl_context object, or by defining dictionary values in the
controller method’s return.

Helpers

Helpers are managed in the mypackage/lib/helpers.py file and are
typically accessed in your template through the h
object. TurboGears ships with several built-in helpers (see the
webhelpers page), but Python’s modular nature makes it
very easy to add helpers to your project. Usually all you have to do
is easy_install packagename and then at the top of your
helpers.py file put import packagename as mynewhelper. You can
then access your new helper in your view by using h.mynewhelper.

A Comparison of Helpers

As we just mentioned, TurboGears makes it very easy to “plug & play”
helpers. Below is a list of CakePHP’s built-in helpers, with the
TurboGears equivalent that is typically used:

		CakePHP [5]
		TurboGears

		Ajax
		toscawidgets or roll your own [2]

		Cache
		beaker

		Form
		tw2.forms and/or sprox

		HTML
		webhelpers.html

		JavaScript
		webhelpers.html

		Number
		webhelpers.number

		Paginator
		webhelpers.paginate

		RSS
		webhelpers.feedgenerator

		Session
		tg.session

		Text
		webhelpers.text

		Time
		webhelpers.date

		XML
		ElementTree or lxml

		[5]		http://book.cakephp.org/view/181/Core-Helpers

Scaffolding

Apart from a project quickstart, TurboGears
tries to avoid generating code for you. We are of the opinion that it
is easier to build pages from the ground up than to tweak code that is
generated from a framework’s “best-guess” about your project.

Having said that, there are a couple of modules and extensions that
can help you start interacting with your models right away:

		Sprox [http://sprox.org/]

		tgext.crud

		tgext.admin

Pros and Cons

CakePHP

		Pros

		
		PHP hosting environments are a dime a dozen

		The “views” are regular PHP files (no need to learn a new template syntax)

		The built-in $ajax helper class provides a convenient wrapper for Prototype/Scriptaculous

		Cons

		
		The built-in DHTML & Ajax is tied to one JavaScript/Ajax library

		CakePHP is typically much slower than TurboGears [curiasolutions [http://blog.curiasolutions.com/?p=172]]

TurboGears

		Pros

		
		SQLAlchemy

		JavaScript library independent with multiple widget options

		Multiple templating options (XML based and non-XML based)

		TurboGears is typically much faster than CakePHP [curiasolutions [http://blog.curiasolutions.com/?p=172]]

		Cons

		
		Might need root access to set up a “production” environment (see deployment options)

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

deprecated/ToscaWidgets/Cookbook/DynamicSelect.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		TurboGears 2.3.0b2 documentation »

 		Extended Table of Contents »

 		Tips and Recipes »

 		ToscaWidgets Cookbook »

How To Create A Database-Driven Select Field

Most developers create database tables which allow select fields in
their forms to be dynamically updated when a change occurs in the
database. The challenge is that widgets are stateless, and therefore
select fields expect to have the same options from the time they are
instantiated. However, ToscaWidgets does allow widget parameters to
change “on the fly.” Here is a description of one way a developer
might update these parameters and allow dynamic select options.

Consider the following model snippet:

from sqlalchemy import Table, Column, types
from sqlalchemy.orm import mapper

genera_table = Table("genera", metadata,
 Column("id", types.Integer, primary_key=True),
 Column("name", types.String(100), nullable=False),
 Column("description", types.Text, nullable=True),
)

class Genera(object):
 pass

mapper(Genera, genera_table)

The trick here is to override the update_params method of
SingleSelectField to query the database for the records, and then add
them to the ‘options’ parameter before processing the rest of the
TW.:

from mypackage.model import Genera
from tw.forms import SingleSelectField
from tg2 import DBSession

class MySelect(SingleSelectField):
 def update_params(self, d):
 rows = DBSession.query(Genera).fetchall()
 rows= [(row['id'], row['name']) for row in rows]
 d['options']= rows
 SingleSelectField.update_params(self, d)
 return d

A more intelligent solution would be to cache the rows and then
refresh them every so often.:

from mypackage.model import Genera
from tw.forms import SingleSelectField
from tg2 import DBSession
import time

timestamp = time.time()
options = []

class MySelect(SingleSelectField):
 def update_params(self, d):
 global timestamp
 global options

 #refresh once a minute at the most:
 if time.time() - timestamp > 60:
 rows = DBSession.query(Genera).fetchall()
 options = [(row['id'], row['name']) for row in rows]

 d['options'] = options
 SingleSelectField.update_params(self, d)
 return d

 © Copyright 2010 by the TurboGears Doc Team.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		tg2.3.0b2

 		rtfd2.3.0b1

 		rtfd2.2.2

 		latest

 		development

